Ngso卫星地球探测系统对深空探测系统的干扰确定方法

文档序号:6025245阅读:214来源:国知局
专利名称:Ngso卫星地球探测系统对深空探测系统的干扰确定方法
技术领域
本发明涉及一种NGSO (非地球静止轨道)卫星地球探测系统对深空探测系统使用相同频率的干扰确定方法,适用于气象、海洋、资源、环境等NGSO卫星地球探测系统与火星探测、金星探测等深空探测系统之间的干扰确定。
背景技术
根据无线电频率使用的国际规则要求,深空探测指对距离地球表面200万公里外的天体目标进行探测,由于其距离远、信号传播路径长,导致其信号非常微弱,对外来干扰极其敏感。同时,随着当今卫星地球探测及近地空间探测等业务的蓬勃发展,各种相关无线电业务的卫星系统不断增多,对相应卫星系统在深空探测专用频段内产生干扰的可能性和干扰程度进行评估就变得日益重要。
干扰判断准则和干扰确定方法是进行上述评估的必要技术基础。
在干扰判断准则方面,国际电联已提出了对深空探测业务系统在相应无线电频段内的保护标准,即
1)对深空探测地球站的保护标准
-222dB (ff/Hz),(适用频段:2GHz 附近);
-22 IdB (ff/Hz),(适用频段:8GHz 附近);
-220dB (ff/Hz),(适用频段13GHz 附近);
-217dB (ff/Hz),(适用频段32GHz 附近);
2)对深空探测器的保护标准
-193dB(ff/20Hz),(适用频段:2GHz 附近);
-190dB (ff/20Hz),(适用频段7GHz 附近);
-186dB (ff/20Hz),(适用频段:17GHz 附近);
-183dB (ff/20Hz),(适用频段:34GHz 附近);
至于干扰确定方法方面,目前国际上的研究主要集中在GSO卫星系统之间的干扰评估方法,并形成了协调弧、ΔΤ/Τ、C/I等较为成熟的干扰确定方法,但这类方法不适用于时变系统之间的干扰分析。
由于发射深空探测系统目前仍局限于极少数宇航业务领域较发达国家,在我国该业务如火星探测等项目也仅处于刚刚起步阶段,各项研究主要集中在关键技术突破、系统任务实现和实验验证等方面,而对来自其他NGSO卫星系统的同频干扰问题的研究则十分薄弱,尤其在干扰确定方法方面,目前国际上并没有统一而权威的方法,基本处于空白状态。本发明正是基于上述背景,为了解决如何确定NGSO卫星地球探测系统对深空探测系统在相应频段内的干扰提出的方法。发明内容
本发明的技术解决问题克服现有技术的不足,提供一种NGSO卫星地球探测系统对深空探测系统的干扰确定方法,能够实现对NGSO卫星地球探测系统对深空探测系统在相应频段内可能产生的干扰准确的判断,从而对提高深空探测系统的抗干扰能力,并且工程实现容易。
本发明技术解决方案NGS0卫星地球探测系统对深空探测系统的同频干扰确定方法,其特点在于步骤如下
第一步,明确两个时变系统,即NGSO卫星地球探测系统和深空探测系统的轨迹参数
NGSO卫星地球探测系统和深空探测系统的轨迹参数包括历元时刻、卫星轨道高度、轨道倾角、升交点赤经、近地点幅角、真近点角和椭圆轨道的偏心率;其中,历元时刻的选取与两个时变系统的轨迹参数初始状态直接相关,对干扰技术结果有直接影响,通常选取卫星系统进入轨道的时间起点;
第二步,统一两个时变系统的参照系
将深空探测器的轨迹参数使用地心坐标系坐标来表示,得到两个时变系统的空间位置信息,即方位角、仰角和距离
第三步,明确两个时变系统的性能参数
所述性能参数包括卫星发射和接收系统特性、地球站发射和接收系统特性、载波功率特性、频率范围、地球站站址、业务链路特性及通信系统保护门限要求;
第四步,确定干扰分析关注的时间弧段
NGSO卫星地球探测系统对深空探测系统的干扰链路建立时间,与深空探测系统被干扰链路建立时间的重合部分,即为干扰分析过程中关注的时间弧段;
第五步,确定干扰分析总时间及采样频度
NGSO卫星地球探测系统和深空探测系统同时在轨的工作时刻为时间起点,NGSO 卫星地球探测系统和深空探测系统的一方中卫星系统的寿命到期为时间终点,即干扰分析总时间;采样频度根据能够捕捉到的干扰发生数量决定;
第六步,确定干扰链路上的发射和接收增益及干扰链路距离长度
