声波透射法首波的检测方法

文档序号:6126484阅读:779来源:国知局
专利名称:声波透射法首波的检测方法
技术领域
本发明属于使用声波仪进行声波透射法测试岩土介质声学参数技术中声波首波的检测 方法,应用于使用声波仪检测岩土介质的声波波速和使用声波仪检测灌注基桩的桩身完整 性。
背景技术
使用声波仪进行声波透射法检测岩土介质的声波波速和声波首波幅度,是一种应用及其 广泛的技术。例如检测基桩桩身介质声波波速和声波首波幅度用于判定基桩的完整性,参见 《建筑基桩检测技术规范(JGJ106 2003)》。
基本方法是声波仪的发射传感器和接受传感器分别放置于被测岩土介质的不同部位, 发射传感器和接受传感器之间的间距己知,发射传感器发射一组声波,该组声波经过岩土介 质从发射传感器位置传播到接受传感器位置,接受传感器接收这组声波。该组声波波形的典 型形态是一组的振荡波形,且振荡波形起始段由多个半波组成,定义一个半波内的最大幅度 为半波幅度,振荡波形起始段半波幅度逐渐增大,第一个半波称为首波,第一个半波的半波 幅度称为首波幅度。首波幅度通常远小于该组声波中的最大半波幅度。
根据接受传感器接收到的声波波形,(l)可以得到声波的首波声时,即声波波形中第一个 半波的起始时间,(2)可以得到声波的首波声幅,即声波波形中第一个半波的最大幅度。结合 发射传感器和接受传感器之间的距离,根据首波声时可以计算出两传感器之间岩土介质的声 波波速,根据首波声幅可以计算出两传感器之间岩土介质的衰减性质。
确定声波的首波声时和首波声幅,其前提是检测出首波,即识别出声波波形中第一个半 波。在实际检测环境中,存在着各种干扰,接收到的声波波形不可避免的叠加有噪声,有时 发射传感器和接受传感器之间的距离较远,接受到的声波波形衰减严重,哪一个半波是首波 不易判定。应用中迫切需要准确可靠的首波检测方法。
实际检测中,测点数量往往很大,例如根据《建筑基桩检测技术规范(JGJ106 2003)》 的规定,对直径大于2米的桩,应设置4根声测管,形成6个检测剖面,测点移距0.2米, 如桩长100米,每个剖面的测点数量为500个, 一根桩总计3000个测点, 一个工地有时有 数百上千根桩需要检测。应用中迫切需要一种易于实现且高效率的首波检测方法。
早期确定首波的方法是根据显示在声波仪屏幕上的声波波形,由检测人员根据经验人 工判定首波,而后手动移动光标读取的首波声时和首波声幅,这种方法的缺点是效率极低, 且在声波波形较差时,人为的差异很大。
目前数字声波仪通常有自动检测首波的功能,检测方法是设置幅值阈值A,对采样得 到的N个声波波形的数据,逐个与阈值A比较,首个超出A, -A范围的数据所在的半波被认 定为首波。这种方法的优点是计算过程简单,易于实现计算机自动检测。但是这种方法有以 下两个明显的缺点(1) 计算结果的正确性依赖于阈值A的设置。实际检测中声波波形的幅度与介质质量有 关,且非常敏感,变化范围很大,特别是在介质有缺陷时,声波波形的幅度往往成倍减小。 如果设置的阈值A过大,在声波波形幅度较小时,真正的首波幅度会小于阈值A,其后幅度 更大的半波才会超过阈值A,被判定为首波,造成误判。
(2) 抗干扰能力较差。实际检测中声波波形的信噪比与介质质量有关,与声波传播距离有 关,并且检测过程中常常有各种干扰。如果设置的阈值A过小,在声波波形信噪比较低时, 噪声可能会超过阈值A,被判定为首波,造成误判。
误判可能带来极其严重的后果,因此需要频繁地人工手动调整阈值A,造成效率的大大 下降。
事实上,根据声波波形判定首波,依据的应该是波形的曲线特征,声波波形的幅度按比 例放大或縮小并不导致首波识别的变化,现行的设置幅值阈值A的首波计算方法实质是仅考 虑幅值信息,显然是不适当的。波形的曲线特征与声波的频率特性相关性更强,因此有必要 舍弃幅值阈值A,设计一种依据声波发射与接收传感器频率的首波检测方法,因为在检测过 程中,发射与接收传感器是不变的;并且这种方法应该并不过分依赖传感器的频率值,因为 传播过程中声波的频率成分也是会变化的。

