利用组合光学询问方法和装置监测炸油质量的制作方法

文档序号:5863866阅读:186来源:国知局
专利名称:利用组合光学询问方法和装置监测炸油质量的制作方法
利用组合光学询问方法和装置监测炸油质量
背景技术
当油(如食用油、炸油、脂肪、起酥油等)暴露于高温时,特别是在存在氧气和/或 水的情况下,会发生氧化反应,从而导致油质劣化。因此,常常在饭店厨房监测油质,以确定 油是否仍然适合使用。过去曾使用若干个不同参数来评价油质。常用来评价油质的一个参数是油中的总极性化合物含量。例如,Onwumere等人在 美国专利7,132,079中公开了一种根据油中极性化合物的存在情况确定是否弃用油样的 方法。例如,Mittal等人在美国专利5,818,731中公开了一种用于测量油质的方法和装置。 该方法部分地包括对测量电容与基准电容进行比较,以及将两者的变化与油中极性分子组 分的含量增加相关联。常用来评价油质的另一个参数是油中的游离脂肪酸含量。例如,Mlinar和 Neumayer在美国专利4,654,309中公开了一种用于测试液体中游离脂肪酸含量的制品。游 离脂肪酸本身可以构成油样中总极性化合物含量的一部分,或可以为在总极性化合物含量 测试中可测的此类化合物的前体。因此,游离脂肪酸测试和总极性化合物测试可能不是完 全独立的。然而,这两种测试在本领域中都已经使用。

发明内容
本文公开了用于评价油(如食用油或炸油)的质量的方法和装置。该方法可根 据油中的游离脂肪酸含量和/或油中的总极性化合物含量来指示油质。由于在一个测试 (例如使用单个询问装置和取样基板)中提供此类一个或多个指示,相比进行两次单独的 测试,该方法会既简便又经济,并且能够更方便可靠地确定油质。该方法还具有不需要从待评价油源中取出大样品的优点,并且该方法也不需要将 这种装置临时插入油中或永久置于油中。该方法的优点还包括基于本文所述光学数据的定量测量使用光学询问装置指示 油质,从而可以改进依赖主观测量(如目测)的方法。该方法使用取样基板和询问装置。取样基板具有光学性质随油中游离脂肪酸含量 变化的至少一个第一测试区和光学性质随油中总极性化合物含量变化的至少一个第二测 试区。在一个实施例中,提供了多个第一测试区,并且询问装置包括用来询问多个第一测试 区并且从中接收信号的装置。在一个实施例中,提供了多个第二测试区,并且询问装置包括 用来询问多个第二测试区并且从中接收信号的装置。询问装置可以被构造为根据从至少一个第一测试区接收到的信号提供以油中游 离脂肪酸含量表示的油质指示,并且根据从至少一个第二测试区接收到的信号提供以油中 总极性化合物含量表示的油质指示。在一个实施例中,随油中游离脂肪酸含量变化的第一测试区的光学性质为吸收/ 反射性质。在具体实施例中,光学性质为反射性。在一个实施例中,通过在第一测试区中提 供酸碱指示剂来达到此目的。在一个实施例中,随油中总极性化合物含量变化的第二测试区的光学性质为荧光性。本文所公开的方法可根据游离脂肪酸和/或总极性化合物的含量(如浓度)提供 油质指示。指示可为游离脂肪酸和/或总极性化合物的浓度的实际数值;或者其可为不直 接等于实际数值但与该值相关联的参数,该参数让使用者可确定油质,例如确定油是否仍 适合使用。可提供基于游离脂肪酸含量和总极性化合物含量的单独油质指示;或者可提供 基于游离脂肪酸含量和总极性化合物含量的单个指示。因此在一个方面,本文公开了以光学方式监测油样的多个参数的方法,该方法包 括以下步骤提供吸油的取样基板;其中取样基板包括具有随油的第一参数变化的第一光 学特性的多个第一测试区,以及具有随油的第二参数变化的第二光学特性的至少一个第二 测试区;让油接触取样基板,使得油样接触每个第一测试区的至少一部分和至少一个第二 测试区的至少一部分;用第一光学方法询问第一测试区,以从第一测试区接收一组第一信 号;将来自第一测试区的这组第一信号组合成组合信号;将组合信号与油的第一参数相关 联;用第二光学方法询问至少一个第二测试区,以接收第二信号,其中第二光学方法不同于 第一光学方法;以及将第二信号与油的第二参数相关联。在具体方面,询问第一测试区包括测量反射率。在另一个具体方面,询问至少一个第二测试区包括测量荧光。本文在另一个方面公开了用于测量油样的至少两个参数的系统;该系统包括吸 油的取样基板,其中取样基板包括具有随油的第一参数变化的第一光学特性的多个第一测 试区,以及具有随油的第二参数变化的第二光学特性的至少一个第二测试区;以及光学询 问装置,其中询问装置包括通过第一光学机制询问取样基板的每个第一测试区并且从中接 收一组第一信号的装置,以及通过不同的第二光学机制询问取样基板的至少一个第二测试 区并且从中接收第二信号的装置,其中询问装置还包括将来自第一测试区的这组第一信号 组合成组合信号的装置,以及将组合信号与油的第一参数相关联的装置;并且其中询问装 置还包括将第二信号与液体样品的第二参数相关联的装置。


图Ia为示例性取样基板的俯视平面图。图Ib为示例性取样基板的侧视剖面图。图2为示例性光学询问装置的示意透视图。图3为示例性光学询问装置的一部分的仰视平面图。图4为光源、光电检测器和取样基板的示例性布置的侧视剖面图。图5为光学询问装置的一个实施例的框图。图6为具有各种游离脂肪酸浓度的油样的取样基板的光学反射率的图线。图7为具有各种游离脂肪酸浓度的油样的取样基板的光学反射率的图线。图8为具有各种游离脂肪酸浓度的油样的取样基板的光学反射率的图线。图9为具有各种游离脂肪酸浓度的油样的取样基板的光学反射率的图线。图10为光电检测器在各种条件下对于来自取样基板的反射光的响应图线。图11为具有各种总极性化合物浓度的油样的取样基板的荧光的图线。除非具体指出,否则附图和图中的元件均未按比例绘制。在附图中,始终使用类似
5的附图标记来表示类似的结构。尽管在本公开中可能使用了像“顶部”、“底部”、“上面”、“下 面”、“上方”、“下方”、“前面”、“后面”、“第一”和“第二”等术语,但是应该理解这些术语仅在 它们相对的含义下使用。
具体实施例方式本文公开了用于评价食用油(通常也称为例如炸油、植物油、起酥油、牛油、油脂 等)质量的方法和装置。该方法使用取样基板1(如使用后可以丢弃的条带)和询问装置 30。参照图Ia和lb,取样基板1由多孔的吸油材料5构成。在此上下文中,术语“吸 油”是指该材料能够将油吸入多孔材料内部(例如能够被油润湿和/或渗透)。在多个实 施例中,材料5包括纸张、无纺布、开孔泡沫、织造织物等。取样基板1包括光学性质随油样的游离脂肪酸含量变化的至少一个第一测试区 10。在一个实施例中,提供了多个第一测试区10a、10b等,如图Ia和Ib中的示例性构造所 示。在一个实施例中,光学性质为反射性,下文将进一步说明。在一个实施例中,第一测试区10的光学性质通过第一测试区10内存在的酸碱指 示剂对油中游离脂肪酸的存在情况做出响应。指示剂可以包括能够提供颜色变化(因而能 够显示在一个或多个波长下改变的光学反射率)以响应pH值变化的任何分子或分子组合。 合适的指示剂包括(例如)间甲酚紫、中性红、百里酚蓝、苯酚红和甲酚红。在一个实施例中,第一测试区10还包含碱性化合物,其可以为任何有机或无机 碱性化合物,包括(例如)碳酸钠、碳酸氢钠等。