根据第五步确定的干扰分析总时间及采样频度,得到两个时变系统对应于干扰分析总时间内相应采样频度确定的每一时刻的空间位置信息,求得NGSO卫星地球探测系统对深空探测系统干扰链路上的发射和接收增益及干扰链路距离长度;
第七步,确定被干扰链路接收系统的功率谱密度
根据第六步计算得到的干扰链路上的发射和接收增益及干扰链路距离长度,通过传输方程计算相应采样频度确定的每一时刻的干扰信号到达被干扰链路接收系统,即卫星或地球站的功率谱密度;
第八步,确定同频干扰
根据被干扰链路接收系统的干扰保护标准,即可接受的干扰信号的功率谱密度的限值,将第七步计算得到的功率谱密度与限值要求做比较,若超过限值要求则说明该采样频度确定的时刻存在不可接受的干扰。
所述第一步中,历元时刻的选取与所述两个时变系统的轨道参数初始状态直接相关,对干扰技术结果有直接影响,通常选取卫星系统进入轨道的时间起点。
本发明与现有技术相比的优点在于通过本发明上述干扰确定方法,可以实现对NGSO卫星地球探测系统对深空探测系统在相应频段内可能产生的干扰进行准确的判断。例如,对干扰发生的频度、干扰持续时间、干扰强度及对整个深空探测系统在一定保护标准之下的干扰发生的时间百分比等得到数字化的评估结果,对NGSO卫星地球探测系统的干扰抑制要求提供指导性参考,从而对提高深空探测系统的抗干扰能力;本发明填补了国际上关于NGSO卫星地球探测系统与深空探测系统之间干扰确定方法的空白,并且工程实现容易ο


图1为NGSO卫星地球探测系统与深空探测系统之间干扰确定方法的流程图2为NGSO卫星地球探测系统对火星探测地球站接收系统的干扰模型示意图3为火星探测系统地球站接收天线旁瓣模式示意图。
具体实施方式
如图1所示,本发明具体实现步骤如下
第一步,明确两个时变系统的轨迹参数。NGSO卫星地球探测系统和深空探测系统的轨迹参数包括历元时刻、卫星轨道高度、轨道倾角、升交点赤经、近地点幅角、真近点角和椭圆轨道的偏心率。其中,历元时刻的选取与两个时变系统的轨迹初始状态直接相关,对干扰技术结果有直接影响,通常选取卫星系统进入轨道的时间起点。历元时刻的选取与所述两个时变系统的轨道参数初始状态直接相关,对干扰技术结果有直接影响,通常选取卫星系统进入轨道的时间起点。
第二步,统一两个时变系统的参照系
将深空探测器的轨迹参数使用地心坐标系坐标来表示,得到两个时变系统的空间位置信息,即方位角、仰角和距离。
第三步,明确两个时变系统的性能参数
所述性能参数包括卫星发射和接收系统特性、地球站发射和接收系统特性、载波功率特性、频率范围、地球站站址、业务链路特性及通信系统保护门限要求。
第四步,确定干扰分析关注的时间弧段
NGSO卫星地球探测系统对深空探测系统的干扰链路建立时间,与深空探测系统被干扰链路建立时间的重合部分,即为干扰分析过程中关注的时间弧段。
第五步,确定干扰分析总时间及采样频度
NGSO卫星地球探测系统和深空探测系统同时在轨的工作时刻为时间起点,NGSO 卫星地球探测系统和深空探测系统的一方中卫星系统的寿命到期为时间终点,即干扰分析总时间;采样频度根据能够捕捉到的干扰发生数量决定。
第六步,确定干扰链路上的发射和接收增益及干扰链路距离长度
根据第五步确定的干扰分析总时间及采样频度,得到两个时变系统对应于干扰分析总时间内相应采样频度确定的每一时刻的空间位置信息,求得NGSO卫星地球探测系统对深空探测系统干扰链路上的发射和接收增益及干扰链路距离长度。
第七步,确定被干扰链路接收系统的功率谱密度
根据第六步计算得到的干扰链路上的发射和接收增益及干扰链路距离长度,通过传输方程计算相应采样频度确定的每一时刻下的干扰信号到达被干扰链路接收系统,即卫星或地球站的功率谱密度。
式一PSD = P+G ( θ ) +G0 ( Φ) -FSL-IOlog10 (Bffla)
其中,
P—干扰信号的发射功率,dBW;
G( θ )—干扰信号在被干扰链路接收方向的天线增益,dBi ;
60(Φ)——被干扰链路接收系统在干扰信号方向的接收增益,dBi ;
FSL——干扰信号到达被干扰链路接收系统的自由空间传播路径损失,dB ;
Bffla——干扰信号载波带宽,Hz。
第八步,确定同频干扰
