一种观察激光打孔硬脆性非金属材料孔剖面形状的方法

文档序号:5838371阅读:434来源:国知局
专利名称:一种观察激光打孔硬脆性非金属材料孔剖面形状的方法
技术领域
本发明涉及一种观察激光打孔硬脆性非金属材料孔剖面形状的方法,特 别适用于对硬脆性非金属材料的孔剖面形状进行测量,属于测量方法领域。
技术背景激光打孔是一种快速去除材料的过程,具有操作精确、高效率、无接触、 孔径小以及热影响区小的特点,被广泛运用到精密加工过程中。但是由于激光打孔的孔径很小(一般在0.5mm以下),在研究激光打孔过程中工艺参数对 孔质量的影响时,通常采用将材料沿侧壁切割并研磨抛光,以得到孔的剖面 形状。但是对于包括单晶、陶瓷、玻璃等在内的大多以共价键、离子键或两 者混合的化学键而结合的非金属材料来说,由于常温下该类材料具有很大的 脆性,增加了传统方法难度。主要体现在切割、研磨和抛光的时间增长以及 材料本身在长时间的切割、研磨作用下产生很大应力发生脆裂。由于硬脆性 非金属材料具有这种特性,使研究人员无法直观的观察到孔的剖面形状,从 而无法准确的评价工艺参数的优劣,严重阻碍了非金属材料的激光加工性能 的进一步发挥和推广。对激光打孔的孔质量,国内外一般采用的评价指标如文献{Comparative statistical analysis of hole t印er and circularity in laser percussion drilling》(International Journal of Machine Tools & Manufacture, Vol. 42, 2002)所示,包括表面溅污、重凝层、熔渣,入口直径、出口直径、孔 锥度等。由于激光具有一定的发散角度,对具有一定厚度的材料打孔,孔剖 面形状变的复杂,孔锥度不再可以准确的描述出孔特性,此时通常利用孔剖 面形状对打孔质量进行评价。又如在文献《Modeling and analysis of pulsed Nd:YAG laser machining characteristics during micro-drilling of zirconia》 (International Journal of Machine Toole & Manufacture, Vol.46, 2006)中作者将氧化锆陶瓷对Nd:YAG激光的吸收表征为孔锥度及热影响 区的变化,但是由于氧化锆陶瓷的硬脆性,其观察实验仅限于观察打孔材料 的上下表面,而对孔剖面形状并没有提及。如果可以观察的孔的剖面形状, 则可以更好的研究激光加工过程中材料对激光的吸收特性及优化现有的工艺参数。现有的对激光打孔的孔剖面形状分析的最有效方法是采用激光共聚焦显 微镜,通过激光共聚焦显微镜可以在不损伤材料情况下描绘出孔剖面形状。 但是由于激光共聚焦显微镜存在测量范围的限制,对于深度大于5mm的小孔 剖面形状己经无法绘制,而且激光打孔会在一定的工艺条件下出现倒喇叭的 剖面形状,根据激光共聚焦扫描显微镜的原理,此时的剖面形状将无法描绘。 此外激光共聚焦扫描显微镜价格昂贵,不利于研究和应用的广泛应用。 发明内容本发明的目的是提供一种简单可靠、无需切割或磨抛工艺、快速的确定激 光打孔硬脆性非金属材料的孔剖面形状的方法。该方法可以应用于各种硬脆 性非金属,工艺重复性高,对各种厚度的材料进行激光打孔的孔剖面形状均 可以准确描绘,避免了磨抛过程中材料发生断裂。为达到所述目的,本发明通过以下技术方案实现1) 用多个薄片重叠并压紧成所要观察材料的厚度,再用激光进行打孔。 薄片材料的厚度依要求精度而定。材料越薄,重叠层数越多,可测量的不同 深度位置的孔径数据越多,曲线拟合的精度就越高;材料越厚,重叠的层数 越少,可测量的不同深度位置的孔径数据越少,曲线的拟合精度就越低;2) 将重叠的薄片展开,通过普通可测量型显微镜分别测量每个薄片上下 表面的孔径。