每个第一测试区10中的碱性化合物含 量可以变化,并且可以选择特定的含量以允许特定测试区对给定量的酸做出响应。因此 在图Ia和Ib的示例性构造中,可在不同的第一测试区10a、10b、10c和IOd中提供不同 含量的碱。例如在该构造中,第一测试区IOa可以与第一测试区IOb响应不同含量的游 离脂肪酸(或者换句话说,测试区IOa和IOb可以对相同含量的游离脂肪酸做出不同响 应)等等。这样,便可提供对宽泛范围内的游离脂肪酸浓度做出响应的取样基板1。在多 个实施例中,可以使用至少两个、三个、四个或五个测试区10。在多个实施例中,可以使用 对包含(例如)约0. -0.5%游离脂肪酸、0.5% -1.0%游离脂肪酸、1.0% -1.5%游 离脂肪酸、1. 5% -2. 0%游离脂肪酸、2. 0% -2. 5%游离脂肪酸、2. 5% -3. 5%游离脂肪酸、 3. 5% -5. 0%游离脂肪酸或5. 0% -7. 0%游离脂肪酸的油做出响应的测试区。如果需要,可 以提供一个或多个额外的测试区,这些测试区与另一个测试区(即对相同含量的游离脂肪 酸做出相似响应的测试区)包含相似(或相同)含量的碱。例如,如果希望系统具有余量, 则可以使用这种构造。在一个实施例中,第一测试区10还包含能够增溶酸碱指示剂和碱性化合物的非 挥发性PH中性湿润剂。合适的湿润剂包括(例如)二羟基脂族聚乙二醇化合物,例如可以 商品名 Carbowax 200ΛCarbowax 400ΛCarbowax 600 禾口 Carbowax 1500 得自 Dow Chemical 的产品。不受理论或机理的限制,假定第一测试区10显示光学反射率随油样中游离脂肪 酸含量变化的能力是由于以下事实当油样接触指示剂/碱/湿润剂混合物时,油样中可 能存在的一些或全部酸性组分可以分裂成指示剂/碱/湿润剂混合物并且影响其酸碱指示剂,使得酸碱指示剂显示改变的光学吸收/反射性质。在本文中应指出,指示剂/碱/湿润 剂混合物可以形成或可以不形成真实的水溶液(取决于例如系统内可能存在的外来水的 含量),因为所需要的是酸碱指示剂的存在条件使其能够对酸性组分的存在做出响应。在一个实施例中,在取样基板1上形成至少一个第一测试区10的方法为混合湿 润剂、碱性化合物和酸碱指示剂(以及可任选的挥发性溶剂,如水或有机溶剂),以提供浸 渍剂混合物;用浸渍剂混合物浸渍取样基板1的所选区域(如通过涂布、浸渍等),使得浸 渍剂混合物渗透(渗嵌)到取样基板1的多孔材料5的内部;然后干燥取样基板1(如果需 要的话)。可以使用多个第一测试区10,这些测试区可以包括不连续的区(即它们可以被不 是第一测试区10的区域20物理分隔)。例如,如果使用多个区(例如,碱性化合物浓度不 同的区),将各自浸渍剂混合物迁移(例如通过横向芯吸穿过取样基板1的多孔材料5)的 可能性降至最低从而使彼此相遇可能是有用的。因此在一个实施例中,浸渍剂混合物沉积 为相隔足够远,以在其间留出不含浸渍剂材料的区域20。在另一个实施例中,(在用浸渍剂混合物浸渍取样基板1之前)可对取样基板1的 所选一个或多个区域20的至少一部分21进行处理,以最大限度减少或防止浸渍剂混合物 迁移。可对取样基板1的表面和/或取样基板1的内部(即施加到构成基板1的多孔材料 5的空隙表面)施加此类阻隔处理,阻隔处理可以包括(例如)以用于减小多孔材料5的表 面能(即润湿性)的方式进行的等离子处理、气相沉积等。在具体的实施例中,阻隔处理包括将阻隔材料前体沉积(如涂布)到取样基板1 的一个或全部两个主表面上并且使沉积的阻隔材料保持在其上。在一个实施例中,阻隔材 料前体渗入取样基板材料5的多孔内部空间,并且涂布在其内表面上。在多个实施例中,合 适的阻隔材料包括(在沉积和硬化后)具有非常低的表面能(例如小于30达因/厘米、小 于25达因/厘米或小于20达因/厘米)的那些材料。合适的材料包括硅树脂、氟代硅氧 烷等等。这种低表面能阻隔处理可以在特定位置21 (例如,如图Ia和Ib所示的示例性构 造中的,其定义一个或多个第一测试区10的边界)进行。这种阻隔处理可以用于将浸渍剂 混合物在浸渍过程中和之后从其所需位置迁移出的可能性最小化。该处理还可以使测试过 程中油样从一个测试区(如IOa)向附近的测试区(如IOb)迁移的可能性最小化,这种迁 移会影响测试结果。因此在一个实施例中,本文所公开的方法包括处理基板的至少一个区域以形成阻 隔区21,从而在基板上保留至少一个未处理区。然后可在一个或多个未处理区的至少一部 分上沉积浸渍剂溶液,从而形成至少一个第一测试区10。在一个实施例中,基板的至少两 个区域被处理以形成阻隔区21,从而在这两个区域之间保留未处理区。然后可在阻隔区21 之间的未处理区的至少一部分上沉积浸渍剂溶液,从而形成至少一个测试区10。在一个实 施例中,进行上述过程之后,至少一个区域既未经过阻隔处理的处理,又未被浸渍剂溶液浸 渍。Mlinar和Neumayer在美国专利4,654,309中进一步详细描述了制备取样基板 1 (例如,具有包含酸/碱指示剂、碱性化合物和湿润剂的测试区的取样基板)的方法。因此概括地说,在取样基板1上设置了至少一个第一测试区10和不是第一测试区10 (即不含指示剂/碱/湿润剂混合物)的至少一个区域20。发明人已经发现,这样的区 域20可用作第二测试区20,其可以用来进行有关油样中总极性化合物含量的测试。也就是 说,发明人已经发现,一个或多个第二测试区20可吸油,使得油中的总极性化合物含量可 改变取样基板的荧光性,从而为油中总极性化合物含量的可用测试提供基础。不受理论或机理的限制,在这样的一个或多个区域20中油可充分渗透取样基板1 的多孔材料5,以便从所吸收的油中获得有用的荧光信号,这一情况可能是有利的。例如,如 果油只能停留在基板外表面的薄膜内(当油无法进入基板的多孔内部和/或当阻隔涂层完 全充满基板内部时可能出现的情况),第二测试区20上存在的大部分油样可能以基板外表 面上的层的形式存在。因为是这样的层,所以油可能不会提供足够的可询问荧光信号,和/ 或油层厚度可能异常多变(取决于基板保持的角度、基板让油流动的时间、油的温度和/或 粘度等),以至于可能无法获得可靠的可复制信号。可通过若干种方法中的任一种提供至少一个第二测试区20的荧光。在一个实施 例中,在第二测试区20中提供了荧光指示剂。此类指示剂可为其荧光对极性化合物的存在 情况灵敏的任何分子。可以通过固定(如粘合)到多孔支承体材料5、阻隔材料(如有)等 上来提供此类指示剂。或者可以将荧光指示添加剂添加到油样本身中。例如,可以将少量 荧光指示添加剂加入(例如搅拌进)油样中。在可供选择的方法中,可以将此类荧光指示 添加剂设置在第二测试区,但不固定或附着。因此,当油样接触第二测试区时,荧光指示添 加剂可以释放和/或溶解到油中。在一个实施例中,第二测试区20中不设置荧光指示剂,油样中也不添加荧光指示 剂。因此,在这种情况下,可从油本身和/或从存在于油中的极性化合物和/或通过油和/ 或极性化合物与基板的多孔材料的相互作用来获得荧光信号。因此,在这种情况下,荧光信 号包括自体荧光,而不是测量来自荧光指示剂的荧光信号。可存在至少一个第二测试区20作为单个区或多个区(如图Ia和Ib的示例性实 施例所示的)。