发明内容
本发明的目地是提供一种进行声波透射法首波的检测方法,该检测方法检测首波时抗干 扰能力强,检测结果对初始设置参数的依赖度不高,检测结果稳定可靠,算法简单,易于在 资源较少的数字声波仪上实现本发明,在实际应用中可以大大提高检测效率。
为了达到上述目的,本发明采用以下技术措施
确定发射传感器的谐振频率,确定声波仪记录声波波形的时间区间;根据发射传感器的 谐振频率确定前段时间区间的宽度和后段时间区间的宽度;计算声波波形每一时刻的前段时 间区间内的平均绝对值,记录前段时间区间平均绝对值的最小值;计算声波波形每一时刻的 后段时间区间平均绝对值,记录后段时间区间平均绝对值的最大值;计算每一时刻的特征幅 度比,记录特征幅度比的最大值和最大值对应的时刻;计算等效信噪比;按照特征幅度比的 最大值与等效信噪比的数值关系,判定首波是否存在;在判定首波存在的情况下,最大值对 应的数据所在的半波就是检测得到的首波;在判定首波不存在的情况下,提示声波波形信噪 比差,不能检测出首波。根据声波传感器谐振频率确定前段时间区间宽度和后段时间区间宽 度以某时刻为终止时刻的时间区间称为该时刻的前段时间区间,前段时间区间宽度取值为 声波发射传感器谐振频率对应的谐振周期的0. 67倍和2. 0倍之间;以某时刻为起始时刻的 时间区间称为该时刻的后段时间区间,后段时间区间宽度取值为声波发射传感器谐振频率对 应的谐振周期的1. 0倍和3. 0倍之间;前段时间区间宽度应小于或等于后段时间区间宽度。
计算每一时刻的前段时间区间上的平均绝对值,记录此平均绝对值的最小值。计算每一时刻 的后段时间区间上的平均绝对值,记录此平均绝对值的最大值。计算每一时刻的特征幅度比, 记录特征幅度比的最大值和最大值对应的时刻。某时刻的特征幅度比等于该时刻的后段时间 区间上的平均绝对值除以该时刻的前段时间区间上的平均绝对值。计算等效信噪比。等效信 噪比等于后段时间区间平均绝对值的最大值除以前段时间区间平均绝对值的最小值。根据特
征幅度比的最大值和等效信噪比的数值关系判定首波是否有效:特征幅度比的最大值和等效 信噪比的数值均满足表1的条件时,判定首波存在,特征幅度比的最大值对应的数据所在的 半波就是检测得到的首波;特征幅度比的最大值和等效信噪比的数值不满足表1的条件时, 判定首波不存在,不能检测出首波。
本发明的有益效果是检测首波时抗干扰能力强,在实际应用中可以大大降低误判率,有不可估量的社会效益;检测结果对设置的传感器谐振频率值依赖度不高,通常实际传播的 声波频率与传感器谐振频率值偏差达到40%时,检测结果仍然稳定可靠;算法简单(对于数 字化的声波仪,声波波形被离散化为V(i),hO,l…N-l,共计N个数据,按递推算法计算 A即—Tl(i)或Amp一T2(i),计算量约为N次求绝对值,N次加法,N次减法;计算特征幅度比 Ra卿(i),计算量约为N次除法),易于在资源较少的数字声波仪上实现本发明,在实际应用 中可以大大提高检测效率,有极大的经济效益。


图1首波检测方法流程框图
图2 t时刻的前段时间区间与t时刻的后段时间区间的示意图
t时刻的前段时间区间是区间[tl,t],前段时间区间宽度Tl=t-tl。 t时刻的后段时间区间是区间[t,t2],后段时间区间宽度T2=t2-t。
图3第i个数据的前段时间区间与第i个数据的后段时间区间的示意图
第i个数据的前段时间区间是区间[i-(Nl-1), i],前段时间区间宽度对应的数据点 数为Nl个。
第i个数据的后段时间区间是区间[i, i+(N2-l)],后段时间区间宽度对应的数据点 数为N2个。
图4声波信号为数字信号时技术方案的首波检测方法流程框图