在测量孔径过程中,还要记录各个孔径在重叠时的深度位置, 以完成下步的曲线拟合;3)根据所测得的各薄片上孔径数据及各孔径所在的深度位置采用函数进 行曲线拟合,得到激光打孔所要观察材料厚度的孔剖面形状。采用本发明中的方法避免对硬脆性材料的研磨抛光,简单快速的完成对激 光打孔的孔剖面形状的确定,而且所得到的孔剖面形状与一整块相同厚度相 同材料的样品进行相同打孔工艺打孔的孔剖面形状一致。与现有技术相比,本发明具的有益效果是1) 不受材料厚度的影响,本发明可以针对任何厚度的激光打孔的孔剖面 形状观察,不会由于材料的不同或厚度的增加而无法进行测量。在测量过程 中采用普通的可测量型显微镜就可以实现测量。2) 测量时间短,相对于传统研磨抛光工艺,本发明确定孔剖面形状的时 间要远小于采用磨抛工艺。3) 测量准确,本发明可以准确的测量沿剖面方向激光打孔孔剖面形状, 而采用磨抛工艺无法确保剖面正好处于孔径的直径位置。4) 不受材料类别的影响,本发明适用于任何硬脆性材料,包括陶瓷、单 晶、玻璃等。5) 使用发明方法所测量计算得到的激光打孔的孔剖面形状与相同厚度的 一整块厚板材料的打孔的孔剖面形状一致,可以通过这种方法来对激光参数 与孔径质量的影响进行研究,优化激光打孔的工艺参数。


图1是观察激光打孔硬脆性非金属材料孔剖面形状的方法的流程2是实例1中采用激光共聚焦显微镜测得的整块厚板的孔剖面形状 图3采用发明方法得到的孔剖面形状的结果图4是实例2中采用激光共聚焦显微镜测得的整块厚板的孔剖面形状图5采用发明方法得到的孔剖面形状的结果图6是实例3中采用发明方法得到的孔剖面形状7是实例4中采用发明方法得到的孔剖面形状图具体实施方式
如图1所示,用多个薄片2重叠成所要观察的材料厚度1,并用激光3进行打孔;之后将重叠的薄片展开4,通过显微镜分别测量每个薄片上下表面的 孔径5并记录各个孔径在重叠时的深度位置;最后根据所测得的各薄片上孔 径数据及各孔径所在的深度位置,采用多项式函数进行曲线拟合得到该厚度 材料激光打孔的孔剖面形状。 多项式一般使用<formula>formula see original document page 6</formula>式中i^Y^代表孔径随深度t的而变化,用来表示孔剖面形状;t表示深度; a^'-7义…,^是多项式的系数;"表示多项式的次数。通过测量各个薄片的 孔径并记录该孔径所在的深度位置,就可以计算得出多项式系数fl,,从而得 到孔剖面形状函数W"人系数&的数量即n的取值取决于重叠的薄片数量。 用该多项式函数描绘出的曲线即为孔剖面形状。 实施例1:将4片厚度为l皿的氧化铝陶瓷重叠并压紧成4mm厚。激光输出平均功 率500-600W,脉冲频率50Hz,气压2-5bar,打孔时间0. ls,焦点位置位于 材料内部中心。进行激光打孔后,将4个薄片展开,分别测量每个薄片上下 表面的孔径并记录各个孔径在重叠时的深度位置。最后根据所测得的各薄片 上孔径数据及各孔径所在的深度位置做多项式函数拟合,得到激光打孔的孔 剖面形状的多项式表示A(/) = 0.0029704/3 + 0.018017一 + 0.0641261/ + 0.3149692由于激光共聚焦扫描显微镜可以在该厚度进行孔剖面形状的测量,因此 对整块4皿氧化铝陶瓷进行相同打孔工艺的打孔并进行孔剖面形状测量,对比采用发明方法所得到的函数描绘出的孔剖面形状,二者结果相同(见图2、图3)。实施例2:将4片厚度为lmm的氧化铝陶瓷重叠并压紧成4mm厚。激光输出平均功 率800-900W,脉冲频率50Hz,气压2-5bar,打孔时间O. 