非球面体测量方法以及装置的制作方法

文档序号:5872651阅读:200来源:国知局
专利名称:非球面体测量方法以及装置的制作方法
技术领域
本发明涉及一种对数码摄像机或光学传感器等的各种光学设备所使用的非球面 透镜等非球面体的表背2个被测面的相对偏差(面偏差及面偏斜)进行测量的非球面体测 量方法以及装置。
背景技术
在通过模成型制造非球面透镜的情况下,由于成型用模具彼此的相对位置偏差, 而使在所成型的非球面透镜发生面偏差(构成非球面透镜的2个透镜面各自的旋转轴彼此 的相对位置偏差)或面偏斜(2个透镜面各自的旋转轴彼此的相对倾斜偏差)的情形存在。 这样的面偏差或面偏斜在模具的机构上要完全消除是困难的,就成为使所成型的非球面透 镜的像差(尤其是慧形像差(也称慧差)等的旋转非对称像差)增大的主要原因,所以优 选以使之减少的方向谋求模具的修正,对由此所发生的面偏差以及面偏斜的掌握就变得重 要。以往,提出有以下方案,S卩,在具有相对于透镜的光轴垂直设置的锷状的平面部的 非球面透镜中,2个透镜面各自对测量光轴的位置偏差和构成平面部的2个平面的相对倾 斜通过使用自动准直仪得以测量(参照专利文献1)。专利文献1 日本专利第3127003号公报近几年,数值孔径(NA)大的非球面透镜的需要日益高涨。在这样的高NA的非球 面透镜中,曾经不成问题的几Pm数量级的面偏差或几十秒数量级的面偏斜的发生就会视 为问题。所述专利文献1所记载的现有方法能够应用于面偏差或面偏斜的测量,但在进行 能够对应于近几年所要求的水平的高精度的测量上是困难的。并且,该现有方法在不具有 锷状的平面部的非球面透镜的测量上不能应用的问题也存在。这样的问题在具有由旋转对称的非球面构成的2个镜面的非球面镜那样的其他 非球面体的面偏差或面偏斜的测量时也同样产生。

发明内容
本发明是鉴于这样的状况而完成的,其目的在于,提供一种即使在成为测量对象 的非球面体不具有锷状的平面部的情况下,也能够高精度地测量面偏差以及面偏斜的非球 面测量方法以及装置。为实现上述目的,本发明所涉及的非球面体测量方法以及装置如下构成。S卩,本发明所涉及的非球面体测量方法,对非球面体的面偏差及面偏斜进行测量, 该非球面体通过具有由旋转对称的非球面构成的第1被测面及第2被测面而成,其特征在 于,所述非球面体测量方法通过包括以下步骤作为测量工序而成第1干涉条纹取得步骤,使用第1干涉仪对上述第1被测面的中心部照射第1测量光,且取得由该第1测量光的来自该第1被测面的返回光和第1参照光之光干涉所形成 的第1干涉条纹的图像数据;第2干涉条纹取得步骤,使用第2干涉仪对上述第2被测面的中心部照射第2测 量光,且取得由该第2测量光的来自该第2被测面的返回光和第2参照光之光干涉所形成 的第2干涉条纹的图像数据;第1形状数据取得步骤,基于上述第1干涉条纹的图像数据,在上述第1干涉仪所 设定的第1测量坐标系中,求出上述第1被测面的中心部的形状数据即第1形状数据;第2形状数据取得步骤,基于上述第2干涉条纹的图像数据,在上述第2干涉仪所 设定的第2测量坐标系中,求出上述第2被测面的中心部的形状数据即第2形状数据;第1轴线数据取得步骤,基于上述第1形状数据,在上述第1测量坐标系中,求出 上述第1被测面的脐点即第1脐点的位置数据、该第1脐点中的该第1被测面的曲率中心 即第1曲率中心的位置数据、通过该第1脐点及该第1曲率中心的第1轴线的位置数据;第2轴线数据取得步骤,基于上述第2形状数据,在上述第2测量坐标系中,求出 上述第2被测面的脐点即第2脐点的位置数据、该第2脐点中的该第2被测面的曲率中心 即第2曲率中心的位置数据、通过该第2脐点以及该第2曲率中心的第2轴线的位置数据;面偏差、面偏斜分析步骤,基于在上述第1轴线数据取得步骤及上述第2轴线数据 取得步骤中所求出的各位置数据、和预先所特定的上述第1测量坐标系与上述第2测量坐 标系的相对位置关系,求出上述面偏差及上述面偏斜。在本发明的非球面透镜测量方法中,上述第1轴线数据取得步骤可以设成关于 将上述第1被测面切断的第1切断平面进行假设设定、且将该第1切断平面和该第1被测 面之交线作为第1剖面曲线求出的处理,第1次是在任意位置设定最初的第1切断平面而 进行,第2次以后是在将之前所求出的第1剖面曲线中曲率取极值的点作为拟第1脐点求 出之后,将其次的第1切断平面按照在该拟第1脐点与之前的第1切断平面垂直地相交的 方式设定,由此至少进行2次,并且将最终所求出的第1剖面曲线的拟第1脐点设为上述第 1脐点。并且,上述第2轴线数据取得步骤可以设成关于将上述第2被测面切断的第2切 断平面进行假设设定、且将该第2切断平面和该第2被测面的交线作为第2剖面曲线求出 的处理,第1次是在任意位置设定最初的第2切断平面而进行,第2次以后是在将之前所求 出的第2剖面曲线中曲率取极值的点作为拟第2脐点求出之后,将其次的第2切断平面按 照在该拟第2脐点与之前的第2切断平面垂直地相交的方式设定,由此至少进行2次,并且 将最终所求出的第2剖面曲线的拟第2脐点设成上述第2脐点。另外,本发明适于上述非球面体为非球面透镜的情况。并且,本发明所涉及的非球面体测量装置,对非球面体的面偏差及面偏斜进行测 量,该非球面体通过具有由旋转对称的非球面构成的第1被测面以及第2被测面而成,其特 征在于,所述非球面体测量装置通过具备以下部件而成第1干涉仪,对上述第1被测面的中心部照射第1测量光,得到由该第1测量光的 来自该第1被测面的返回光和第1参照光之光干涉所形成的第1干涉条纹的图像数据;第2干涉仪,对上述第2被测面的中心部照射第2测量光,得到由该第2测量光的