图4与图1的差别在于对于离散的数字信号数据,声波波形V(t)只在f = (i=0,l,…,N-1)时刻有数值,V(^A/)表达为V(i),时间值以数据序号i表示,
时间区间宽度T, Tl, T2表达为区段内的数据点的数量N, Nl, N2。时间区间上的
积分表达为数据点的求和。 图5具体实施方法实施例1
此例声波波形首波幅度较小,使用设置幅值阈值A的方法易于误判首波。使用本
发明的方法判定的首波是正确的。 图6具体实施方法实施例2
此例声波波形信噪比较差,使用设置幅值阈值A的方法易于误判首波。使用本发
明的方法判定的首波是正确的。 图7具体实施方法实施例3
此例声波波形信噪比极差,使用设置幅值阈值A的方法不能检测出首波。使用本
发明的方法判定的首波是正确的。 图8具体实施方法实施例4
此例声波波形为检测中的噪声信号。使用本发明的方法不能检测出首波。 图9具体实施方法实施例5
此例声波波形为检测中的典型波形。使用本发明的方法判定的首波是正确的。
具体实施例方式
实施例1
根据图1可知, 一种首波检测方法的步骤是
①确定发射传感器的谐振频率,确定声波仪记录的声波波形的时间区间发射传感器的 谐振频率F为发射传感器的标称频率;声波仪记录的声波波形V(t)的时间区间宽度T。对于 数字信号,数字声波仪采样时间间隔Zt ,在T时段内共采样得到N个声波采样数据V(i),[i=0, 1,…N-1], N=T/Zlt。
②确定前段时间区间宽度和后段时间区间宽度以t时刻为终止时刻的时间区间[tl, t] 称为t时刻的前段时间区间,以t时刻为起始时刻的时间区间[t, t2]称为该时刻的后段时间 区间,见图2。前段时间区间宽度T1取值为声波发射传感器谐振频率对应的谐振周期的al 倍,见式(1), "1取值区间
, t时刻的前段时间区间为[t-Tl,t];后段时间区 间宽度T2取值为声波发射传感器谐振频率对应的谐振周期的a2倍,见式(2), "2取值区 间[l.O, 3.0], t时刻的段后时间区间为[t,t+T2];限定al小于或等于a2,见式(3)。
<formula>formula see original document page 6</formula>(2)
cd《o;2 (3) 对于数字信号的第i个数据的前段时间区间与第i个数据的后段时间区间的示意图见图 3。前段时间区间宽度T1对应N1个数据点,Nl=Tl/zH,见式(4)。后段时间区间宽度T2 对应N2个数据点,N2= T2/」t,见式(5)。<formula>formula see original document page 6</formula>
③计算每一时刻的前段时间区间上的平均绝对值,记录此平均绝对值的最小值计算每 一时刻的前段时间区间[t-Tl]上的平均绝对值Amp—Tl(t),见式(3),求取A即—Tl(t)的最 小值AmpJTl—Min。
<formula>formula see original document page 6</formula>对于数字信号,在i=Nl-1,…,(N-1)-(N2-l)区间,对每一个采样数据V(i),取其前段 区间[i-(Nl-1), i]的Nl个数据计算前段平均绝对值A即一Nl (i),见式(10)。求取Amp—Nl (i) 的最小值Amp—Nl—Min
<formula>formula see original document page 6</formula> ( )
④计算每一时刻的后段时间区间上的平均绝对值,记录此平均绝对值的最大值计算每 一时刻的后段时间区间[t,t+T2]上的平均绝对值Amp—T2(t),见式(4),求取Amp—T2(t)的 最大值Amp一T2Jlax。
<formula>formula see original document page 6</formula> (8)