如果存在多个区,这些区可以是不连续的(例如彼此通过(如)第一测试区 10分隔开)。或者,多个测试区20可包括取样基板1的邻接区域(即可在较大邻接区域内 的不同区进行询问)。如果存在多个测试区20,并非必须询问所有测试区20,而是取决于所 用询问装置的具体设计(下文将对此进行详细讨论)。可以多种构型制备取样基板1。例如,尽管取样基板1的一种实用构型是矩形条 带,并且在本文中术语“条带”可以结合取样基板1使用,但应当理解,取样基板1可具有任 何实用的形状或构型,例如正方形、圆形等。在一个实施例中,取样基板1可被构造为基板 的前后主表面对称。在这种情况下,可将油样施加在基板的任何一个或全部两个主表面上, 和/或可将基板设置为基板的主表面之一面向装置30,以对测试区10和20进行光学询问。取样基板1还可包含下文将讨论的基准区,并且还可包含一个或多个标记(即通 过(例如)印刷或激光打标获得的特征物)。这种标记可以被使用者目测到,和/或可以被 询问装置30检测到(下文将进行详细描述)。当使用者设置(即对齐)取样基板1相对于 询问装置30的位置,使得可询问第一测试区10时,这种标记可能有利于使用者目测取样基 板1的位置。或者,这种标记是机器可读的,使得询问装置30可利用其就取样基板1相对 于询问装置30的正确定位向使用者提供反馈。此类特征可以允许装置30的使用者或装置30本身检测取样基板何时相对于装置30是不正确定位的,例如上下颠倒或倒着。(在某些实施例中,可能不必需要这些特征;例 如,在基板主表面对称的实施例中,可能不必需要表示“前”或“后”的特征。)使用者或装 置还可以利用此类特征来确认具体取样基板1与装置30是否相容,以便(例如)确认具体 取样基板1的设计和/或制造符合规范、公差等,从而使取样基板可以与装置30令人满意 地配合使用。本文所公开的方法涉及让油样接触取样基板1,使得油样接触测试区10和一个或 多个测试区20中的一些或所有的至少一部分(可以通过将取样基板1浸入油中、将油样沉 积到基板上等方式实现),然后询问至少一个第一测试区10的光学吸收/反射性质和至少 一个第二测试区20的荧光性。首先,就第一测试区10而言,由于存在酸碱指示剂,测试区10可以根据油样中的 游离脂肪酸含量显示不同的光学吸收/反射性质。这种光学吸收/反射性质包括与以下 事实有关的任何可测量性质当材料接收入射光时,一些光可以被吸收,一些光可以被返回 (如反射),一些光可以被透射。任何这种可观察到的性质都可以在本文所公开的方法和装 置中使用(即进行测量)。在一个实施例中,所使用的具体量度为反射率。在其他实施例 中,所使用的具体量度为吸收率或透射率。因此概括地说,所进行的光学询问操作涉及将光线导向至少一个第一测试区10 以及测量来自该测试区的反射光。通过光学询问装置30进行光学询问,该装置的示例性设 计在图2示出。此类装置的一个功能是产生用于导向测试区10以测试反射率的光。因此, 参照图3,装置30包括至少一个光源31,其用于将光线导向取样基板1的至少一个第一测 试区10。在一个实施例中,装置30的光源31的数量少于取样基板1的测试区10的数量 (在具体的实施例中,使用一个光源31)。在该实施例中,使用至少一个光源31将光线导向 不止一个第一测试区10。这可通过使用公用光源将光线同时导向多个测试区10来实现。 或者也可通过将光线从一个光源31依次导向多个测试区10 (例如通过使光源31和取样基 板10彼此相对移动)来实现。在替代实施例中,利用多个光源31将光线导向多个第一测试区10。在具体实施 例中,使用相同数量的光源31和测试区10。例如,在图1和图3所示的示例性设计中,装 置30包括四个光源31a、31b、31c和31d,取样基板1包括四个测试区10a、IObUOc和IOd0 在一个实施例中,光源31的空间布置使其对应于测试区10的空间布置(即光源31和测试 区10对齐,使得光线可从光源31导向对应测试区10,而不必使取样基板1和装置30相对 于彼此移动)。例如,第一测试区10可以布置成具有给定中心至中心间距的线性模式,并且 将光源31布置成相同模式。光源31可被构造为全部同时或几乎同时工作,或者其被构造 为依次工作。光源31可以包括多种光源中的任一种,包括灯泡(如白炽灯)等。在一个实施例 中,光源31包括在本方法中会尤其有利的发光二极管(LED)。在多个实施例中,可使用在特 定波长范围(如绿、蓝、红、红外等)内发光的LED。在具体实施例中,使用白色LED(即所发 出的辐射波长至少覆盖可见光谱相当大一部分的LED)。可使用的一个示例性LED是以商品 名 RL5-W5020 得自 Super Bright LEDs (St. Louis,Missouri)的产品。在其他构型中,可使 用不同波长的LED作为询问不同测试区的光源。参照图3,装置30还包括至少一个光电检测器32,用于测量至少一个第一测试区
910的反射光。在一个实施例中,装置30的光电检测器32的数量少于取样基板1的第一测 试区10的数量(在具体实施例中,使用一个光电检测器32)。在该实施例中,询问测试区涉 及使用一个光电检测器测量来自不止一个第一测试区10的光。这可通过(例如)依次测 量来自各个测试区10的光来实现。在替代实施例中,布置了多个光电检测器32,以接收从多个第一测试区10反射的 光。在具体实施例中,使用相同数量的光电检测器32和测试区10。例如,在图1和图4所 示的示例性设计中,装置30包括四个光电检测器32a、32b、32c和32d,取样基板1包括四个 测试区10a、10b、10c和10d。在一个实施例中,光电检测器32的空间布置使其对应于第一 测试区10的空间布置(例如使得在取样基板1和装置30不必相对于彼此移动的情况下光 电检测器32可以接收光)。光电检测器32可以包括能够测量入射光子数量的多种装置中的任一种,包括(例 如)光电倍增管、光伏电池、电耦装置等。光电检测器32用于提供信号(如电压),该信号 与检测到的光子的数量成比例(例如与从测试区10接收的反射光的强度成比例),并且可 以被装置30进一步处理。在一个实施例中,光电检测器32包括光电二极管。在多个实施例 中,光电检测器32可被构造为检测相对较窄波长范围内的特定光(例如上面提及的绿光、 蓝光、红光或红外光波长范围);或者,光电检测器32也可被构造为检测相对较宽波长范围 内的光。在具体实施例中,光电检测器32包括被构造为检测可见光谱的相当大范围内的光 的光电二极管,例如检测在约400nm至约SOOnm波长范围内的光。在具体实施例中,选择可 被光电检测器32检测到的光的波长,使其覆盖与光源31发出的光基本相同的范围。可使用 的一种示例性光电检测器是以商品名S9345得自Hamamatsu Photonics (Hamamatsu City, Japan)的光电二极管。在一个实施例中,装置30包括至少一对匹配的光源31和光电检测器32,二者被构 造为能够通过反射率光学询问基板1上的至少一个第二测试区20。光源/光电检测器对 31/32应被构造为能够以足够的信号强度、精度等询问给定的第一测试区10。因此,光源31 可设置在装置30内,以便能够设置在靠近第一测试区10的位置处,使得光源31的输出光 的至少一部分可以导向第一测试区10。