5来自该第2被测面的返回光和第2参照光之光干涉所形成的第2干涉条纹的图像数据;第1形状数据取得机构,基于上述第1干涉条纹的图像数据,在上述第1干涉仪所 设定的第1测量坐标系中,求出上述第1被测面的中心部的形状数据即第1形状数据;第2形状数据取得机构,基于上述第2干涉条纹的图像数据,在上述第2干涉仪所 设定的第2测量坐标系中,求出上述第2被测面的中心部的形状数据即第2形状数据;第1轴线数据取得机构,基于上述第1形状数据,在上述第1测量坐标系中,求出 上述第1被测面的脐点即第1脐点的位置数据、该第1脐点中的该第1被测面的曲率中心 即第1曲率中心的位置数据、通过该第1脐点及该第1曲率中心的第1轴线的位置数据;第2轴线数据取得机构,基于上述第2形状数据,在上述第2测量坐标系中,求出 上述第2被测面的脐点即第2脐点的位置数据、该第2脐点中的该第2被测面的曲率中心 即第2曲率中心的位置数据、通过该第2脐点以及该第2曲率中心的第2轴线的位置数据;面偏差、面偏斜分析机构,基于由上述第1轴线数据取得机构以及上述第2轴线数 据取得机构所求出的各位置数据和预先所特定的上述第1测量坐标系与上述第2测量坐标 系的相对位置关系,求出上述面偏差以及上述面偏斜。另外,就上述“脐点”而言,在数学上是曲面(第1透镜面或第2透镜面)上的点, 是指该点的法曲率(在包括该点中的该曲面的法线和任意方向的切线的平面与该曲面的 交线(平面曲线)的、该点的曲率)在该点中与该曲面接触的所有切线的方向上成为相同 的点。并且,就上述“第1曲率中心”而言,在数学上意味着在包括上述第1脐点中的上述 第1透镜面的法线和任意方向的切线的预定平面与该第1透镜面的交线(平面曲线)的、 该第1脐点的曲率中心。同样地,就上述“第2曲率中心”而言,在数学上意味着在包括上述第2脐点中的 上述第2透镜面的法线和任意方向的切线的预定平面与该第2透镜面的交线(平面曲线) 的、该第2脐点的曲率中心。本发明所涉及的非球面体测量方法及装置通过具备上述特征可发挥如下的作用 效果。即,在本说明的非球面体测量方法以及装置中,基于通过可进行在光波长数量级 下的形状分析的光干涉仪测量所求出的形状数据(第1形状数据以及第2形状数据),解析 性地求出第1脐点、第1曲率中心、第1轴线、第2脐点、第2曲率中心以及第2轴线的各位 置数据,根据这些位置数据求出非球面体的面偏斜及面偏差,所以能够高精度测量面偏斜 以及面偏差。并且,若能够得到第1被侧面和第2被测面的各中心部的形状数据,则可以求出面 偏斜以及面偏差,所以即使在成为测量对象的非球面体不具有锷状的平面部的情况下也能 够进行测量。


图1是一实施方式所涉及的非球面体测量装置的简要结构图。图2是图1所示的非球面体测量装置的光学系统的简要结构图。图3是表示图1所示的分析控制部的结构的方块图。
图4是表示成为测量对象的非球面透镜的结构的剖面图。图5是表示由第1形状数据构筑的第1透镜面的图。图6是表示第1轴线数据取得步骤的顺序(第1阶段)的图。图7是表示第1轴线数据取得步骤的顺序(第2阶段)的图。图8是表示第1轴线数据取得步骤的顺序(第3阶段)的图。图9是表示第1轴线数据取得步骤的顺序(第4阶段)的图。图10是表示由第2形状数据构筑的第2透镜面的图。图11是表示第2轴线数据取得步骤的顺序(第1阶段)的图。图12是表示第2轴线数据取得步骤的顺序(第2阶段)的图。图13是表示第2轴线数据取得步骤的顺序(第3阶段)的图。图14是表示第2轴线数据取得步骤的顺序(第4阶段)的图。图15是表示第1测量坐标系和第2测量坐标系的相对位置关系的图。图16是表示面偏差、面偏斜分析步骤的顺序的图。图17是表示第1轴线数据取得步骤的其他方式的顺序的图。图18是表示第2轴线数据取得步骤的其他方式的顺序的图。图中1A-第1干涉仪,1B-第2干涉仪,2-光学平台,3_被测体对准部,4A-第1干涉 仪位置调整部,4B-第2干涉仪位置调整部,5-控制分析部,9-非球面透镜(非球面体), 10A-第1干涉光学系统,10B-第2干涉光学系统,11A、11B-光源部,12A、12B-束径放大 透镜,13A,21A,13B,21B-光束分支光学元件,14AU4B-准直透镜,15AU5B-平面基准板, 15Aa、15Ba-参照基准平面,16A、16B_压电元件,17A、17B-条纹扫描适配器,18A、18B_物镜, 20A-第1干涉条纹摄像系统,20B-第2干涉条纹摄像系统,22A、26A、22B、26B-成像透镜, 23A、27A、23B、27B-摄像摄像机,24A、24B、28A、28B_ 二维图像传感器,25A、25B_对准摄像系 统,31-保持台,32-透镜倾斜调整台,33-透镜位置调整台,41A-第1Z架台,41B-第2Z架 台,42A-第1XY架台,42B-第2XY架台,43A-第1干涉仪倾斜调整台,43B-第2干涉仪倾 斜调整台,51A-第1形状数据取得机构,51B-第2形状数据取得机构,53-面偏差、面偏斜 分析机构,91-第1透镜面(第1被测面),91D-(数据上的)第1透镜面,92-第2透镜面, 92D-(数据上的)第2透镜面,93-第2透镜面(第2被测面)山丄2_测量光轴,Pf第1脐 点,P2-第2脐点,A「第1旋转轴,A2-第2旋转轴,BpB'「第1轴线,B2、B' 2-第2轴 线,0^0'丨-第1曲率中心,02、0' 2-第2曲率中心,S1A、S1B、S1C、S' 1B-第1切断平面,
§2A、§2B、S2c、S 2B"