对于数字信号,在i=Nl-1,, N-N2区间,对每一个采样数据V(i),取其后段区间 [i,i+(N2-1)]的N2个数据计算后段平均绝对值A即—N2(i),见式(11)。求取Amp—N2(i)的最大值A即一N2_Max
Amp_N2(i) = ^' (9)
⑤计算每一时刻的特征幅度比,记录特征幅度比的最大值和最大值对应的时刻某时刻
的特征幅度比Ra即(t)等于该时刻的后段时间区间上的平均绝对值Atnp—T2(t)除以该时刻的 前段时间区间上的平均绝对值A即一Tl(t),见式(6)。求特征幅度比Ramp(t)的最大值 Ra即—Max ,及其fiamp一Max对应的时刻t—Ka即一Max 。
RamP(t) = Amp-T2(t) (1。 Amp—Tl(t)
对于数字信号,在i=Nl-1,, N-N2区间,计算特征幅度比R卿(i): A卿—N2(i)/ Amp—Nl(i)。见式(11)。求取Ra即(i)的最大值Ramp_Max和Ramp_Max对应的数据序号 i一Ramp一Max。
RamP(i)=Amp-N2(i) U" Amp—Nl(i)
⑥ 计算等效信噪比等效信噪比Rsn等于后段时间区间平均绝对值AmpJT2(t)的最大值 Amp_T2—Max除以前段时间区间平均绝对值Amp—Tl (t)的最小值AmP_Tl—Min,见式(7)。
Amp T2 Max ,_、
Rsn =——~=- (12)
Amp—Tl_Min
对于数字信号,等效信噪比Rsn等于后段时间区间平均绝对值Amp一N2(i)的最大值 Amp_N2_Max除以前段时间区间平均绝对值Amp—Nl (i)的最小值Amp—Nl一Min,见式(7)。
Amp N2 Max ,_、
Rsn =——^=~=- (13)
Amp—Nl—Min
⑦ 根据特征幅度比的最大值和等效信噪比的数值关系判定首波是否存在:特征幅度比的
最大值Ra即—Max和等效信噪比Rsn的数值满足表1中任何一条判定首波存在,否则判定首 波不存在。
表l:01.Rsn2.1And尺amp—Max2.502.Rsn2.2AndRa即一Max2.003.Rsn2.3AndR柳p一Max1.8
04,Rsn>2.4And1 3即—Msx1.75
os-Rsn2.5AndR柳p一Max1.7
Rsn芸2.6AndRamp一Max1.6507.Rsn2,7AndRamp一Max>1.608.Rsn2.8AndRajnp一Max1.5509.Rsn3.0AndRa即一Max1.510.Rsn4.0AndRamp一Max1.4511.Rsn26.0AndRarap—Msx5r1.413. Rsn ^ 8.0 And Ramp_Max £ 1.3514. Rsn ^ 10. 0 And Ramp一Max S 1. 315. Rsn ^ 15. 0 And Ramp—Max ^ 1, 2516. Rsn ^ 20. 0 And Ramp一Max ^ 1.2⑧ 判定首波存在时,特征幅度比的最大值对应的半波就是检测得到的首波判定首波存 在时,特征幅度比的最大值Ramp—Max对应的时刻t—Ramp_MaX所在的半波就是检测得到的首 波;对于数字信号,V(i_Ramp—Max)所在的半波就是检测得到的首波。⑨ 判定首波不存在时,不能检测出首波:在声波波形信噪比极低或根本没有声波信号时, 不能检测出首波。实施例2:以声波透射法检测某基桩完整性时采样获取的数字信号为例,此例声波波形首波 幅度较小,使用设置幅值阈值A的方法易于误判首波。以下按照图4的步骤实施 本发明的检测方法① 确定发射传感器主频F,确定声波仪记录的声波波形的时间区间T:声波传感器主频F二30KHz,采样时间间隔Jt:lus,采样得到的N=512个声波波形 数据,V(i) [i=0, 1,…511],见图5中V(i)曲线。② 确定前段时间区间宽度和后段时间区间宽度设定"1=1.0, 《2=2.0, al《a2。