参照图3和图4,在一个实施例中,光源31设置在 装置30的上盖33的后面,上盖33包括在光源31上方的透光部分34 (可以为上盖33上的 洞),使得光源31发出的光可以导向第一测试区10。光电检测器32可设置在装置30内,以便能够使用光源31接收第一测试区10的 反射信号,从而将光导向第一测试区10。例如,如图3和图4的示例性设计所示,将光电检 测器32设置为紧靠光源31可能是有利的。在多个实施例中,光电检测器32可以设置在距 离光源31至多约5mm、IOmm或15mm处。另外,将光源31和光电检测器32安装在公用印刷 电路板38上可能是有利的,这样可以使得光源31和光电检测器32具有大致共平面的构造 (如图4所示)。在这种情况下,光电检测器32也可以设置在装置30的上盖33的后面,上 盖33包括在光电检测器32上方的透光部分35 (可以为上盖33上的洞),使得第一测试区 10的反射光的至少一部分可以被光电检测器32检测到。 在多个实施例中,光源31、光电检测器32和/或透光部分34和/或35可以被构造 为最有效地将光源31的光导向第一测试区10,并且通过光电检测器32收集来自第一测试 区的反射光,同时最大限度减少入射到光电检测器32上的环境光(或来自相邻光源的光)。因此,在光电检测器32被设置为邻近光源31并且相对于光源31与第一测试区10之间的 直接通路略微偏轴的示例性构造中(例如如图4所示),透光部分35可呈一定角度(如图 4所示),或者可制备成略大于光电检测器32的光敏表面(例如如图3所示),以免阻挡本 来会到达光电检测器32的光的任何部分。类似地,如果需要,透光部分34可采用同样的构造。透光部分34和/或35可在基本上整个可见光谱内光学透明。或者,部分34/35 中的一者或全部两者可包括滤光器,从而在允许所需波长的光通过的同时阻挡不需要的波 长的光。除了因波长而异之外,此类滤光器还可因角度而异(例如,为了阻挡环境光)。因此概括地说,光源/光电检测器对31/32可以被构造为使得在将装置30相对于 取样基板1正确定位之后,光源31发出的光的至少一部分可入射到第一测试区10,并且第 一测试区10反射的光的至少一部分可被光电检测器32检测到。光源31发出的光的全部 或甚至相当大一部分不必导向第一测试区10。同样,光电检测器32不必捕集第一测试区 10反射的光的全部或甚至相当大一部分。需要的只是有足够的光从光源31导向第一测试 区10,并且有足够的来自第一测试区的反射光被光电检测器32测量到,使得光电检测器32 可生成信号,并且按本文所述的方式处理信号。如上所述,发明人已经发现,第二测试区20可用于测试油样中的总极性化合物含 量。因此,除了进行上述反射率测量之外,还要进行涉及将光导向至少一个第二测试区20 并且测量该测试区发出的荧光的光学询问操作。具体来讲,对一个或多个测试区20的光学 询问(借助荧光)是通过用于对测试区10进行光学询问(借助反射)的相同光学询问装 置30来进行的。因此,参照图3,装置30包括用于将光导向取样基板1的至少一个测试区 20的至少一个光源41,以及用于测量从该至少一个测试区20发出的荧光的至少一个光电 检测器42。可询问一个测试区20,也可询问多个测试区20。如果询问多个测试区20,可使用 多个光源41和/或光电检测器42,其布置方式类似于之前结合反射率询问中使用的光源 31和光电检测器32描述的可能布置方式。在一个具体实施例中,结合光源31和光电检测 器32对该至少一个光源41和该至少一个光电检测器42进行空间布置,使得光源31和光 电检测器32对应于第一测试区10的空间布置,并且一个或多个光源41和一个或多个光电 检测器42对应于一个或多个第二测试区20的空间布置。例如,在图1和图3所示的示例 性布置中,装置30包括四个用于反射率询问的光源31a、31b、31c和31d,以及一个用于荧光 询问的光源41。取样基板1具有接收来自光源31的光的四个测试区10a、10b、IOc和10d, 以及接收来自光源41的光的一个第二测试区20。因此在一个实施例中,光源31和41的空 间布置对应于测试区10和20的空间布置,使得取样基板1和装置30不必相对于彼此移动 即可将光导向所有第一测试区10和至少一个第二测试区20。一个或多个光源41可被构造 为与光源31同时或几乎同时工作;或者,一个或多个光源41也可被构造为在光源31不工 作时工作。光源41可以包括多种光源中的任一种,例如之前结合光源31描述的类型。当用 于荧光询问时,可能有利的是光源41发出的光的波长范围较窄。可以通过使用(例如)发 出较窄波长范围光的LED来实现此目的。也可以通过使用谱带较宽的光源来实现,但在将 光导向测试区20之前,需要使用滤光器缩小波长范围。
11
如上所述,装置30还包括至少一个光电检测器42,用于测量第二测试区20发出的 荧光。如果要询问多个测试区20,可使用单个光电检测器,或者可以多种构型使用多个光电 检测器,类似于结合用于检测反射率的光电检测器32所描述的那样。光电检测器42可以 包括能够测量入射光子数量的多种装置中的任一种,包括之前结合光电检测器32描述的 那些。同样,如上所述,可对光电检测器42进行选择或构造,以检测波长范围相对较窄的特 定光。这种能力在借助荧光进行询问时可能特别有用;例如,可用于使光电检测器42检测 第二测试区20发出的某些波长范围内的荧光,而不检测第二测试区20反射的不同波长范 围内的光,并且不检测不同波长范围内的环境光,如此等等。在一个实施例中,光源41和光电检测器42包括匹配的对,该匹配的对被构造为 能够借助荧光对基板1上的至少一个第二测试区20进行光学询问。光源/光电检测器对 41/42应被构造为能够以足够的信号强度、精度等询问给定的第二测试区20,并且来自环 境光、反射光等的干扰最小。光源41可设置在装置30内,以便能够设置在靠近第二测试区 20的位置处,使得光源41的输出光的至少一部分可以导向第二测试区20。参照图3和图 4,在一个实施例中,光源41设置在装置30的上盖33的后面,上盖33包括在光源41上方 的透光部分44,使得光源41发出的光可以导向第二测试区20。光电检测器42可设置在装置30内,以便能够使用光源41接收第二测试区20发 出的荧光信号,从而将光导向第二测试区20。在装置30内,光电检测器42可设置在靠近光 源41的位置处,以大体方式在图3中示出。在一个实施例中,光电检测器42设置在装置30 的上盖33的后面,上盖33包括在光电检测器42上方的透光部分45,使得第二测试区20发 出的荧光的至少一部分可以被光电检测器42检测到。透光部分45可以像透光部分35 (如 图4所示)那样呈一定角度,或者可以制备成略大于光电检测器42的光敏表面(例如如图 3所示),以免阻挡本来会到达光电检测器42的所发出荧光的任何部分,同时又最大限度减 少到达光电检测器42的环境光。类似地,如果需要,光源41上方的透光部分44可采用同 样的构造。可能有用的是,将装置30构造为使得光电检测器42接收的第二测试区20发出的 荧光量最大化,同时使得光电检测器42接收的第二测试区20反射的光量最小化。