电流传感器的制作方法

文档序号:5938736阅读:104来源:国知局
专利名称:电流传感器的制作方法
技术领域
本发明涉及在较广的测定范围内高精度且低消耗功率的电流传感器。
背景技术
例如,电动车、混合动力(电和汽油并用)车的发动机驱动用的电流的大小由电流传感器测定。此外,在发动机 驱动用电池中,通过由电流传感器来探测从电池输出输入的电流量,从而来进行电池剩余量管理。作为该电流传感器,存在磁场比例式电流传感器和磁平衡式电流传感器。在磁场比例式电流传感器中,由于在磁体磁芯中产生的磁力线而在磁芯间隙(gap)通过与被测定电流成比例的磁场,磁检测元件将该磁场转换成电压信号,并产生与被测定电流成比例的输出电压。另一方面,在磁平衡式电流传感器中,如果流过被测定电流,则由于与电流相应的磁场而在磁检测兀件中产生输出电压,将从该磁检测兀件输出的电压信号转换为电流,并将其反馈至反馈线圈(feedback coil)。并且,磁平衡式电流传感器按照使由于该反馈线圈而产生的磁场(中和磁场cancel magnetic filed)和由于被测定电流而产生的磁场相互抵消,从而使磁场始终为O的方式来工作,此时在反馈线圈中流过的反馈电流被进行电压转换后作为输出而取出。作为上述电流传感器中的磁检测元件,使用例如霍尔元件、GMR(Giant MagnetoResistance,巨磁电阻)元件这样的磁阻效应元件。在使用霍尔元件作为磁检测元件的磁场比例式电流传感器中,如果使测定范围变广,则在被测定电流较小时,分辨率降低,在使用霍尔元件作为磁检测元件的磁平衡式电流传感器中,不会完全消除由于大电流而形成的磁场。由此,作为弥补这两者的缺陷的方法,在专利文献I中公开了,配置使用了霍尔元件的磁场比例式电流传感器和使用了霍尔元件的磁平衡式电流传感器,并按照被测定电流的大小来对它们进行切换使用的方法。在先技术文献专利文献专利文献I JP特开2007-78416号公报发明的概要发明要解决的课题但是,磁平衡式电流传感器以及磁场比例式电流传感器等磁式电流传感器,由于磁饱和、电源电压的诸条件等而对测定范围有限制。由此,在采用磁式电流传感器来测定被测定电流的情况下,磁式电流传感器的使用限于测定范围内。在专利文献I公开的技术中,虽然在大电流区域中使用磁场比例式电流传感器,但是磁场比例式电流传感器的使用被限于未发生磁饱和的范围,无法扩展测定范围。此外,在专利文献I公开的技术中,必需分别使用2种电流传感器。由此,不能实现节省空间化,并且制造工序也变复杂。

发明内容
本发明鉴于该点而形成,其目的在于,提供一种在使测定范围变广的同时,能够在低电流时高精度地进行测定,并且能够实现节省空间化的电流传感器。用于解决课题的手段本发明的电流传感器的特征在于,具备磁传感器,其特性根据由被测定电流产生的感应磁场而发生变化;分流电阻(shunt resistance),其与上述被测定电流流通的电流线串联连接;以及切换部,其在小电流时切换为以上述磁传感器的输出电压作为传感器输出的磁式检测,在大电流时切换为以上述分流电阻的电压差作为传感器输出的分流电阻式检测。根据该构成,在小电流时,通过磁式检测而能够成为高精度,在大电流时,能够通过分流电阻式检测而使测定范围变广。此外,由于在一个电流传感器中,能够对磁式检测以及分流电阻式检测进行切换,所以能够实现省空间化。
在本发明的电流传感器中,优选上述切换部,在上述磁传感器的输出特性中得到直线性的范围内设置阈值,将上述被测定电流的大小比上述阈值小的情况作为小电流时,并切换为上述磁式检测,将上述被测定电流的大小为上述阈值以上的情况作为大电流时,并切换为上述分流电阻式检测。根据该构成,能够使测定范围变广,并且能够在磁传感器的输出特性中得到直线性的范围内提高测定精度。在本发明的电流传感器中,优选上述磁传感器隔着绝缘基板而设置在上述分流电阻上。根据该构成,由于将分流电阻的电阻值设定得较低以便能够进行大电流测定,所以在小电流时能够通过磁传感器来检测在分流电阻中流过的被测定电流。在本发明的电流传感器中,优选上述传感器是包括磁传感器元件和反馈线圈的磁平衡式传感器,其中,上述磁传感器元件由于由上述被测定电流而产生的感应磁场而其特性发生变化,上述反馈线圈配置在上述磁传感器元件的附近,并且产生用于抵消上述感应磁场的中和磁场。