根据F:30KHz二30000Hz,采样时间间隔」t=lus=0. OOOOOls,根据式(7) (8)计算 Nl=33, N2=67:△t;_ i11.0300001 一2.0—730000- 670.000001③ 计算每一时刻的前段时间区间上的平均绝对值,记录此平均绝对值的最小值在[32, 445]区间对每一个采样数据V(i),取其前段区间[i-32, i]的33个数据, 按式(7)计算前段平均绝对值Amp—Nl(i),见图5中A即—Nl(i)曲线。Amp—Nl(i) 的最小值Amp_Nl_Min=2. 18。。④ 计算每一时刻的后段时间区间上的平均绝对值,记录此平均绝对值的最大值在[32, 445]区间对每一个釆样数据V(i),取其后段区间[i,i+66]的67个数据, 按式(9)计算后段平均绝对值Amp—N2(i),见图5中A即—N2(i)曲线。Amp—N2(i) 的最大值Amp_N2—Max=1164. 38。⑤ 计算每一时刻的特征幅度比,记录特征幅度比的最大值和最大值对应的时刻在[32, 445]区间,计算特征幅度比Ra即(i): Amp_N2(i)/ Amp—Nl(i),见图5中 Ramp(i)曲线。Ramp(i)的最大值Ramp—Max=81. 43, Ramp—Max对应的数据序号 i—Ramp_Max=89。⑥ 计算等效信噪比Rsn=Amp—N2—Ma/Amp—Nl—Min=533. 76。⑦ 根据特征幅度比的最大值和等效信噪比的数值关系判定首波是否存在特征幅度比Ramp (i)的最大值Ra即—Max=81. 43和等效信噪比Rsn=533. 76,满足表1 第1行Rsn ^ 2. 1 And Ramp—Max ^ 2. 5的逻辑条件,判定首波存在。⑧ 判定首波存在时,特征幅度比的最大值对应的半波就是检测得到的首波判定首波存在时,特征幅度比Ra即(i)的最大值Rampjlax对应的数据V(89)所在 的半波就是检测得到的首波。,见图5中贯穿4条曲线的垂直直线指示的位置。实施例3:以室内采集的数字信号为例。此例声波波形信噪比较差,使用设置幅值阈值A的 方法易于误判首波。以下按照图4的步骤实施本发明的检测方法① 确定发射传感器主频F,确定声波仪记录的声波波形的时间区间T:声波传感器主频F:50KHz,采样时间间隔Jt:lus,采样得到的N-512个声波波形 数据,V(i) [i=0, 1, 511],见图6中V(i)曲线。② 确定前段时间区间宽度和后段时间区间宽度设定《;1=1.0, a2=2.0, al《a2。根据F二50KHz:50000Hz,采样时间间隔」t:lus^. 000001s,根据式(7) (8)计算 Nl=20, N2=40:^ = ^.丄i《201 F Ah 50000 0.000001z F " 50000 0.000001③ 计算每一时刻的前段时间区间上的平均绝对值,记录此平均绝对值的最小值在[19, 473]区间对每一个采样数据V(i),取其前段区间[i-19, i]的20个数据, 按式(7)计算前段平均绝对值Arap_Nl (i),见图6中Amp一Nl (i)曲线。Amp_Nl (i) 的最小值Amp_Nl—Min=3. 27。。④ 计算每一时刻的后段时间区间上的平均绝对值,记录此平均绝对值的最大值在[19, 473]区间对每一个采样数据V(i),取其后段区间[i, i+39]的40个数据, 按式(9)计算后段平均绝对值A即—N2(i),见图6中Arap_N2(i)曲线。Amp_N2(i) 的最大值Amp—N2—Max=21. 33。⑤ 计算每一时刻的特征幅度比,记录特征幅度比的最大值和最大值对应的时刻在[19, 473]区间,计算特征幅度比Ra即(i^ A即—N2(i)/ A即—Nl(i),见图6中 Ramp (i)曲线。Ramp (i)的最大值Ramp—Max=2. 48, Ra即—Max对应的数据序号 i—Ramp—Max=305。