可以通过 若干种方式来实现此目的。例如,如本文已经提出的那样,光源41和光电检测器42中的任 一者或全部两者可(分别)发出/检测相当窄波长范围内的光。例如,光源41可以发出以 约480nm为中心的相对较窄谱带范围内的光。光电检测器42可以检测以约520nm为中心 的相对较窄谱带范围内的光。因此,第二测试区20发出的波长约520nm的荧光可以被光电 检测器42检测到,而测试区20反射的波长约480nm的光则不会被光电检测器42检测到。 通过在光源41上方设置透光部分44和/或在光电检测器42上方设置透光部分45 (其只 能透射所需波长范围内的光),也可实现这种基于波长的滤波。例如,可以使用只允许某一 波长的光通过的滤光器,该滤光器可以包括薄膜、涂层等,例如为带通滤光器、单色滤光器、 二向色滤光器、二向色反射器等。或者,可使用长通滤光器和短通滤光器的组合来产生类似 效果。除了因波长而异之外,此类滤光器还可因角度而异,例如,为了阻挡环境光。也可以通过光源41和光电检测器42的物理布置最大化所检测到的发出的荧光, 同时最小化所检测到的环境光和/或反射光。因此,虽然如图3大致示出的那样被构造为 大致共面的构型,但光源41和光电检测器42可以具有一定角度的构型设置在装置30上。在本领域中已知可以具有多种此类构型。也可以利用共聚焦原理构造光源和光电检测器, 从而相对于反射光和/或环境光最大化检测到的荧光量。因此概括地说,光源/光电检测器对41/42可以被构造为在相对于取样基板1正 确定位装置30之后,光源41发出的光的至少一部分可入射到第二测试区20,从而导致第二 测试区20发出荧光,并且第二测试区20发出的荧光中的至少一部分可被光电检测器42检 测到。光源41发出的光的全部或甚至相当大一部分不必导向第二测试区20。同样,光电检 测器42不必捕集第二测试区20发出的荧光的全部或甚至相当大一部分。需要的只是有足 够的光从光源41导向第二测试区20,并且该测试区发出的足够的荧光由光电检测器42进 行测量,同时来自反射光和/或环境光的干扰足够小,从而可由光电检测器42生成信号,并 且按本文所述的方式处理信号。本文所公开的装置和方法可以允许使用最小的空间和最低的花费借助反射和荧 光准确地进行光学询问,因为这些装置和方法最大限度地减少了对诸如光纤电缆、透镜阵 列、滤光轮等部件的使用。具体地讲,本文所公开的装置和方法可以制备可能很少需要或不 需要移动部件的装置30。本文所公开的此类装置30可能比分光光度计、光密度计、分光荧 光计等装置便宜得多。在一个实施例(如图1和图3所示)中,装置30包括光源/光电检测器的匹配 对31a/32a、31b/32b等,这些匹配对的空间布置使得匹配对31a/32a、31b/32b等可与第一 测试区10a、10b等正确对齐。装置30还包括至少一个光源/光电检测器的匹配对41/42, 该匹配对可在光源/光电检测器对31/32与第一测试区10正确对齐的同时与至少一个第 二测试区20正确对齐。因此在该实施例中,可通过反射询问取样基板1的多个第一测试区 10,并且可通过荧光询问一个或多个第二测试区20,而不必使取样基板1和装置30相对于 彼此移动。在图2和图3所示的示例性构型中,所示光源31/41和光电检测器32/42位于装 置30的“底部”,即位于与具有显示屏36的“顶部”侧相对的装置30的主表面上。除了仅 以其相对含义使用术语“顶部”和“底部”之外,应当理解,光源31/41和光电检测器32/42 还可以设置在(例如)装置30上与显示屏36相同的一侧,或者设置在嵌入装置30的腔体 内。还应该指出的是,图2所示装置30的外观(具有两个相对平坦的主表面的大致细长形 外观)只是一种示例性构型。可以采用多种其他构型,并且可以在此类装置的多个位置处 设置控制器、显示屏、光源和/或光电检测器。在光学监测过程中,可能有用的是包括对照能力,以考虑温度变化、光源31/41的 输出变化、光电检测器32/42的响应变化、背景光水平等。因此,在多个实施例中,除了上述 第一测试区10和一个或多个第二测试区20之外,取样基板1上还可以包括基准区。此类 基准区可以具有在各种所选波长下或所选波长范围内的情况下表现出已知反射率或荧光 的材料。同样,装置30可包括可以被构造为询问此类基准区的一个或多个额外的光源/光 电检测器对。特别考虑到取样基板和/或其所吸收的油的温度可能对反射信号和/或荧光信号 产生影响,也可以在装置30内包括红外温度传感器,当希望根据温度的任何影响调节、修 正信号等时,该传感器能够测定取样基板10的温度。在另一个实施例中,作为在用于进行油取样的取样基板1上包括一个或多个基准区的补充或替代方式,可以设置具有一个或多个基准区的基准条。在这种情况下,本文所 公开的方法和装置可以被构造为使基准条可以紧邻装置30,从而使光源/光电检测器对可 测量基准条的基准区,进而可评价装置30的性能,因此可以进行任何必要的调整和再校准 等。本文所公开的方法和装置还可以被构造为使基准油样(即具有已知含量的游离脂肪酸 和/或总极性化合物的油样)可以接触取样基板(可以为标准取样基板1或上述基准条), 从而使装置30询问一个或多个第一测试区10和/或一个或多个第二测试区20和/或一 个或多个基准区。可将此询问的结果与基准油样中游离脂肪酸和/或总极性化合物的已知 值进行比较,从而可在被认为是必要时对装置30进行调节、校准等。在一个实施例中,装置30在此类光学反射率和/或荧光测量的过程中接收到的信 号采用电压形式,例如,如光电检测器32/42根据光电检测器32/42上的入射光产生的电 压。也就是说,此类光电检测器可以将来自第一测试区10的光学信号转化成可随后被操 纵、处理等的信号,如电压。装置30还可以包括一个或多个模数转换器,其可以提供数字形 式的电压信号,以便于微控制器处理。在有多个光源31、多个第一测试区10和/或多个光 电检测器32的情况下,每个光电检测器32通常会提供单独的电压信号,并且该信号对应于 每个被询问的单独的第一测试区10。对于第一测试区10,发明人已经发现,在使用本文所公开的方法和装置询问第一 测试区10时,可以从该测试区获得信号。发明人还发现,因所谓的白光LED光源和谱带相 对较宽的光电二极管光电检测器组合使用而生成的信号(例如反映多种波长的光子贡献 的信号)可能表现为随要使用的油样中游离脂肪酸含量产生足够的变化。具体来讲,当第 一测试区10接触游离脂肪酸含量大于阈值水平的油时,本文所公开的装置和方法允许检 测第一测试区10的光学反射率的变化。引起给定第一测试区10响应所需游离脂肪酸的具 体阈值水平可以自然地变化,例如根据该区域的指示剂/湿润剂/碱性混合物中碱的含量 而变化。在第一测试区10暴露于游离脂肪酸含量高于该测试区阈值水平的油样中时,可 以检测到该测试区的光学反射率变化。例如,在暴露于含有“低”水平游离脂肪酸(即游离 脂肪酸含量低于该测试区的阈值水平)的油样中并且被询问时,如本文所公开的第一测试 区10会导致光电二极管光电检测器发出相对较“低”的电压信号,例如,如图10的数据所 示。这种情况一般将对应于第一测试区10在目测时显示蓝色。