根据该构成,能够提供一种在小电流时能够实现高精度的测定,并且测定范围较广的电流传感器。在本发明的电流传感器中,优选,上述磁传感器是包含磁传感器元件的磁场比例式传感器,其中,上述磁传感器元件由于来自上述被测定电流的感应磁场而其特性发生变化。根据该构成,能够提供一种在小电流时作为低消耗功率,并且测定范围较广的电流传感器。发明效果根据本发明的电流传感器,具备磁传感器,其特性由于来自被测定电流的感应磁场而发生变化;分流电阻,其与流通上述被测定电流的电流线串联连接;以及切换部,其在小电流时切换为以上述磁传感器的输出电压作为传感器输出的磁式检测,在大电流时切换为以上述分流电阻的电压差作为传感器输出的分流电阻式检测;并采用单一的电流传感器来进行磁式检测以及分流电阻式检测。由此,在使测定范围变广的同时,能够在低电流时以高精度进行测定,并且能够实现省空间化。


图I是表示本发明的实施方式I涉及的电流传感器的图。图2是本发明的实施方式I涉及的电流传感器的框图。图3是本发明的实施方式I涉及的被测定电流的阈值的说明图。
图4是本发明的实施方式I涉及的磁平衡式的测定结果的说明图。图5本发明的实施方式I涉及的分流电阻式的测定结果的说明图。图6是本发明的实施方式2涉及的电流传感器的框图。
具体实施例方式磁场比例式电流传感器能够采用较少的消耗功率高精度地测定比较小的被测定电流。但是,磁场比例式电流传感器,在被测定电流较大的情况下,由于该磁场导致磁体磁芯发生磁饱和从而之后的输出值失常,因此不能利用,导致被测定电流的动态范围变窄。另一方面,磁平衡式电流传感器,虽然比磁场比例式电流传感器结构复杂,但是能够以比磁场比例更高的精度来测定被测定电流。但是,磁平衡式电流传感器,在被测定电流较大的情况下,因电源电压等诸条件导致在反馈线圈中持续流过的电流存在上限,所以不能使被测定电流的动态范围变广。·
为了使动态范围变广,考虑根据分流电阻的电压差来测定被测定电流的方法。在该分流电阻式的测定方法中,为了使动态范围变广而将分流电阻的电阻值设定得较小。由此,虽然能够检测较大的被测定电流,但是在测定较小的被测定电流时不能得到足够的测定精度。本发明者们着眼于上述方面发现通过按照被测定电流的大小来切换使用磁式检测和分流电阻式检测,由此,在使测定范围变广的同时,能够在低电流时实现高精度的测定,并且能够实现节省空间化,从而实现了本发明。特别地,在测定相对较小的电流时,通过使用磁场比例式检测能够减小消耗功率,通过使用磁平衡式检测能够进行高精度的检测。S卩,本发明的框架是,通过电流传感器,在使测定范围变广的同时,能够在小电流时高精度地进行检测,并且能够实现省空间化,其中,该电流传感器具备磁传感器,其特性根据由被测定电流感应的感应磁场而发生变化;分流电阻,其与流通上述被测定电流的电流线串联连接;以及切换部,其对在小电流时以上述磁传感器的输出电压作为传感器输出的磁式检测、以及在大电流时以上述分流电阻的电压差作为传感器输出的分流电阻式检测进行切换。以下,针对本发明的实施方式,参照附图详细说明。(实施方式I)图I是表示本发明的实施方式I涉及的电流传感器的图。在本实施方式中,图I所示的电流传感器I配设在被测定电流流过的电流线的附近。电流传感器I具有与电流线串联连接的分流电阻11 ;与分流电阻11之间隔着绝缘材料14而配置的磁平衡式传感器12 ;以及对分流电阻11以及磁平衡式传感器12进行控制的控制部13 (参照图2)。分流电阻11的剖面积形成得较大,在电流传感器I中电阻值被设定的较低,以便能够测定大电流。分流电阻11形成为板状,并隔着安装在板面上的绝缘材料14而与磁平衡式传感器12成为一体。在该情况下,磁平衡式传感器12通过产生磁场来检测分流电阻11中流过的被测定电流,从而成为非接触的测定。图2是表示本发明的实施方式I涉及的电流传感器的框图。磁平衡式传感器12由反馈线圈121和桥电路122构成,其中,该反馈线圈121按照能够产生用于将由被测定电流产生的磁场抵消的磁场的方式而配置;该桥电路122由作为磁检测元件的磁阻效应元件构成。