-第2切断平面, Cia、C1B、Clc、c 1B_ -第1剖面曲线, 2A、C2B、C2c、C 2B_ 弟 2剖面曲线,Q1A、Q1B、Q1C、Q'⑶-拟第!脐点…狀力皿力况、。'2B-拟第2脐点
具体实施例方式以下,参照上述附图对本发明的实施方式进行详细说明。另外,实施方式的说明所 使用的各图是简要的说明图,不是表示详细的形状或结构,而将各部件的大小或部件间的 距离等适当变更后进行表示。首先,基于图4对在本实施方式中成为测量对象的非球面体的非球面透镜9的结 构以及成为测量对象的项目进行说明。
7
如图4所示的非球面透镜9,在设计上具有以下部件而成由以第1旋转轴~为中 心的旋转对称的非球面构成的第1透镜面91 (构成第1被测面);由以第2旋转轴A2为中 心的旋转对称的非球面构成的第2透镜面92 (构成第2被测面);按圆柱面状所形成的侧 面93。并且,在设计上,在第1透镜面91的中心部设定有第1脐点Pi,在第2透镜面92 的中心部设定有第2脐点P2。第1脐点Pi是第1透镜面91和第1旋转轴~的交点,该第 1脐点Pi的法曲率(法曲率)在该第1脐点&对与第1透镜面91接触的所有切线的方向 成为相同。同样地,第2脐点P2是第2透镜面92和第2旋转轴A2的交点,该第2脐点P2的 法曲率在该第2脐点P2对与第2透镜面92接触的所有切线的方向成为相同。并且,上述的第1旋转轴~以及第2旋转轴A2在设计上按照相互一致的方式构 成,但由于制造误差,有时产生处于这些旋转轴不一致的状态的面偏差以及面偏斜。在图中 为了易于理解,第1旋转轴~和第2旋转轴A2的偏差量加大地表现,但通常成为光波长数 量级的微小误差量。其次,基于图1 3说明本发明的一实施方式所涉及的非球面体测量装置的结构。 图1所示的非球面体测量装置测量是对上述的非球面透镜9的面偏差以及面偏斜进行测量 分析的装置,具备以下部件而成在非球面透镜9的第1透镜面91侧所配置的第1干涉仪 1A、在第2透镜面92侧所配置的第2干涉仪1B、在光学平台2上所载置的被测体对准部3、 进行第1干涉仪1A的位置调整的第1干涉仪位置调整部4A、进行第2干涉仪1B的位置调 整的第2干涉仪位置调整部4B、进行非球面透镜9的面偏差以及面偏斜的分析等的控制分 析部5。就上述第1干涉仪1A而言,如图2所示,具有第1干涉光学系统10A、第1干涉条 纹摄像系统20A以及第1对准摄像系统25A而构成。第1干涉光学系统10A构成菲索型的 光学系统配置,并具备以下部件而成输出高可干涉性的光束的光源部11A;对来自该光源 部11A的输出光的束直径进行放大的束径放大透镜12A ;将自该束径放大透镜12A的光束 朝向图中右方反射的光束分支光学元件13A ;对来自该光束分支光学元件13A的光束进行 准直的准直透镜14A ;将自该准直透镜14A的平面波的一部分在参照基准平面15Aa进行逆 向反射而形成第1参照光、使其余的沿测量光轴k透射的平面基准板15A ;将自该平面基准 板15A的光束转换成由球面波构成的第1测量光,并向第1透镜面91的中心部(包括上述 的第1脐点Pi的区域)进行照射的物镜18A,并且,按照通过将自第1透镜面91的反射光 与第1参照光进行合波而得到第1干涉光的方式构成。另外,上述平面基准板15A由具备压电元件16A的条纹扫描适配器17A保持,按照 在实施条纹扫描测量等时向测量光轴k方向微动的方式构成。并且,上述物镜18A构成为 能够从测量光轴U上退避。上述第1干涉条纹摄像系统20A是在测量非球面透镜9 (第1透镜面91)时进行 摄像的系统,并具备以下部件而成对透射光束分支光学元件13A、21A而向图中左方行进 的第1干涉光进行聚光的成像透镜22A ;具有由(XD或CMOS等构成的二维图像传感器24A 而成的摄像摄像机23A,并且按照取得由成像透镜22A在二维图像传感器24A上形成的干涉 条纹(第1干涉条纹)的图像数据的方式构成。上述对准摄像系统25A是在进行第1干涉仪1A和第2干涉仪1B的相对对准调整等时进行摄像的系统,并具备以下部件而成对由光束分支光学元件21A向图中下方反射 的光束进行聚光的成像透镜26A ;具有由(XD或CMOS等构成的二维图像传感器28A而成的 摄像摄像机27A。上述第2干涉仪1B具有与上述第1干涉仪1A相同的结构,并具有第2干涉光学 系统10B、第2干涉条纹摄像系统20B以及第2对准摄像系统25B而成。第2干涉光学系 统10B构成菲索型的光学系统配置,并具备以下部件而成输出高可干涉性光束的光源部 11B ;对来自该光源部11B的输出光的束直径进行放大的束径放大透镜12B ;将自该束径放 大透镜12B的光束朝向图中左方反射的光束分支光学元件13B ;对来自该光束分支光学元 件13B的光束进行准直的准直透镜14B ;将自该准直透镜14B的平面波的一部分在参照基 准平面15Ba进行逆向反射而形成第2参照光、使其余的沿测量光轴L2透射的平面基准板 15B ;将自该平面基准板15B的光束转换成由球面波构成的第2测量光,并向第2透镜面92 的中心部(包括上述的第2脐点P2的区域)照射的物镜18B,并且,按照通过将自第2透镜 面92的反射光与第2参照光进行合波而得到第2干涉光的方式构成。另外,上述平面基准板15B由具备压电元件16B的条纹扫描适配器17B保持,按照 在实施条纹扫描测量等时向测量光轴L2方向微动的方式构成。并且,上述物镜18B构成为 能够从测量光轴L2上退避。