在暴露于含有“高”水平游 离脂肪酸(即游离脂肪酸含量高于该测试区的阈值水平)的油样中并且被询问时,此类测 试区会导致光电二极管光电检测器发出相对较“高”的电压信号,如图10所示。这种情况 一般将对应于第一测试区10在目测时显示黄色。在进行反射率测试过程中,发明人已经发现,可以检测到“中等”水平的游离脂肪 酸,该水平的游离脂肪酸未必会在视觉上表现为“蓝色”和“黄色”之间的中间色彩,但会导 致光电二极管检测器发出“中等”信号(如图10所示),该信号介于“高”、“低”信号之间, 并且可以通过装置30与这两种信号明显区别开来。因此概括地说,通过本文所公开的方法和装置,对第一测试区10的询问能够提供 比本来可以获得(例如通过目测)的更多的有关油样中游离脂肪酸含量的信息。这种获得 有关各个第一测试区10的更灵敏量度的能力可与提供多个测试区10(这些测试区可以包 含不同含量的碱,因而可以包含不同阈值水平的游离脂肪酸)相结合,从而更准确、灵敏和/或精确地评价油质。在根据对多个第一测试区10的询问生成游离脂肪酸含量指示的过程中,装置30 可以使用从所有第一测试区10 (例如从所有光电检测器32)接收到的信号。在具体实施例 中,装置30使用(例如处理)来自所有光电检测器32的所有信号组合的组合信号。在具 体实施例中,对来自多个光电检测器的信号进行积分,即求和或相加。发明人已经发现,在 使多个第一测试区10暴露于含有各种浓度的游离脂肪酸的油时,来自多个光电检测器的 积分信号与油中游离脂肪酸的浓度具有良好的相关性,因而可被装置30用来指示油质。考 虑到每个光电检测器都能够提供与检测到“中等”水平的游离脂肪酸相对应的信号,使用这 种积分信号可以在(例如)不必使用不切实际的大量单独的第一测试区10的情况下提供 更高的准确度。在生成总极性化合物含量指示的过程中,装置30可以使用从一个或多个第二测 试区20 (例如从一个或多个光电检测器42)接收到的信号。之所以有这种可能是因为发明 人发现,当油样被吸入第二测试区20时,油样中总极性化合物的含量增加可导致第二测试 区20的含油多孔材料5发出的荧光量增加。例如,如图11所示,当含油测试区暴露于波长 约470nm的入射光中时,油样中总极性化合物的含量较高会导致以约520nm的波长发出的 荧光量增加。当然,除了所示实例之外,根据(例如)所评价油的类型,可以使用许多其他 的激发和/或发射波长。除了上述积分步骤之外,如果需要,可根据装置30的电路内存储(例如安装到软 件或固件中)的算法对光电检测器32从第一测试区10接收到的信号单独或一起进行数学 处理。类似地,可对一个或多个光电检测器42从一个或多个第二测试区20接收到的信号 进行类似处理。因此,装置30可以根据需要包括这类部件、电路等,以进行这种所需的信号 处理,并且也可以根据需要控制光源31/41和/或光电检测器32/42,等等。参照图5的框 图,装置30可以包括微控制器37,该微控制器可执行多种操作,包括操作光源31/41 ;操 作光电检测器32/42,以及从中接收信号;对接收自光电检测器32/42的信号进行处理、操 纵等;在存储器中保存各种数据和参数;与显示器36进行通信;接收来自装置30的使用者 的输入;以及执行其他所需功能。在具体实施例中,装置30可包括被称为PIC(具有“可编 程接口控制器”或“可编程智能计算机”这样不同的解释)的微控制器这一类型,这种微控 制器会尤其适合在本文中使用。装置30的各种部件(光源31/41、光电检测器32/42、显示 屏36、微控制器37和下述其他部件)可连接和/或物理安装到一块或多块印刷电路板上。 装置30可具有多种其他部件,例如用于输入信息的小键盘、按钮或触摸屏界面、电源(如电 池或电线)等等。如果发现当按照本文所公开的装置和方法进行询问时,某些类型的油显示不同的 信号(如与油中的游离脂肪酸含量和/或总极性化合物含量无关),则装置30可包括使用 者可用来输入被测油的种类(类型)的机制,以使得装置30可根据油的类型自动进行调节 或补偿。此外,也可以将装置30构造为使得当加入新一批油进行烹饪时,对油进行测试,从 而获得基线(基准)反射信号和/或基线(基准)荧光信号,这些信号可保存在装置30的 存储器中,并且与该特定类型和/或批次的油相对应。然后在日后对油进行询问时可使用 所保存的此基线信号,以使得装置30可根据该批油的具体特性进行自动调节或补偿。因此概括地说,询问装置30可利用从第一测试区10接收的信号生成油样的油质
15指示,该指示与油样中的游离脂肪酸含量相关联(例如以该含量为基础)。询问装置30也 可利用从一个或多个第二测试区20接收的信号生成油样的油质指示,该指示与油样中的 总极性化合物含量相关联(例如以该含量为基础)。然后可将指示传输给装置30的使用 者,例如通过视频或音频信号传输。在一个实施例中,指示可为游离脂肪酸含量和总极性化 合物含量的实际数值。作为另外一种选择,指示可为虽然不是游离脂肪酸含量或总极性化 合物含量的数值但与这些数值相关联的参数,该参数可用于让使用者确定油质,例如油是 否仍然适合使用。例如,装置30可以具有呈现条形图的屏幕36,条形图的高度表示游离脂 肪酸的含量。或者,可以利用一组或多组信号(如红光、黄光和绿光)指示以游离脂肪酸含 量表示的油质。或者,装置30可以根据游离脂肪酸含量通过音频或视频信号向使用者提供 合格/不合格二进制格式的油质信息。类似地,可以提供与总极性化合物含量有关的指示。因此,可以向使用者呈现两种单独的油质指示,一种与游离脂肪酸含量相关联,另 一种与总极性化合物含量相关联。作为另外一种选择,游离脂肪酸含量指示和总极性化合 物含量指示可以组合成同时考虑了游离脂肪酸贡献和总极性化合物贡献的单个油质指示。在生成此类一个或多个指示的过程中,如果装置30包含允许装置30将来自光电 检测器32的上述组合(如积分)信号与油中游离脂肪酸含量相关联的信息(如保存在电 子存储器、固件或软件中,例如保存在查询表中),则可能是有利的。相似地,如果装置30包 含允许微控制器37将来自一个或多个光电检测器42的上述信号与油中总极性化合物含量 相关联的信息,则可能是有利的。此类信息可作为固定值保存在装置30的电子存储器中。 或者,可定期更新和/或更改此类信息,例如通过让装置30询问具有已知含量的游离脂肪 酸和/或总极性化合物的一个或多个标准材料,或者询问具有已知反射和/或荧光特性的 一个或多个标准材料(如基准区、基准条、基准油样等)。装置30可以某种方式构造,使得可在取样基板开放(如摆放在台面上、手持等) 的情况下询问取样基板1。如果其可用于最小化杂散光或背景光的影响,则可以采用多种方 法来实现此目的。例如,可以将装置30构造为具有部分或完全封闭的室(任何图中均未示 出),使得取样基板1可设置在封闭室内用于询问。这可以通过(例如)以下方式实现在 装置30内设置腔体,腔体内包括光源31和光电检测器32,并且其中可插入取样基板10 ;或 者可提供盖子(如铰接盖、滑动盖等),使得盖子可设置为在将取样基板10置于询问位置后 盖子可阻挡环境光。具体地讲,如果要在取样基板1设置在表面上(如摆放在台面上)的 情况下进行询问,则装置30可包括裙边或凸缘(任何图中均未示出),当靠近表面或被设置 为接触表面时,该裙边或凸缘会形成部分或完全封闭的室。在多个实施例中,可能希望在取样基板1与装置30之间实现对准(对齐),以最 好地发挥作用。也就是说,可能希望准确设置取样基板1相对于装置30的位置,使得第一 测试区10与光源31和光电检测器32对齐,一个或多个第二测试区20与一个或多个光源 41和一个或多个光电检测器42对齐,从而提供最准确的光学询问。可以通过多种方式实现 这种对准。例如,可以使用物理对准法,将取样基板1的边缘或其他部分设置为紧贴固定物 (如夹子、柱子、短插芯等)或固定在其中,其中固定物可以设置在询问装置30自身上或单 独的固定夹具上。也可通过光学方式而不是物理方法实现对准。因此,取样基板1可具有一个或多 个特征物,使用者和/或装置30可识别这些特征物以进行对准。例如,取样基板1可包括