⑥ 计算等效信噪比Rsn=Amp—N2—Ma/Amp—Nl—Min=6. 52。⑦ 根据特征幅度比的最大值和等效信噪比的数值关系判定首波是否存在特征幅度比Ramp (i)的最大值Ra即—Max二2. 48和等效信噪比Rsn=6. 52,满足表1第 l行Rsn ^ 2.1 And Ramp_Max ^ 2. 5的逻辑条件,判定首波存在。⑧ 判定首波存在时,特征幅度比的最大值对应的半波就是检测得到的首波判定首波存在时,特征幅度比Ra卿(i)的最大值RamP_Max对应的数据V(305)所在 的半波就是检测得到的首波。,见图6中贯穿4条曲线的垂直直线指示的位置。实施例4:以采用室内采集的数据为例。此例声波波形信噪比极差,使用设置幅值阈值A的 方法不能检测首波。以下按照图4的步骤实施本发明的检测方法① 确定发射传感器主频F,确定声波仪记录的声波波形的时间区间T:声波传感器主频F=50KHz ,采样时间间隔」t=2us ,采样得到的N=512个声波波形 数据,V(i) [i=0, 1, ...511],见图8中V(i)曲线。② 确定前段时间区间宽度和后段时间区间宽度设定《1=1.0, 《2=1,0, al《"2。根据F=50KHz=50000Hz,采样时间间隔Jt=2us=0. 000002s,根据式(7) (8)计算 Nl=10, N2=10:
AT, =~L =---=--- 10
'&F Ah 50000 0.000002
"F 50000 0.000002
③ 计算每一时刻的前段时间区间上的平均绝对值,记录此平均绝对值的最小值
在[9, 502]区间对每一个采样数据V(i),取其前段区间[i-9, i]的10个数据,按 式(7)计算前段平均绝对值Amp—Nl (i),见图8中Amp—Nl (i)曲线。Amp—Mi (i)的 最小值Amp—Nljlin=l. 60。
④ 计算每一时刻的后段时间区间上的平均绝对值,记录此平均绝对值的最大值
在[9, 502]区间对每一个釆样数据V(i),取其后段区间[i,i+10]的10个数据,按 式(9)计算后段平均绝对值Amp—N2(i),见图8中Amp—N2(i)曲线。Amp—N2(i)的 最大值Amp—N2—Max=8. 10。
⑤ 计算每一时刻的特征幅度比,记录特征幅度比的最大值和最大值对应的时刻
在[9, 502]区间,计算特征幅度比Ramp(i): Amp—N2(i)/ A即—Nl(i),见图8中 Ra即(i)曲线。Ra即(i)的最大值Ramp—Max=2.88,Ramp—Max对应的数据序号 i—Ramp—Max=274。
⑥ 计算等效信噪比Rsn=Amp_N2Jfa/Amp—Nl_Min=5. 08。
⑦ 根据特征幅度比的最大值和等效信噪比的数值关系判定首波是否存在
特征幅度比Ramp (i)的最大值Ra即—Max=2. 88和等效信噪比Rsn=5. 08,满足表1第 1行Ksn S 2. 1 And Kamp—Max S 2. 5的逻辑条件,判定首波存在。
⑧ 判定首波存在时,特征幅度比的最大值对应的半波就是检测得到的首波
判定首波存在时,特征幅度比Ramp (i)的最大值Ramp_Max对应的数据V (274)所在 的半波就是检测得到的首波。,见图7中贯穿4条曲线的垂直直线指示的位置。
实施例5:以采用室内采集的数据为例。此例为噪声信号。以下按照图4的步骤实施本发明 的检测方法
① 确定发射传感器主频F,确定声波仪记录的声波波形的时间区间T:
声波传感器主频F=50KHz,采样时间间隔」t=lus,采样得到的N=512个声波波形 数据,V(i) [i=0, 1, 511],见图8中V(i)曲线。
② 确定前段时间区间宽度和后段时间区间宽度
设定al-l.O, "2=2.0, al《a2。
根据F=50KHz=50000Hz,采样时间间隔」t=lus=0. OOOOOls,根据式(7) (8)计算 Nl=20, N2=40:
1 F Ah 50000 O扁OOl
A,Ar2"2 1 2.01 ^
iV, = ~^ =---=--- 40
F 50000 0.000001
③计算每一时刻的前段时间区间上的平均绝对值,记录此平均绝对值的最小值
在[19, 473]区间对每一个采样数据V(i),取其前段区间[i-19, i]的20个数据, 按式(7)计算前段平均绝对值Amp—Nl (i),见图8中Amp—Nl (i)曲线。Arap_Nl(i)的最小值Amp_Nl—Min=2. 60。
④ 计算每一时刻的后段时间区间上的平均绝对值,记录此平均绝对值的最大值
在[19, 473]区间对每一个采样数据V(i),取其后段区间[i,i+39]的40个数据, 按式(9)计算后段平均绝对值Amp—N2(i),见图8中A即—N2(i)曲线。Amp—N2(i) 的最大值Amp—N2—Max=5. 46。
⑤ 计算每一时刻的特征幅度比,记录特征幅度比的最大值和最大值对应的时刻
在[19, 473]区间,计算特征幅度比Ra卿(i): A即—N2(i)/ Amp—Nl(i),见图8中 Ramp(i)曲线。Ra即(i)的最大值Ra即—Max=l. 78, Ra即Jlax对应的数据序号 i—Ramp—Max=378
⑥ 计算等效信噪比Rsn=Amp—N2_Ma/Arap—Nl_Min=2. 1。
⑦ 根据特征幅度比的最大值和等效信噪比的数值关系判定首波是否存在
特征幅度比Ra即(i)的最大值Ramp—Max=l. 78和等效信噪比Rsn=2. 10,不满足表1中 任何一行,判定首波不存在。 ⑨判定首波不存在时,不能检测出首波
在声波波形信噪比极低或根本没有声波信号时,不能检测出首波。
实施例6:以采用室内采集的数据为例。此例声波波形为检测中的典型波形。以下按照图4 的步骤实施本发明的检测方法
① 确定发射传感器主频F,确定声波仪记录的声波波形的时间区间T:
声波传感器主频F:50KHz,采样时间间隔」t二2us,采样得到的N=512个声波波形 数据,V(i) [i=0, 1, ... 511],见图9中V(i)曲线。
② 确定前段时间区间宽度和后段时间区间宽度
设定6 ;1=0.67, 《2=1.1, al《a2。
根据F^50KHz-50000Hz,采样时间间隔Zt=2us=0. 000002s,根据式(7) (8)计算 Nl=7, N2-ll:
③ 计算每一时刻的前段时间区间上的平均绝对值,记录此平均绝对值的最小值
在[6, 501]区间对每一个采样数据V(i),取其前段区间[i-6, i]的6个数据,按式 (7)计算前段平均绝对值A即—Nl (i),见图9中Amp—Nl (i)曲线。Amp—Nl (i)的最 小值Amp—Nl—Min=l,29。
④ 计算每一时刻的后段时间区间上的平均绝对值,记录此平均绝对值的最大值
在[6, 501]区间对每一个采样数据V(i),取其后段区间[i,i+10]的ll个数据,按 式(9)计算后段平均绝对值Amp—N2 (i),见图9中Amp—N2 (i)曲线。Amp—N2 (i)的 最大值Amp—N2—Max=615. 90。
(D计算每一时刻的特征幅度比,记录特征幅度比的最大值和最大值对应的时刻
在[6, 501]区间,计算特征幅度比Ra即(i^ Amp—N2(i)/ Amp_Nl(i),见图9中 Ramp(i)曲线。Ramp(i)的最大值Ra卿—Max=58. 39, Ra即—Max对应的数据序号 i—Ramp_Max=127。
⑥ 计算等效信噪比Rsn=Amp—N2—Ma/Amp一N1—Min=477. 69。
⑦ 根据特征幅度比的最大值和等效信噪比的数值关系判定首波是否存在
al 1 0.67 1
P Ah 50000 0.000002 a2 1 1.1 1