上述第2干涉条纹摄像系统20B是在测量非球面透镜9 (第2透镜面92)时进行 摄像的系统,并具备以下部件而成对透射光束分支光学元件13B、21B而向图中右方行进 的第2干涉光进行聚光的成像透镜22B ;具有由(XD或CMOS等构成的二维图像传感器24B 而成的摄像摄像机23B,并且按照取得由成像透镜22B在二维图像传感器24B上形成的干涉 条纹(第2干涉条纹)的图像数据的方式构成。上述对准摄像系统25B是在进行第1干涉仪1A和第2干涉仪1B的相对对准调整 等时进行摄像的系统,并具备以下部件而成;对由光束分支光学元件21B向图中下方反射 的光束进行聚光的成像透镜26B ;具有由(XD或CMOS等构成的二维图像传感器28B而成的 摄像摄像机27B。另一方面,如图1所示,上述被测体对准部3具备保持非球面透镜9的保持台 31 (本实施方式的被测面旋转机构);进行由该保持台31保持的非球面透镜9 (第1透镜面 91、第2透镜面92)对测量光轴LpL2的倾斜调整的透镜倾斜调整台32 ;进行相对于测量光 轴1^、1^2的非球面透镜9向图中左右方向及向垂直于纸面的方向的位置调整的透镜位置调 整台33。并且,如图1所示,上述第1干涉仪位置调整部4A具备以下部件而成将第1干涉 仪1A按照沿图中上下方向可移动的方式保持的第1Z架台41A ;经由该第1Z架台41A使第 1干涉仪1A沿图中左右方向及垂直于纸面的方向移动的第1XY架台42A ;经由该第1XY架 台42A及该第1Z架台41A进行第1干涉仪1A的倾斜调整的第1干涉仪倾斜调整台43A。同样地,上述第2干涉仪位置调整部4B具备以下部件而成将第2干涉仪1B按照 沿图中上下方向可移动的方式保持的第2Z架台41B ;经由该第2Z架台41B使第2干涉仪 1B沿图中左右方向及沿垂直于纸面的方向移动的第2XY架台42B ;经由该第2XY架台42B 以及该第2Z架台41B进行第2干涉仪1B的倾斜调整的第2干涉仪倾斜调整台43B。并且,就上述控制分析部5而言,其由计算机装置等构成,该计算机装置求出第1透镜面91及第2透镜面92的各中心部的形状数据(第1形状数据以及第2形状数据)、或 者控制上述被测体对准部3、第1干涉仪位置调整部4A以及第2干涉仪位置调整部4B的 各台的驱动;如图3所示,其具备由搭载于该计算机装置内的CPU或硬盘等的存储部以及存 储于该存储部的程序等构成的第1形状数据取得机构51A、第2形状数据取得机构51B、第 1轴线数据取得机构52A、第2轴线数据取得机构52B以及面偏差、面偏斜分析机构53而构 成。上述第1形状数据取得机构51A基于上述第1干涉条纹的图像数据,在第1干涉 仪1A设定的第1测量坐标系中,求出作为第1透镜面91的中心部的形状数据的第1形状 数据。上述第2形状数据取得机构51B基于上述第2干涉条纹的图像数据,在第2干涉 仪1B设定的第2测量坐标系中,求出作为第2透镜面92的中心部的形状数据的第2形状 数据。上述第1轴数据取得机构52A基于上述第1形状数据,在上述第1测量坐标系中, 求出上述第1脐点Pi的位置数据、该第1脐点Pi中的第1透镜面91的曲率中心即第1曲 率中心的位置数据、通过第1脐点Pi及第1曲率中心的第1轴线的位置数据。上述第2轴数据取得机构52B基于上述第2形状数据,在上述第2测量坐标系中, 求出上述第2脐点P2的位置数据、该第2脐点P2中的第2透镜面92的曲率中心即第2曲 率中心的位置数据、通过第2脐点P2以及第2曲率中心的第2轴线的位置数据。上述面偏差、面偏斜分析机构53基于由上述第1轴线数据取得机构52A以及上述 第2轴线数据取得机构52B求出的各位置数据、预先特定的上述第1测量坐标系和上述第 2测量坐标系的相对位置关系,求出非球面透镜9的面偏差以及面偏斜。以下,对本发明的一实施方式所涉及的非球面透镜测量方法进行说明。本实施方 式的非球面透镜测量方法使用上述非球面透镜测量装置来进行。(1)首先,进行第1干涉仪1A以及第2干涉仪1B的相对对准调整。该对准调整是 使第1干涉仪1A的测量光轴k和第2干涉仪1B的测量光轴L2相互一致的调整,由操作员 使用第1干涉仪位置调整部4A以及第2干涉仪位置调整部4B进行手动操作。其顺序(手 顺工序)简要如以下。<a>使第1干涉仪1A的物镜18A以及第2干涉仪1B的物镜18B分别从测量光轴 L上以及测量光轴L2上退避,将具有相互平行的2个光学平面(光学板)的平行平板夹具 (省略图示)配置在第1干涉仪1A和第2干涉仪1B之间(也可以使保持台31保持平行平 板夹具)。另外,在该配置阶段,进行粗调整,以使平行平板夹具的2个光学平面相对于测量 光轴LpL2尽量垂直。<b>从第1干涉仪1A向平行平板夹具的一方的光学平面照射平行光束,从该一方 的光学平面反射的反射光所形成的点像和来自参照基准平面15Aa的反射光所形成的点像 由对准摄像系统25A的摄像摄像机27A进行摄像,按照使这2个点像相互重叠的方式使用 第1干涉仪倾斜调整台43A调整第1干涉仪1A的倾斜。通过该倾斜调整,第1干涉仪1A的 测量光轴k相对于平行平板夹具的一方的光学平面成为垂直。另外,也可以代替这种方法, 从一方的光学平面反射的反射光与来自参照基准平面15Aa的反射光所形成的干涉条纹由 摄像摄像机23A进行摄像,按照使该干涉条纹成为零条纹状态的方式进行第1干涉仪1A的