控制部13包括将分流电阻11的差动输出放大的差动放大器131 ;将桥电路122的差动输出放大并对反馈线圈121的反馈电流进行控制的差动/电流放大器132 ;将磁平衡式传感器12的反馈电流转换为电压的I/V放大器133 ;以及对分流电阻式检测以及磁平衡式检测进行切换的开关电路134。反馈线圈121配置在桥电路122的磁阻效应元件的附近,产生用于将由被测定电流而产生的感应磁场抵消的中和磁场。作为桥电路122的磁阻效应元件,可以列举GMR(Giant Magneto Resistance,巨磁电阻)兀件、TMR(Tunnel Magneto Resistance,隧道磁阻)元件等。磁阻效应元件的电阻值由于因被测定电流产生的感应磁场的施加而发生变化。此外,通过使用磁阻效应元件,能够容易地将灵敏度轴配置在与设置电流传感器的基板面平行的方向上,从而能够使用平面线圈。桥电路122具备两个输出,用于产生与由被测定电流而产生的感应磁场相应的电压差。桥电路122的两个输出通过差动/电流放大器132而被放大。在磁平衡式检测的模式(平衡式模式)的情况下,将经放大后的输出作为电流(反馈电流)提供给反馈线圈·121。该反馈电流对应于与感应磁场相应的电压差。此时,在反馈线圈121中产生用于抵消感应磁场的中和磁场。并且,在处于感应磁场和中和磁场被抵消的平衡状态时,在反馈线圈121中流过的电流被I/V放大器133转换为电压,该电压成为传感器输出。另外,在差动/电流传感器132中,通过将电源电压设定为与I/V转换的基准电压+ (反馈线圈电阻的额定内最大值X满刻度时反馈线圈电流)接近的值,从而反馈电流被自动限制,得到保护磁阻效应元件和反馈线圈的效果。此外,在此,虽然将桥电路122的两个输出的差动放大并在反馈电流中使用,但是也可以从桥电路中仅输出中点电位,并基于与规定的基准电位之间的电位差来作为反馈电流。开关电路134对以来自差动放大器131的电压差作为传感器输出的分流电阻式检测、以及以由ΙΛ放大器133转换后的电压作为传感器输出的磁平衡式检测进行切换。这样,开关电路134进行电路控制,以便在平衡式模式时,产生用于将基于流过电流线(分流电阻11)的被测定电流而产生的感应磁场(中和磁场)抵消的磁场,在分流电阻式模式时,不产生中和磁场。即,开关电路134对磁平衡式检测模式的反馈电流的接通/断开进行切换。如上所述,磁平衡式传感器12,在被测定电流较大的情况下,由于电源电压的不足等而在反馈线圈121中持续流过的电流中存在上限,所以输出发生饱和,被检测电流的测定范围变窄。此外,分流电阻11的电阻值设定得较小,所以在被测定电流小时,输出电压非常小,从而测定精度变低。因此,为了使测定范围变广,并且提高小电流测定时的测定精度,优选在相对较小的被测定电流的区域中使用磁平衡式检测,在相对较大的被测定电流的区域中使用分流电阻式检测。因此,开关电路134通过对被测定电流进行阈值判定来切换磁平衡式检测和分流电阻式检测(模式切换)。具体来说,在被测定电流小的情况下作为磁平衡式检测,在被测定电流比之更大的情况下作为分流电阻式检测。这里,参照图3来说明被测定电流的阈值。如图3所示,磁平衡式传感器12的输出特性在Al以下固定,在Al至A2呈直线性变化,在A2以上再次固定。由于这样的输出特定的变化,优选按照在直线性被维持的范围内使用磁平衡式检测的方式来设定被测定电流的阈值P1、P2。进一步地,优选在直线性被维持的范围内,将阈值P1、P2设定在分流电阻式检测下噪声成为问题的范围中。另外,阈值P1、P2只要是在能得到磁平衡式传感器12的输出特性的直线性的范围内即可,也可以设定为能够得到直线性的范围的上限以及下限。另外,磁传感器的输出特性的直线性起因于磁阻效应元件的特性、磁阻效应元件与反馈线圈121之间的距离,所以按照这些要因来适当设定。此外,关于从磁平衡式检测切换为分流电阻式检测的阈值,为了避免频繁的切换,也可以设置磁滞。此外,开关电路134也可以通过外部信号来切换磁平衡式检测和分流电阻式检测。通过这样,在睡眠模式等用户想要节省功率的定时,能够抑制电流传感器的消耗功率。在该情况下,从外部向开关电路134输入模式信号。 此外,开关电路134也可以构成为,在自动进行模式切换的情况下,向外部输出表示在哪一个模式下测定被测定电流的信息(表示是磁平衡式检测状态或分流电阻式检测状态的信号)。