F A/ 50000 0.000002特征幅度比Ramp(i)的最大值Ra即—Max=58. 39和等效信噪比Rsn=477. 69,满足表1 第1行Rsn ^ 2. 1 And Ramp—Max s 2. 5的逻辑条件,判定首波存在。
⑧判定首波存在时,特征幅度比的最大值对应的半波就是检测得到的首波
判定首波存在时,特征幅度比Ra即(i)的最大值Ramp—Max对应的数据V(127)所在 的半波就是检测得到的首波,见图9中贯穿4条曲线的垂直直线指示的位置。
权利要求
1、一种声波透射法首波的检测方法,其步骤是A、确定发射传感器的谐振频率,确定声波仪记录的声波波形的时间区间,发射传感器的谐振频率F为发射传感器的标称频率;声波仪记录的声波波形V/t的时间区间宽度T,对于数字信号,数字声波仪采样时间间隔Δt,在T时段内共采样得到声波采样数据V/I;B、确定前段时间区间宽度和后段时间区间宽度以t时刻为终止时刻的时间区间[t1,t]称为t时刻的前段时间区间,以t时刻为起始时刻的时间区间[t,t2]称为该时刻的后段时间区间,前段时间区间宽度T1取值为声波发射传感器谐振频率对应的谐振周期的α1倍,α1取值区间
,t时刻的前段时间区间为[t-T1,t];后段时间区间宽度T2取值为声波发射传感器谐振频率对应的谐振周期的α2倍,α2取值区间[1.0,3.0],t时刻的段后时间区间为[t,t+T2];限定α1小于或等于α2;C、计算每一时刻的前段时间区间上的平均绝对值,记录此平均绝对值的最小值,计算每一时刻的前段时间区间[t-T1]上的平均绝对值Amp T1(t),求取Amp_T1(t)的最小值Amp_T1_Min;D、计算每一时刻的后段时间区间上的平均绝对值,记录此平均绝对值的最大值,计算每一时刻的后段时间区间[t,t+T2]上的平均绝对值Amp_T2(t),求取Amp_T2(t)的最大值Amp_T2_Max;E、计算每一时刻的特征幅度比,记录特征幅度比的最大值和最大值对应的时刻,某时刻的特征幅度比Ramp(t)等于该时刻的后段时间区间上的平均绝对值Amp_T2(t)除以该时刻的前段时间区间上的平均绝对值Amp_T1(t),求特征幅度比Ramp(t)的最大值Ramp_Max,及其Ramp_Max对应的时刻t_Ramp_Max;F、计算等效信噪比等效信噪比Rsn等于后段时间区间平均绝对值Amp_T2(t)的最大值Amp_T2_Max除以前段时间区间平均绝对值Amp_T1(t)的最小值Amp_T1_Min;G、根据特征幅度比的最大值和等效信噪比的数值关系判定首波存在,特征幅度比的最大值Ramp_Max和等效信噪比Rsn的数值满足首波存在;H、判定首波存在时,特征幅度比的最大值对应的半波就是检测得到的首波,判定首波存在时,特征幅度比的最大值Ramp_Max对应的时刻t_Ramp_Max所在的半波就是检测得到的首波。
全文摘要
本发明公开了一种声波透射法首波的检测方法,根据声波传感器谐振频率确定前段时间区间的宽度和后段时间区间的宽度;计算声波波形的前段时间区间内的平均绝对值,记录前段时间区间平均绝对值;计算声波波形每一时刻的后段时间区间平均绝对值,记录后段时间区间平均绝对值的最大值;计算每一时刻的特征幅度比,记录特征幅度比的最大值;计算等效信噪比;按照特征幅度比的最大值与等效信噪比的数值关系,判定首波存在;在判定首波存在的情况下,最大值对应的数据所在的半波就是检测得到的首波。本发明方法易行,操作方便,检测首波时抗干扰能力强,提高了检测效率,具有显著的经济效益。
文档编号G01N29/12GK101320017SQ20071005242
公开日2008年12月10日 申请日期2007年6月8日 优先权日2007年6月8日
发明者杰 张, 祺 李, 胡纯军, 宇 邹 申请人:武汉中科智创岩土技术有限公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1