10倾斜调整。<c>同样地,从第2干涉仪1B向平行平板夹具的另一方的光学平面照射平行光束, 从该另一方的光学平面反射的反射光所形成的点像和来自参照基准平面15Ba的反射光所 形成的点像由对准摄像系统25B的摄像摄像机27B进行摄像,按照使这2个点像相互重叠 的方式使用第2干涉仪倾斜调整台43B调整第2干涉仪1B的倾斜。通过该倾斜调整,第2 干涉仪1B的测量光轴L2相对于平行平板夹具的另一方的光学平面成为垂直,由此测量光 轴U、L2相互成为平行。另外,也可以代替这种方法,从另一方的光学平面反射的反射光和 来自参照基准平面15Ba的反射光所形成的干涉条纹由摄像摄像机23B进行摄像,按照使该 干涉条纹成为零条纹状态的方式进行第2干涉仪1B的倾斜调整。<d>代替上述平行平板夹具,在第1干涉仪1A和第2干涉仪1B之间配置光学上可 视作正圆球的正圆球夹具(省略图示)。<e>从第1干涉仪1A向正圆球夹具照射平面波,从该正圆球夹具反射的反射光和 来自参照基准平面15Aa的反射光所形成的干涉条纹(成为同心的环形状)由第1干涉条 纹摄像系统20A的摄像摄像机23A进行摄像,按照使测量光轴k位于该干涉条纹的中心的 方式适用第1Z架台41A以及第1XY架台42A调整第1干涉仪1A的位置。<f>同样地,从第2干涉仪1B向正圆球夹具照射平面波,从该正圆球夹具反射的反 射光和来自参照基准平面15Ba的参照光所形成的干涉条纹(成为同心的环形)由第2干 涉条纹摄像系统20B的摄像摄像机23B进行摄像,按照使测量光轴L2位于该干涉条纹的中 心的方式,使用第2Z架台41B以及第2XY架台42B调整第2干涉仪1B的位置。通过该位 置调整,测量光轴Lp L2相互一致。另外,即使进行这样的对准调整,各台的机械性精度等作为原因,不能使第1干涉 仪1A的测量光轴k和第2干涉仪1B的测量光轴L2完全一致的情况存在。这样的情况下, 求出测量光轴k和测量光轴L2的相对位置偏差以及倾斜偏差,并存储这些数据。(2)其次,将第1干涉仪1A的物镜18A以及第2干涉仪1B的物镜18B分别设置 在测量光轴k上以及测量光轴L2上,并且将非球面透镜9保持于保持台31,并进行相对于 第1干涉仪1A以及第2干涉仪1B的非球面透镜9的对准调整。该对准调整是用于使上述 第1脐点Pi以及第2脐点P2分别位于第1干涉仪1A的测量光轴k的附近以及第2干涉 仪1B的测量光轴L2的附近而进行的调整,由操作员通过使用透镜倾斜调整台32以及透镜 倾斜调整台33来进行手动操作。(3)接着,从第1干涉仪1A向第1透镜面91的中心部照射第1测量光,该第1测 量光的来自第1透镜面91的返回光与第1参照光的光干涉所形成的第1干涉条纹的图像 数据由摄像摄像机23A获得(第1干涉条纹取得步骤)。(4)同样地,从第2干涉仪1B向第2透镜面92的中心部照射第2测量光,该第2 测量光的来自第2透镜面92的返回光与第2参照光的光干涉所形成的第2干涉条纹的图 像数据由摄像摄像机23B获得(第2干涉条纹取得步骤)。(5)其次,基于上述第1干涉条纹的图像数据,在第1干涉仪1A所设定的第1测 量坐标系中,求出第1透镜面91的中心部的形状数据即第1形状数据(参照图5)(第1形 状数据取得步骤)。该处理由图3所示的第1形状数据取得机构51A进行。另外,图5 9 所示的第1透镜面91d示意性表示由第1形状数据构筑的被视觉化的第1透镜面91的中心部的形状。(6)同样地,基于上述第2干涉条纹的图像数据,在第2干涉仪1B设定的第2测量 坐标系中,求出第2透镜面92的中心部的形状数据即第2形状数据(参照图10)(第2形 状数据取得步骤)。该处理由图3所示的第2形状数据取得机构51B进行。另外,图10 14所示的第2透镜面92d示意性表示由第2形状数据构筑的被视觉化的第2透镜面92的 中心部的形状。在此,对上述第1测量坐标系以及第2测量坐标系进行说明。如图5 9所示,第 1测量坐标系是具有相互正交的X轴、Y轴、Z轴的3维正交坐标系,按照Z轴与第1干涉仪 1A的测量光轴k成为平行的方式设定。另一方面,如图10 14所示,第2测量坐标系是 具有相互正交的U轴、V轴、W轴的3维正交坐标系,按照W轴与第2干涉仪1B的测量光轴 L2成为平行的方式设定。并且,如图15所示,第1测量坐标系和第2测量坐标系的相对位 置关系,在对准调整成测量光轴k和测量光轴L2完全一致的情况下,按照X轴和U轴以及 Y轴和V轴分别成为相互平行(X轴以及U轴的各方向相互相同,Y轴以及V轴的各方向相 互相反)、以使Z轴和W轴位于同一直线上(方向相互相反)的方式设定。另外,在测量光 轴k以及测量光轴L2相互不一致,并在它们间产生相对位置偏差以及倾斜偏差的情况下, 与此相应也产生第1测量坐标系和第2坐标系的相对位置关系的偏差。即,在测量光轴U 和测量光轴L2的相对位置偏差以及倾斜偏差存在的情况下,这些偏差由上述(1)的顺序求 出,并基于此,将第1测量坐标系和第2测量坐标系的相对位置关系进行特定(特定确定) 并存储。(7)接着,基于上述第1形状数据,在上述第1测量坐标系中求出第1透镜面91的 第1脐点Pi的位置数据、该第1脐点Pi中的第1曲率中心的位置数据、通过该第1脐点Pi 以及第1曲率中心的第1轴线的位置数据(第1轴线数据取得步骤)。该处理由图3所示 的第1轴线数据取得机构52A以以下的顺序进行。<a>首先,如图6所示,将切断第1透镜面91d的第1个第1切断平面S1A在数据上 进行设定。在本实施方式中,第1个第1切断平面S1A按照在\ = \的位置相对于X轴垂 直的方式设定。<b>其次,将第1个第1切断平面S1A和第1透镜面91d的交线求出作为第1个第1 剖面曲线C1A(参照图6)。本实施方式中,通过将第1个第1切断平面S1A和第1透镜面91d 的交线以高次多项式进行曲线拟合来求出第1个第1剖面曲线C1A。另外,若将第1透镜面 91d由下式(A1)表示,则第1个第1剖面曲线C1A由下式(A2)表示。数1= (X,Y) ......(Al)ZJX=X| =f1(X1,Y)……(A 2)<c>接着,将在第1个第1剖面曲线C1A中曲率取极值的点(曲率的微分值成为0 的点)作为第1个拟第1脐点Q1A求出。另外,第1个第1剖面曲线C1A的曲率由下式(A3) 表不。数2