由此,能够确认电流传感器当前是哪个模式。在该情况下,开关电路134构成为能够与外部监视器连接。另外,在开关电路134中自动进行模式切换的情况下,对被测定电流进行阈值判定,可以基于其结果来进行模式切换,也可以基于来自安装有电流传感器的设备的信息来进行模式切换。这里,使用本发明的电流传感器,说明磁平衡式检测和分流电阻式检测。这里,针对在小电流的测定时以及大电流的测定时的各自情况下的磁平衡式的测定结果和分流电阻式的测定结果进行比较说明。首先,说明小电流时的测定。图4A是比较例,表示采用分流电阻式来测定小电流的情况。图4B是本实施方式,表示采用磁平衡式来测定小电流的情况。如图4A的比较例所示,如果采用分流电阻式来测定±1A以内(例如,±0. 20A以内)的小电流,则虽然示出直线性的输出倾向,但是在50mA左右的分辨率下会产生误差。这是由于,为了测定大电流而将分流电阻11的电阻值设定得较小。由此,在小电流区域中按照分流电阻式来进行测定的情况下,由于噪声而不能得到足够的测定精度。另一方面,如图4B的本实施方式所示,如果采用磁平衡式来测定±1A以内(例如,±0. 20A以内)的小电流,则即使以ImA以下的分辨率也能得到直线性的输出特性。由此,在小电流区域中采用磁平衡式进行测定的情况下,能够得到足够的测定精度。接着,说明大电流时的测定。图5A是比较例,表示采用磁平衡式来测定大电流的情况。图5B是本实施方式,表示采用分流电阻式来测定大电流的情况。如图5A的比较例所示,如果在±1500A的范围内采用磁平衡式来测定电流,则在±500A以下直线性劣化。这是由于,磁平衡式传感器由于电源电压等诸条件而在反馈线圈121中持续流过的电流中存在上限。由此,在大电流区域中采用磁平衡式来进行测定的情况下,不能使动态范围变广。另一方面,如图5B的本实施方式所示,如果在±1500A的范围内采用分流电阻式来测定电流,则即使在±1500A左右也能保持直线性。由此,在大电流区域中采用分流电阻式进行测定的情况下,能够使动态范围变广。因此,在实施方式I中,按照以下方式来切换测定方式,即,在采用分流电阻式不能得到足够的测定精度的小电流区域中采用磁平衡式进行测定,在小电流区域以外的大电流区域中采用分流电阻式来进行测定。由此,在使测定范围变广的同时,能够提高小电流时的测定精度。此外,在单一的电流传感器I中,由于能够对磁平衡式检测以及分流电阻式检测进行切换,所以能够实现省空间化。(实施方式2)接下来,说明本发明的实施方式2。实施方式2仅仅在取代磁平衡式传感器而使用磁场比例式传感器这点上与上述实施方式I不同。因此,仅仅特别说明不同点图6是表示本发明的实施方式2涉及的电流传感器的框图。电流传感器2具有与电流线串联连接的分流电阻21 ;与分流电阻21之间隔着绝缘基板而配置的磁场比例式传感器22 ;以及对分流电阻21以及磁场比例式传感器22进行控制的控制部23。磁场比例式传感器22由作为磁检测元件的2个磁阻效应元件以及由2个固定元件构成的桥电路222构成。控制部23包括将分流电阻21的差动输出放大的差动放大器231 ;将桥电路222的差动输出放大的差动放大器232 ;以及对分流电阻式检测以及磁场比例式检测进行切换的开关电路234。开关电路234,在分流电阻式检测模式中,以差动放大器231的电压作为传感器输出,在磁场比例式检测模式中,以差动放大器232的电压作为传感器输出。 如上所示,磁场比例式电流传感器22,在被测定电流较大的情况下,磁体磁芯和磁阻元件由于该磁场而发生磁饱和从而之后的输出值失常,因此不能利用,被测定电流的动态范围变窄。此外,磁场比例式传感器22,在被测定电流小的情况下,与分流电阻式检测和磁场比例式检测等其他方式相比,消耗电量变小。另一方面,分流电阻21,由于其电阻值设定得较小,所以被测定电流较小的情况下的测定精度变低。因此,为了使测定范围变广,并且在提高小电流测定时的测定精度的同时减小消耗功率,优选在被测定电流相对较小的区域中使用磁场比例式检测,在被测定电流相对较大的区域中使用分流电阻式检测。因此,在本实施方式中,开关电路234对被测定电流进行阈值判定,在被测定电流小的一侧作为磁场比例式检测,在被测定电流比之更大的一侧作为分流电阻式检测。