根据被干扰链路接收系统的干扰保护标准,即可接受的干扰信号的功率谱密度的限值,将第七步计算得到的功率谱密度与限值要求做比较,若超过限值要求则说明该采样频度确定的时刻存在不可接受的干扰。
下面以NGSO卫星地球探测系统和火星探测系统下行业务(空对地方向)在 8400-8450GHZ频段的干扰确定方法为例,对本发明做进一步说明。
实施例1
NGSO卫星地球探测系统对火星探测地球站接收系统的干扰模型示意图如图2所示。其中,卫星地球探测系统地球站接收来自卫星地球探测系统的传输信号,深空探测系统地球站接收来自深空探测系统的传输信号。由于卫星地球探测系统发射天线在深空探测系统地球站方向也有一定的增益,从而导致干扰信号被深空探测系统地球站接收。使用本发明方法确定这一干扰。
1.明确两个卫星系统的轨迹参数
NGSO卫星地球探测系统和火星探测系统轨迹参数如表1所示。
表1 NGSO卫星地球探测系统与火星探测系统轨迹参数
权利要求
1.NGSO卫星地球探测系统对深空探测系统的干扰确定方法,其特征在于步骤如下 第一步,明确两个时变系统,即NGSO卫星地球探测系统和深空探测系统的轨迹参数 NGSO卫星地球探测系统和深空探测系统的轨迹参数包括历元时刻、卫星轨道高度、轨道倾角、升交点赤经、近地点幅角、真近点角和椭圆轨道的偏心率; 第二步,统一两个时变系统的参照系将深空探测器的轨迹参数使用地心坐标系坐标来表示,得到两个时变系统的空间位置信息,即方位角、仰角和距离第三步,明确两个时变系统的性能参数所述性能参数包括卫星发射和接收系统特性、地球站发射和接收系统特性、载波功率特性、频率范围、地球站站址、业务链路特性及通信系统保护门限要求; 第四步,确定干扰分析关注的时间弧段NGSO卫星地球探测系统对深空探测系统的干扰链路建立时间,与深空探测系统链路建立时间的重合部分,即为干扰分析过程中关注的时间弧段; 第五步,确定干扰分析总时间及采样频度NGSO卫星地球探测系统和深空探测系统同时在轨的工作时刻为时间起点,NGSO卫星地球探测系统和深空探测系统的一方中卫星系统的寿命到期为时间终点,即干扰分析总时间;采样频度根据能够捕捉到的干扰发生数量决定;第六步,确定干扰链路上的发射和接收增益及干扰链路距离长度根据第五步确定的干扰分析总时间及采样频度,得到两个时变系统对应于干扰分析总时间内相应采样频度确定的每一时刻的空间位置信息,求得NGSO卫星地球探测系统对深空探测系统干扰链路上的发射和接收增益及干扰链路距离长度; 第七步,确定被干扰链路接收系统的功率谱密度根据第六步计算得到的干扰链路上的发射和接收增益及干扰链路距离长度,计算相应采样频度确定的每一时刻的干扰信号到达被干扰链路接收系统,即卫星或地球站的功率谱密度;第八步,确定同频干扰根据被干扰链路接收系统的干扰保护标准,即可接受的干扰信号的功率谱密度的限值,将第七步计算得到的功率谱密度与限值要求做比较,若超过限值要求则说明该采样频度确定的时刻存在不可接受的干扰。
2.根据权利要求1所述的NGSO卫星地球探测系统对深空探测系统的干扰确定方法,其特征在于所述第一步中,历元时刻的选取与所述两个时变系统的轨迹参数初始状态直接相关,对干扰技术结果有直接影响,通常选取卫星系统进入轨道的时间起点。
全文摘要
NGSO卫星地球探测系统对深空探测系统的干扰确定方法,步骤为明确两个时变系统的轨迹参数;统一两个时变系统的参照系;明确双方卫星系统性能参数;确定干扰分析关注的时间弧段;确定干扰分析总时间及采样频度;分别得到两个时变系统对应于干扰时间弧段内每一采样时刻的空间位置信息,求得干扰链路方向上的发射和接收增益,以及干扰链路距离长度;计算得到每个采样时刻干扰信号到达被干扰链路接收系统的功率谱密度;结合国际干扰保护标准确定同频干扰。本发明能够实现对NGSO卫星地球探测系统对深空探测系统在相应频段内可能产生的干扰准确的判断,从而对提高深空探测系统的抗干扰能力,并且工程实现容易。
文档编号G01V13/00GK102520461SQ20111041236
公开日2012年6月27日 申请日期2011年12月8日 优先权日2011年12月8日
发明者孙茜, 李辉 申请人:中国空间技术研究院
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1