<d>之后,如图7所示,将切断第1透镜面91d的第2个第1切断平面S1B按照垂直 于第1个第1切断平面S1A的方式设定。在本实施方式中,将第2个第1切断平面S1B设定 成包括第1个拟第1脐点Q1A的坐标值(&、Y:)、且相对于Y轴成为垂直。<e>接着,将第2个第1切断平面S1B和第1透镜面91d的交线作为第2个第1剖 面曲线C1D求出(参照图7)。在本实施方式中,通过将第2个第1切断平面S1B和第1透镜 面91d的交线以高次多项式进行曲线拟合来求出第2个第1剖面曲线C1B。另外,第2个第 1剖面曲线C1B由下式(A4)表示。数3
<f>其次,将在第2个第1剖面曲线C1B中曲率取极值的点作为第2个拟第1脐点 Q1B(坐标值(X2、Yi))求出。另外,第2个第1剖面曲线C1B的曲率由下式(A5)表示。数4K,|y=Y =-~~fi (X,Y1) ...... (A 5)
1Y 1 (l+^ttj」2)"2<g>之后,如图8所示,将切断第1透镜面91d的第3个第1切断平面Sie按照垂直 于第2个第1切断平面S1B的方式设定。在本实施方式中,第3个第1切断平面Sie设定成 包括第2个拟第1脐点Q1B的坐标值(X2、Y:)、且相对于X轴成为垂直。<h>其次,将第3个第1切断平面Sie和第1透镜面91d的交线作为第3个(最终 的)第1剖面曲线Cie求出(参照图8)。在本实施方式中,通过将第3个第1切断平面Sie 和第1透镜面91d的交线以高次多项式进行曲线拟合来求出第3个第1剖面曲线Cie。另 外,第3个第1剖面曲线Cie由下式(A6)表示。数5Z1U2=f1(X2,Y)……(A6)<i>接着,将在第3个第1剖面曲线Cie中曲率取极值的点作为第3个(最终的) 拟第1脐点Qie(设为坐标值(X2、Y2))求出,将这个视为上述第1脐点Pi而取得其位置数 据。另外,第3个第1剖面曲线Cie的曲率由下式(A7)表示。数6……(A7)<j>而且,如图9所示,将第3个拟第1脐点Q1C的曲率中心作为上述的第1脐 点Pi中的第1透镜面91的第1曲率中心(以下,称为“第1曲率中心0广)求出,并且将通 过第3个拟第1脐点Qie及第1曲率中心Oi的直线作为第1轴线Bi (相当于上述第1旋转 轴~)求出,并取得这些位置数据。另外,第3个拟第1脐点Qie的曲率半径由下式(A8)表
7J\ o数7
13
(8)同样地,基于上述第2形状数据,在上述第2测量坐标系中求出第2透镜面92 的第2脐点P2的位置数据、该第2脐点P2中的第2曲率中心的位置数据、通过该第2脐点 P2以及第2曲率中心的第2轴线的位置数据(第2轴线数据取得步骤)。该处理由图3所 示的第2轴线数据取得机构52B以以下的顺序进行。<a>首先,如图11所示,将切断第2透镜面92d的第1个第2切断平面S2A在数据 上进行设定。在本实施方式中,第1个第2切断平面S2A按照在U = Ui的位置相对于U轴 垂直的方式设定。<b>其次,将第1个第2切断平面S2A和第2透镜面92d的交线作为第1个第2剖 面曲线C2A求出(参照图11)。本实施方式中,通过将第1个第2切断平面S2A和第2透镜 面92d的交线以高次多项式进行曲线拟合来求出第1个第2剖面曲线C2A。另外,若将第2 透镜面92d由下式(B1)表示,则第1个第2剖面曲线C2A由下式(B2)表示。数8
<c>接着,将在第1个第2剖面曲线C2A中曲率取极值的点(曲率的微分值成为0 的点)作为第1个拟第2脐点Q2A求出。另外,第1个第2剖面曲线C2A的曲率由下式(B3) 表不。数9
<d>之后,如图12所示,将切断第2透镜面92d的第2个第2切断平面S2B按照垂 直于第1个第2切断平面S2A的方式设定。在本实施方式中,第2个第2切断平面S2B设定 成包括第1个拟第2脐点Q2A的坐标值饥、、且相对于V轴成为垂直。<e>接着,将第2个第2切断平面S2B和第2透镜面92D的交线作为第2个第2剖 面曲线C2B求出(参照图12)。在本实施方式中,通过将第2个第2切断平面S2B和第2透 镜面92d的交线以高次多项式进行曲线拟合来求出第2个第2剖面曲线C2B。另外,第2个 第2剖面曲线C2B由下式(B4)表示。数10Z2|V=V| 二乓⑴、)……(B4)<f>其次,将在第2个第2剖面曲线C2B中曲率取极值的点作为第2个拟第2脐点 Q2B(设为坐标值(U2、v》)求出。另外,第2个第2剖面曲线C2B的曲率由下式(B5)表示。数11
fJU,^)
<g>之后,如图13所示,将切断第2透镜面92d的第3个第2切断平面S2e按照垂 直于第2个第2切断平面S2B的方式设定。在本实施方式中,第3个第2切断平面S2e设定 成包括第2个拟第2脐点Q2B的坐标值(U2、、且相对于U轴成为垂直。<h>其次,将第3个第2切断平面S2e和第2透镜面92d的交线作为第3个(最终 的)第2剖面曲线C2e求出(参照图13)。在本实施方式中,通过将第3个第2切断平面S2e 和第2透镜面92d的交线以高次多项式进行曲线拟合来求出第3个第2剖面曲线C2e。另 外,第3个第2剖面曲线C2e由下式(B6)表示。数12
<i>接着,将在第3个第2剖面曲线C2c中曲率取极值的点作为第3个(最终的) 拟第2脐点Q2e(设为坐标值U2、V2)求出,将这个视为上述第2脐点P2而取得其位置数据。 另外,第3个第2剖面曲线C2e的曲率由下式(B7)表示。数13