16标记,使用者可以利用该标记正确对准取样基板1和装置30。或者,装置30可以具有光学 识别能力,从而能够识别此类标记。在这种情况下,当装置30检测到与取样基板1足够对 准后,装置30可通知使用者(如通过光学信号、音频信号等)装置已准备就绪,可用于询问 取样基板1。作为另外一种选择,装置30可以被构造为在装置30确认已足够对准后自动进 行光学询问。SM实例1获得测试条,其可以商品名3M起酥油监测条(3M Shortening Monitor Test Strips)得自3M Company,并且据信是以与美国专利4,654,309 (实例4)中所描述方法类 似的方式制造的。获得食用油,其组成为大约40 %的向日葵油(最少70 %的油酸)、大约30 %的棕 榈油和大约30%的氢化油菜籽油(所有百分比均为重量百分比)。食用油被用于烹制炸薯 条约两个月,在此期间定期从油中取出少量样品。按以下工序测试样品。由于大多数样品在室温下为固体,因此将每份样品(150cc, 装入塑料广口瓶中)在微波炉中加热60秒,或加热至样品熔化成液体。然后将测试条浸 入油样中,接着置于纸巾上去除多余的油。然后用得自KGW Enterprises (Elkhart, IN)的 Model 100 的 QuadScan 反射光度计(QuadScan Reflectance Photometer)测量测试条的 四个测试区(即收到测试条时外观显示为蓝色的区)中每一个的光学反射率。使用滤光 器在特定波长范围内询问测试区蓝波长对应于大约400-510nm的波长范围,绿波长对应 于510-586nm的波长范围,红波长对应于586-660nm的波长范围,红外(IR)波长对应于 825-855nm的波长范围。将测试条相对于反射光度计来回移动,使得光度计的询问单元依次询问每个测试 区,通过这种方式测量四个测试区的光学反射率。在整条测试条上读取读数,包括测试区之 间的空白区域,但不采用取自测试区之间的空白区域的读数。在此过程中将测试条与环境 光隔离。通常,对于每个测试条,将来自四个测试区的反射率读数求平均。因此,在图6至 图9的图线中,每个数据点通常都表示测试条四个测试区的平均反射率。按照产品说明书上的标准(目测)方法使用3M起酥油监测条估计多个油样的游 离脂肪酸浓度。根据产品说明书,目测获得的结果将落在下列区间之一中游离脂肪酸含量 小于2%、游离脂肪酸含量为2%至小于3. 5%、游离脂肪酸含量为3. 5%至小于5. 5%、游离 脂肪酸含量为5. 5%至小于7%、或游离脂肪酸含量大于7%。然后生成图6至图9的图线, 图中绘出了所测得反射率(通过在不同波长范围内询问获得)与通过目测产品估计的游离 脂肪酸含量的对比关系。在大致分组的这些数据中(例如在游离脂肪酸含量为3. 5-5. 5% 和游离脂肪酸含量为5. 5-7. 0%等组中),还可以根据其估计的游离脂肪酸含量至少定性 地将各个油样分等级。可通过(例如)以下方法来分等级根据具体油样已使用的时间长 度(预计这将增加游离脂肪酸的含量);或者根据ISO标准8420中的方法测得的油样中的 总极性化合物含量(其中游离脂肪酸占一部分,因而预计至少大致相关);或者根据目测的 测试区的亮度或强度。因此,在图6至图9中的大致分组的数据中,每个组内的数据被排列 成评价出的游离脂肪酸含量较低的油样朝组的左手侧,评价出的游离脂肪酸含量较高的油 样朝组的右手侧。然而,应该推断,并没有尝试将游离脂肪酸的具体浓度定量。
为了便于呈现,将数据分成四个图线。图6包含在红外波长范围内进行询问获得 的数据;图7包含在红光波长范围内进行询问获得的数据;图8包含在绿光波长范围内进 行询问获得的数据;图9包含在蓝光波长范围内进行询问获得的数据。总体来说,反射率数 据表明在这些实验中,在红光或绿光波长范围内的询问相比在蓝光或红外波长范围内的 询问提供了更强的响应。实例2获得测试条,其可以商品名3M起酥油监测条得自3M Company,并且据信是以与美 国专利4,654,309 (实例4)中所描述方法类似的方式制造的。UMm^l S9345 hK Hamamatsu Photonics (Hamamatsu City, Japan) Μ^Η^Τ^ 检测器光电二极管(Si PINS)。将各个光电二极管标识为PD-0、PD-l、PD-2和PD-3。以商品名 RL5-W5020 从 SuperBright LEDs, Inc (St. Louis,Missouri)获得发光二 极管(超白(GaN)型)。获得测试条,其可以商品名3M起酥油监测条得自3M Company,并且据信是以与美 国专利4,654,309 (实例4)中所描述方法类似的方式制造的。让各测试条的测试区接触具有“低”含量游离脂肪酸的油样;也就是说,对于这些 测试区来说,含量不会引起常规人类使用者可察觉的视觉上的变化(从蓝色变为黄色)。然 后对测试区进行询问,方法是将光从LED导向测试区,利用光电二极管测量来自测试区的 反射光(按照制造商的建议和本领域熟知的方法构造和操作LED和光电二极管)。对于四 个单独的光电二极管,所得的输出电压见图10(标以“低游离脂肪酸”)。让其他测试区接触具有“高”含量游离脂肪酸的油样;也就是说,对于这些测试区 来说,含量会引起常规人类使用者可察觉的视觉上的变化(从蓝色变为黄色)。然后如上所 述用LED和光电二极管询问测试区,来自光电二极管的所得的输出电压见图10(标以“高游 离脂肪酸”)。让其他测试区接触具有“中等”含量游离脂肪酸的油样;据信,对于这些测试区来 说,含量可能不会可靠地引起常规人类使用者可察觉的视觉上的变化(从蓝色变为黄色)。 然后如上所述用LED和光电二极管询问测试区,来自光电二极管的所得的输出电压见图 10 (标以“中等游离脂肪酸”)。如图10所示,使用上述方法和装置询问测试区会得到“中等”信号,该信号会有别 于与“低”状态(即测试区在视觉上表现为蓝色的状态)相对应的信号,并且有别于与“高” 状态(即测试区在视觉上表现为黄色的状态)相对应的信号。实例3获得测试条,其可以商品名3M起酥油监测条得自3M Company,并且据信是以与美 国专利4,654,309 (实例4)中所描述方法类似的方式制造的。获得食用油,其组成为大约40 %的向日葵油(最少70 %的油酸)、大约30 %的棕 榈油和大约30%的氢化油菜籽油(所有百分比均为重量百分比)。食用油被用于烹制炸薯 条约两个月,在此期间定期从油中取出少量样品。按以下方法测试样品。由于大多数样品在室温下为固体,因此将每份样品(150cc, 装入塑料广口瓶中)在微波炉中加热60秒,或加热至样品熔化成液体。然后将测试条浸 入每个油样中,接着置于纸巾上去除多余的油。在测试条的各个含油“空白”区(即不具有