另外,即使在磁场比例式传感器中,由于与磁平衡式传感器同样地输出特性中得到直线性的范围被限制(参照图3),因此在得到直线性的范围内设定阈值。这样,在实施方式2中,按照以下方式来切换测定方式,S卩,在采用分流电阻式不能得到足够的测定精度的小电流区域中采用磁场比例式进行测定,在小电流区域以外的大电流区域中采用分流电阻式来进行测定。由此,在使测定范围变广的同时,能够提高小电流时的测定精度。此外,实施方式2由于在小电量区域中使用磁场比例式检测,所以与实施方式I比较,能够减小消耗功率。此外,由于能够在一个电流传感器I中对磁平衡式检测以及分流电阻式检测进行切换,所以能够实现省空间化。另外,上述实施方式I以及实施方式2涉及的电流传感器能够在具有动作时的大电流模式和小电流模式的设备中进行应用,例如,能够应用于电动车和混合动力汽车的蓄电池电流传感器中。例如,在行驶时的发动机驱动时,从电池流过数百A之程度的电流。在该情况下,进行上述实施方式中的分流电阻式下的电流检测。此外,在停车时以及停放车时,电流几乎不流过,是IA以下的自身放电和暗电流。在该情况下,进行上述实施方式的磁平衡式下的电流检测。由此,能够精度良好地检测电池使用量,能够使电池的使用范围变广,在行驶距离的提高和电池使用量的削减方面有效果。本发明不限定为上述实施方式1、2,能够进行各种变更来实施。例如,上述实施方式1、2中的各元件的连接关系、大小等能够适当变更来实施。此外,在上述实施方式中,虽然说明了在磁平衡式电流传感器中使用磁阻效应元件的情况,但是也可以构成为在磁平衡式电流传感器中使用霍尔元件或其他磁检测元件。另外,本发明能够在不脱离本发明的范围的情况下适当变更来实施。工业可利用性本发明能够在对电动车和混合动力汽车的发动机驱动用的电流和蓄电池的充放电进行检测的电流传感器中进行应用。
本申请基于2010年7月7日申请的JP特愿2010-154496。其内容全部包含于此。
权利要求
1.一种电流传感器,其特征在于,具备 磁传感器,其特性根据由被测定电流产生的感应磁场而发生变化; 分流电阻,其与上述被测定电流流通的电流线串联连接;以及 切换部,其在小电流时切换为以上述磁传感器的输出电压作为传感器输出的磁式检测,在大电流时切换为以上述分流电阻的电压差作为传感器输出的分流电阻式检测。
2.根据权利要求I所述的电流传感器,其特征在于, 上述切换部,在上述磁传感器的输出特性中得到直线性的范围内设置阈值,将上述被测定电流的大小比上述阈值小的情况作为小电流时,并切换为上述磁式检测,将上述被测定电流的大小为上述阈值以上的情况作为大电流时,并切换为上述分流电阻式检测。
3.根据权利要求I或2所述的电流传感器,其特征在于, 上述磁传感器隔着绝缘基板而设置于上述分流电阻上。
4.根据权利要求I 3中任一项所述的电流传感器,其特征在于, 上述磁传感器是包含磁传感器元件和反馈线圈的磁平衡式传感器,该磁传感器元件的特性根据由上述被测定电流产生的感应磁场而发生变化,该反馈线圈配置在上述磁传感器元件的附近,并且产生用于将上述感应磁场抵消的中和磁场。
5.根据权利要求I 3中任一项所述的电流传感器,其特征在于, 上述磁传感器是包含磁传感器元件的磁场比例式传感器,该磁传感器元件的特性根据由上述被测定电流产生的感应磁场而发生变化。
全文摘要
本发明提供一种能兼顾较广的测定范围内的高精度的测定以及节省功率化,并且能够实现节省空间化的电流传感器。本发明的电流传感器的特征在于,具备磁平衡式传感器,其包括反馈线圈(121),该反馈线圈(121)配置在由于因被测定电流产生的感应磁场的施加而其特征发生变化的磁传感器元件的附近,并产生用于将上述感应磁场抵消的中和磁场;分流电阻(11),其与被测定电流流通的电流线串联连接;以及开关电路(134),其在小电流时切换为磁平衡式检测,在大电流时切换为分流电阻式检测。
文档编号G01R15/14GK102959408SQ201180028789
公开日2013年3月6日 申请日期2011年4月15日 优先权日2010年7月7日
发明者田村学, 野村雅俊, 蛇口广行 申请人:阿尔卑斯绿色器件株式会社
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1