I _ f;(U2’V) …… <j>而且,如图14所示,将第3个拟第2脐点Q2e的曲率中心02作为上述的第2脐 点P2中的第2透镜面92的第2曲率中心(以下,称为“第2曲率中心02”)求出,并且将通 过第3个拟第2脐点Q2e以及第2曲率中心02的直线作为第2轴线B2 (相当于上述第2旋 转轴A2)求出,并取得这些位置数据。另外,第3个拟第2脐点Q2e的曲率半径由下式(B8) 表不。数14
(9)其次,基于由上述(7)的顺序求出的第3个拟第1脐点Qie(第1脐点PD、第 1曲率中心以及第1轴线Bi的各位置数据、由上述(8)的顺序求出的第3个拟第2脐点 Q2e(第2脐点P2)、第2曲率中心02以及第2轴线B2的各位置数据、由上述(6)的顺序预先 特定的第1测量坐标系和第2测量坐标系的相对位置关系,求出非球面球透镜9的面偏差 以及面偏斜(面偏差、面偏斜分析步骤)。该处理由如图3所示的面偏差、面偏斜分析机构 53以以下的顺序进行。<a>首先,基于第1测量坐标系和第2测量坐标系的相对位置关系,将在第2测量 坐标系求出的第3个拟第2脐点Q2e(第2脐点P2)、第2曲线中心02以及第2轴线B2的各 位置数据转换成共同的坐标系(例如,第1测量坐标系)的各位置数据(参照图16)。另 外,在图16中,为了简略化,二维表示各位置的相对关系。<b>其次,将第1曲率中心Oi和第2曲率中心02的在垂直于Z轴的方向上的位置 偏差作为非球面透镜9的面偏差(将位置偏差的方向作为面偏差方向、将位置偏差的量作 为面偏差量)计算。<c>并且,将第1轴线Bi和第2轴线B2的相对倾斜作为非球面透镜9的面偏斜(将相对于第2轴线B2的第1轴线Bi的倾斜方向作为面偏斜方向、将倾斜角度作为面偏斜
量)计算O以上,对本发明的一实施方式进行了说明,但本发明不限于上述的实施方式,可进 行各种方式变更。例如,在上述的实施方式中,将切断第1透镜面91d的第1切断平面(S1A Sie)在 数据上进行假设设定、并将该第1切断平面(S1A Sie)和该第1透镜面91d的交线作为第1 剖面曲线(C1A Cie)求出之处理,和将切断第2透镜面92d的第2切断平面(S2A S2e)在 数据上进行假设设定、并将该第2切断平面(S2A S2e)和该第2透镜面92d的交线作为第 2剖面曲线(C2A C2e)求出之处理,各按3次进行实施,但也可以以2次就结束或实施4次 以上。并且,也可以将上述的第1轴线数据取得步骤的顺序变更为图17所示的顺序。即, 在上述实施方式中,将第2个第1切断平面S1B按照相对于Y轴垂直的方式设定,但也可以 如图17所示,按照包括第1个拟第1脐点Q1A的第1个第1剖面曲线C1A的法线矢量ni的 方式,对第2个第1切断平面S' 1B进行设定。此时,将该第2个第1切断平面S' 1B和第 1透镜面91D的交线作为第2个第1剖面曲线C' 1B,将在该第2个第1剖面曲线C'⑶中 曲率取极值的点作为第2个拟第1脐点Q'砠求出,并将该第2个拟第1脐点Q' 1B的曲率 中心作为第1曲率中心0'工求出,且将通过第2个拟第1脐点Q' 1B及第1曲率中心0'工 的直线作为第1轴线B'工求出也可。同样地,也可以将上述的第2轴线数据取得步骤的顺序变更为图18所示的顺序。 即,在上述实施方式中,将第2个第2切断平面S2B按照相对于V轴垂直的方式设定,但也可 以如图18所示,按照包括第1个拟第2脐点Q2A中的第1个第2剖面曲线C2A的法线矢量n2 的方式,对第2个第2切断平面S' 2B进行设定,此时,将该第2个第2切断平面S' 2B和第 2透镜面92D的交线作为第2个第2剖面曲线C' 2B,将在该第2个第2剖面曲线C' 2B中 曲率取极值的点作为第2个拟第2脐点Q'皿求出,且将该第2个拟第2脐点Q' 2B的曲率 中心作为第2曲率中心0 2求出,并将通过第2个拟第2脐点Q' 2B及第2曲率中心0' 2 的直线作为第2轴线B' 2求出也可。并且,如图2所示,在上述实施方式中,从第1干涉仪1A向第1透镜面91照射的 第1测量光和从第2干涉仪1B向第2透镜面92照射的第2测量光设成球面波,但也可以 将物镜18A、18B取出后将平行光束(平面波)作为第1测量光以及第2测量光进行使用。另外,也可以将具备参镜式或迈克尔逊式对物光学系统的显微干涉仪作为第1干 涉仪以及第2干涉仪使用。该方式在测量对象的非球面透镜较小之际是有效的。并且,在上述实施方式中,对成为测量对象的非球面透镜9不具有锷状平面部的 情况进行了说明,但本发明也可以应用于具有锷状平面部的非球面透镜的面偏差以及面偏 斜的测量。并且,在上述实施方式中,将作为测量对象的非球面体设成非球面透镜,但本发明 可以将具有由旋转对称的非球面构成的2个镜面的非球面镜设成测量对象。此时,能够预 测出各镜面的反射率变高,所以据此要求调整参照基准平面15Aa、15Ba的反射、透射率。例 如,各镜面的反射率为100%时,将参照基准平面15Aa、15Ba设定成反射率50% (透射率 50% )左右。
另外,本发明使用2个干涉仪进行测量,但若利用本发明的技术思想,则也可以容 易想到代替干涉仪而使用其他的测量装置(例如,使用接触式或者非接触式探头的形状测 量装置或干扰条纹形状测量装置)的测量方法或装置。
权利要求