18对游离脂肪酸灵敏的浸渍材料的区域)上使用ESE XYZ Stage Scanner (Embedded System Engineering GmBH, Stockach,Germany)进行荧光测量,该装置在激发波长大约470nm、发射 波长大约520nm下工作。对于每个油样,在每个测试条的不同空白区获得多个读数。报告这多个读数的平 均值。通常,针对每个油样,按此程序测试若干个测试条。这些数据如图11所示,将这些数 据绘制成随油中总极性化合物浓度(采用与ISO标准8420中的规定的类似工序测得)变 化的图线。上述测试和测试结果仅用于示例性目的,而不用于预测性目的,并且可以预期测 试工序的改变会产生不同的结果。提供上面的详细描述和实例仅为了清楚地理解本发明。 这些描述和实例不应被理解为不必要的限制。具体地讲,本公开的标题和/或子标题是为 了方便阅读,而不应理解为不必要的限制。现在,已经结合本发明的数个实施例对本发明进行了描述。对于本领域的技术人 员将显而易见的是,在不脱离本发明的范围的情况下,可对所描述的实施例作出改变。因 此,本发明的范围不应被限定在本文所描述的精确细节和结构内,而是受权利要求书的语 言所描述的结构及这些结构的等同物限定。
权利要求
1.一种以光学方式监测油样的多个参数的方法,所述方法包括以下步骤提供吸油的取样基板;其中所述取样基板包括具有随所述油的第一参数变化的第一光学特性的多个第一测 试区,以及具有随所述油的第二参数变化的第二光学特性的至少一个第二测试区;让所述油接触所述取样基板,使得所述油的样品接触每个所述第一测试区的至少一部 分和所述至少一个第二测试区的至少一部分;用第一光学方法询问所述第一测试区,以从所述第一测试区接收一组第一信号;将来自所述第一测试区的所述一组第一信号组合成组合信号;将所述组合信号与所述 油的所述第一参数相关联;用第二光学方法询问所述至少一个第二测试区,以接收第二信号,其中所述第二光学 方法不同于所述第一光学方法;并且,将所述第二信号与所述油的所述第二参数相关联。
2.根据权利要求1所述的方法,其中对所述第一测试区的所述询问包括测量反射率。
3.根据权利要求2所述的方法,其中所述第一测试区每一个都包含指示剂,所述指示 剂的光学吸收/反射特性随所述油的所述第一参数变化。
4.根据权利要求3所述的方法,其中所述指示剂为酸碱指示剂。
5.根据权利要求1所述的方法,其中对所述至少一个第二测试区的所述询问包括测量 荧光。
6.根据权利要求5所述的方法,其中对所述荧光的所述测量包括测量自体荧光。
7.根据权利要求6所述的方法,其中所述油样不含荧光指示添加剂。
8.根据权利要求1所述的方法,其中将所述一组第一信号组合包括对所述第一信号求 和以形成积分信号。
9.根据权利要求1所述的方法,其中对所述第一测试区的所述询问和对所述至少一个 第二测试区的所述询问由同一询问装置来进行。
10.根据权利要求1所述的方法,其中对所述第一测试区的所述询问通过对每个所述 第一测试区使用单独的光源/光电检测器对来进行。
11.根据权利要求1所述的方法,其中所述第一参数包括所述油中的游离脂肪酸含量。
12.根据权利要求11所述的方法,其中所述方法包括报告所述油的油质的指示的额外 步骤,其中所述指示与所述油中的所述游离脂肪酸含量相关联。
13.根据权利要求1所述的方法,其中所述第二参数包括所述油中的总极性化合物含量。
14.根据权利要求13所述的方法,其中所述方法包括报告所述油的油质的指示的额外 步骤,其中所述指示与所述油中的所述总极性化合物含量相关联。
15.根据权利要求1所述的方法,其中所述第一参数包括所述油中的游离脂肪酸含量, 其中所述第二参数包括所述油中的总极性化合物含量,并且其中所述方法还包括报告所述 油的油质的指示的步骤,其中所述指示与所述油中的所述游离脂肪酸含量和所述油中的所 述总极性化合物含量相关联。
16.一种用于测量油样的至少两个参数的系统,所述系统包括吸油的取样基板,其中所述取样基板包括具有随所述油的第一参数变化的第一光学特性的多个第一测 试区,以及具有随所述油的第二参数变化的第二光学特性的至少一个第二测试区;以及,光学询问装置,其中所述光学询问装置包括通过第一光学机制询问所述取样基板的每个所述第一测 试区并且从所述第一测试区接收一组第一信号的装置,以及通过不同的第二光学机制询 问所述取样基板的所述至少一个第二测试区并且从所述至少一个第二测试区接收第二信 号的装置,其中所述光学询问装置还包括将来自所述第一测试区的所述一组第一信号组合成组 合信号的装置,以及将所述组合信号与所述油的所述第一参数相关联的装置;并且,其中所述光学询问装置还包括将所述第二信号与所述液体样品的所述第二参数相关 联的装置。
17.根据权利要求16所述的系统,其中所述第一参数为所述油中的游离脂肪酸含量, 所述第二参数为所述油中的总极性化合物含量。
18.根据权利要求17所述的系统,其中所述光学询问装置被构造为报告所述油的油质 的第一指示,其中所述第一指示与所述油中的所述游离脂肪酸含量相关联;并且,其中所述 光学询问装置还被构造为报告所述油的油质的第二指示,其中所述第二指示与所述油中的 总极性化合物含量相关联。
19.根据权利要求17所述的系统,其中所述光学询问装置还被构造为报告所述油的油 质的指示,其中所述指示与所述油中的所述游离脂肪酸含量和所述油中的所述总极性化合 物含量相关联。
20.根据权利要求17所述的系统,其中所述第一光学机制为反射,所述第二光学机制 为荧光。
21.根据权利要求20所述的系统,其中所述光学询问装置包括用于询问所述多个第一 测试区中的每个所述第一测试区的单独的光源/光电检测器对,并且其中所述光学询问装 置包括用于询问所述至少一个第二测试区的额外的光源/光电检测器对。
22.根据权利要求21所述的系统,其中所述光学询问装置被构造为使得可以在所述取 样基板和所述光学询问装置不相对于彼此移动的情况下对所述多个第一测试区和所述至 少一个第二测试区全部进行询问。
23.根据权利要求22所述的系统,其中所述光学询问装置为手持装置、便携式装置或 台式装置中的至少一者。
全文摘要
本文公开了以光学方法监测油样的多个参数的方法和装置。在一个实施例中,所述方法和装置可用于确定以食用油或炸油中的游离脂肪酸含量和总极性化合物含量表示的所述油的质量。所述方法使用光学吸收/反射特性来评价所述游离脂肪酸含量,同时使用光学荧光性来评价所述总极性化合物含量,并且两种测量均使用单个取样基板和单个测量装置。
文档编号G01N33/03GK102007406SQ200980113233
公开日2011年4月6日 申请日期2009年3月2日 优先权日2008年3月4日
发明者米林德·B·萨巴代, 阿布卡西姆·B·马哈茂德, 魏爱平 申请人:3M创新有限公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1