05s,焦点位置位于 材料上表面。进行激光打孔后,将4个薄片展开,分别测量每个薄片上下表 面的孔径并记录各个孔径在重叠时的深度位置。最后根据所测得的各薄片上 孔径数据及各孔径所在的深度位置做多项式函数拟合,得到激光打孔的孔剖 面形状的多项式表示/ (Y) = 0,0024004f3 + 0.0207017f2 + 0.0580076f + 0.2949662由于激光共聚焦扫描显微镜可以在该厚度进行孔剖面形状的测量,因此 对整块4mm氧化铝陶瓷进行相同打孔工艺的打孔并进行孔剖面形状测量,对 比采用发明方法所得到的函数描绘出的孔剖面形状,二者结果相同(见图4、 图5)。 实施例3:将5片厚度为lmm的石英玻璃重叠并压紧成5ram厚。激光输出平均功率 为100-350W,脉冲频率200Hz,气压2-10bar,打孔时间0. 1-0. 5s,焦点位置 位于材料内部中心。进行激光打孔后,将5个薄片展开,分别测量每个薄片 上下表面的孔径并记录各个孔径在重叠时的深度位置。最后根据所测得的各 薄片上孔径数据及各孔径所在的深度位置做多项式函数拟合,得到激光打孔 的孔剖面形状的多项式表示= 0.0011839/3 + 0,0110394/2 + 0.049431 k + 0.296925根据孔剖面形状多项式描绘出孔剖面形状如图6所示。该厚度的整块材料 采用激光共聚焦显微镜已无法测量孔剖面形状。 实施例4:将10片厚度为lmm的氧化铝陶瓷重叠并压紧成10mm厚,激光输出平均功 率为1000-1200W,脉冲频率50Hz,气压2-5bar,打孔时间0. 5s,焦点位置位 于材料内部中心。进行激光打孔后,将10个薄片展开,分别测量每个薄片上 下表面的孔径并记录各个孔径在重叠时的深度位置。最后根据所测得的各薄 片上孔径数据及各孔径所在的深度位置做多项式函数拟合,得到激光打孔的 孔剖面形状的多项式表示i 0) = 0.0004452f3 + 0.006078U2 + 0.0463 508f + 0.4647378根据孔剖面形状多项式描绘出孔剖面形状如图7所示。该厚度的整块材料 采用激光共聚焦显微镜已无法测量孔剖面形状。
权利要求
1、一种观察激光打孔硬脆性非金属材料孔剖面形状的方法,其特征在于,包括以下步骤1)将多个薄片材料重叠并压紧,其厚度与所要观察材料的厚度相同;2)利用激光(3)对重叠后的材料进行打孔后,将重叠的薄片(2)展开,分别测量各个薄片上下表面的孔径并记录各个孔径所在的深度位置;3)根据所测得的各薄片上下表面的孔径数据及各孔径所在的深度位置,采用函数进行曲线拟合,得到激光打孔所要观察材料厚度的孔剖面形状。
2、 根据权利要求1所述的观察硬脆性非金属材料孔剖面形状的方法,其特征 在于所述的拟合函数为多项式函数。
全文摘要
本发明涉及一种观察激光打孔硬脆性非金属材料孔剖面形状的方法,特别适用于对硬脆性非金属材料的孔剖面形状进行测量,属于测量方法领域。本发明通过重叠并压紧某种材料的薄片至特定厚度并进行激光打孔,打孔后将重叠薄片的展开,分别测量各个薄板上下表面的孔径并记录各孔径的深度位置,最后采用曲线拟合的方法描绘出孔剖面形状。采用该发明方法避免对硬脆性材料的研磨抛光,简单快速的完成对激光打孔的孔剖面形状的确定,而且所得到的孔剖面形状与一整块相同厚度相同材料的样品进行相同打孔工艺打孔的孔剖面形状一致。
文档编号G01B11/12GK101241002SQ20081010194
公开日2008年8月13日 申请日期2008年3月14日 优先权日2008年3月14日
发明者季凌飞, 蒋毅坚, 闫胤洲, 勇 鲍 申请人:北京工业大学
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1