一种非球面体测量方法,对非球面体的面偏差及面偏斜进行测量,该非球面体通过具有由旋转对称的非球面构成的第1被测面及第2被测面而成,其特征在于,所述非球面体测量方法通过包括以下步骤作为测量工序而成第1干涉条纹取得步骤,使用第1干涉仪对所述第1被测面的中心部照射第1测量光,且取得由该第1测量光的来自该第1被测面的返回光和第1参照光之光干涉所形成的第1干涉条纹的图像数据;第2干涉条纹取得步骤,使用第2干涉仪对所述第2被测面的中心部照射第2测量光,且取得由该第2测量光的来自该第2被测面的返回光和第2参照光之光干涉所形成的第2干涉条纹的图像数据;第1形状数据取得步骤,基于所述第1干涉条纹的图像数据,在所述第1干涉仪所设定的第1测量坐标系中,求出所述第1被测面的中心部的形状数据即第1形状数据;第2形状数据取得步骤,基于所述第2干涉条纹的图像数据,在所述第2干涉仪所设定的第2测量坐标系中,求出所述第2被测面的中心部的形状数据即第2形状数据;第1轴线数据取得步骤,基于所述第1形状数据,在所述第1测量坐标系中,求出所述第1被测面的脐点即第1脐点的位置数据、该第1脐点中的该第1被测面的曲率中心即第1曲率中心的位置数据、通过该第1脐点及该第1曲率中心的第1轴线的位置数据;第2轴线数据取得步骤,基于所述第2形状数据,在所述第2测量坐标系中,求出所述第2被测面的脐点即第2脐点的位置数据、该第2脐点中的该第2被测面的曲率中心即第2曲率中心的位置数据、通过该第2脐点及该第2曲率中心的第2轴线的位置数据;面偏差、面偏斜分析步骤,基于在所述第1轴线数据取得步骤及所述第2轴线数据取得步骤中所求出的各位置数据、和预先所确定的所述第1测量坐标系与所述第2测量坐标系的相对位置关系,求出所述面偏差及所述面偏斜。
2.如权利要求1所述的非球面体测量方法,其特征在于,所述第1轴线数据取得步骤中,关于将所述第1被测面切断的第1切断平面进行假设 设定、且将该第1切断平面和该第1被测面之交线作为第1剖面曲线求出的处理,第1次是 在任意位置设定最初的第1切断平面而进行,第2次以后是在将之前所求出的第1剖面曲 线中曲率取极值的点作为拟第1脐点求出之后,将其次的第1切断平面按照在该拟第1脐 点与之前的第1切断平面垂直地相交的方式设定,由此至少进行2次,并且将最终所求出的 第1剖面曲线的拟第1脐点设为所述第1脐点。
3.如权利要求2所述的非球面体测量方法,其特征在于,所述第2轴线数据取得步骤中,关于将所述第2被测面切断的第2切断平面进行假设 设定、且将该第2切断平面和该第2被测面的交线作为第2剖面曲线求出的处理,第1次是 在任意位置设定最初的第2切断平面而进行,第2次以后是在将之前所求出的第2剖面曲 线中曲率取极值的点作为拟第2脐点求出之后,将其次的第2切断平面按照在该拟第2脐 点与之前的第2切断平面垂直地相交的方式设定,由此至少进行2次,并且将最终所求出的 第2剖面曲线的拟第2脐点设为所述第2脐点。
4.如权利要求1至3中的任一项所述的非球面体测量方法,其特征在于, 所述非球面体是非球面透镜。
5.一种非球面体测量装置,对非球面体的面偏差及面偏斜进行测量,该非球面体通过具有由旋转对称的非球面构成的第1被测面及第2被测面而成,其特征在于, 所述非球面体测量装置通过具备以下部件而成第1干涉仪,对所述第1被测面的中心部照射第1测量光,得到由该第1测量光的来自 该第1被测面的返回光和第1参照光之光干涉所形成的第1干涉条纹的图像数据;第2干涉仪,对所述第2被测面的中心部照射第2测量光,得到由该第2测量光的来自 该第2被测面的返回光和第2参照光之光干涉所形成的第2干涉条纹的图像数据;第1形状数据取得机构,基于所述第1干涉条纹的图像数据,在所述第1干涉仪所设定 的第1测量坐标系中,求出所述第1被测面的中心部的形状数据即第1形状数据;第2形状数据取得机构,基于所述第2干涉条纹的图像数据,在所述第2干涉仪所设定 的第2测量坐标系中,求出所述第2被测面的中心部的形状数据即第2形状数据;第1轴线数据取得机构,基于所述第1形状数据,在所述第1测量坐标系中,求出所述 第1被测面的脐点即第1脐点的位置数据、该第1脐点中的该第1被测面的曲率中心即第 1曲率中心的位置数据、通过该第1脐点及该第1曲率中心的第1轴线的位置数据;第2轴线数据取得机构,基于所述第2形状数据,在所述第2测量坐标系中,求出所述 第2被测面的脐点即第2脐点的位置数据、该第2脐点中的该第2被测面的曲率中心即第 2曲率中心的位置数据、通过该第2脐点及该第2曲率中心的第2轴线的位置数据;面偏差、面偏斜分析机构,基于由所述第1轴线数据取得机构及所述第2轴线数据取得 机构所求出的各位置数据、和预先所确定的所述第1测量坐标系与所述第2测量坐标系的 相对位置关系,求出所述面偏差以及所述面偏斜。
全文摘要
本发明提供一种非球面体测量方法及装置,即使在成为测量对象的非球面体不具有锷状的平面部的情况下,也能够高精度测量面偏差以及面偏斜。通过使用第1干涉仪(1A)和第2干涉仪(1B)的光干涉仪测量,求出非球面透镜(9)的第1透镜面(91)以及第2透镜面(92)的各中心部的形状数据,根据各自的形状数据,在第1测量坐标系中求出第1透镜面(91)的第1脐点(P1)、第1曲率中心以及第1轴线的各位置数据,并且在第2测量坐标系中求出第2透镜面(92)的第2脐点(P2)、第2曲率中心以及第2轴线的各位置数据。基于这些各位置数据、第1测量坐标系以及第2测量坐标系的相对位置关系,求出非球面透镜(9)的面偏差以及面偏斜。
文档编号G01B11/24GK101922920SQ20101018915
公开日2010年12月22日 申请日期2010年5月24日 优先权日2009年6月8日
发明者孙萍, 葛宗涛 申请人:富士能株式会社
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1