亮氨酰tRNA合成酶的新用途

文档序号:6166919阅读:1243来源:国知局
亮氨酰tRNA合成酶的新用途
【专利摘要】本发明涉及亮氨酰tRNA合成酶的新用途,更具体而言,涉及mTORC1介导疾病的预防或治疗用试剂的筛选方法,该方法对抑制LRS与RagD或RagD?GTP酶的结合能力的测试试剂进行筛选;以及涉及相对于对照组减小细胞的尺寸的方法,该方法包括抑制细胞内LRS的表达。本发明的方法提供调节细胞尺寸的新方法,此外所述筛选方法能够用于治疗癌等疾病的新型试剂的开发中。
【专利说明】亮氨酰tRNA合成酶的新用途
【技术领域】
[0001]本申请要求2011年09月22日提交的韩国专利申请第10-2011-0095893号的优先权及其权益,在此出于所有目的通过援引将其并入,其等同于在本文完整描述。
[0002]本发明涉及亮氨酰tRNA合成酶的新用途,更具体而言,涉及mTORCl介导疾病的预防或治疗用试剂的筛选方法,该方法对抑制LRS与RagD或RagD GTP酶(GTPase)的结合能力的测试试剂进行筛选;以及涉及相对于对照组减小细胞的尺寸的方法,该方法包括抑制细胞内LRS的表达。
【背景技术】
[0003]亮氨酸为三个支链氨基酸之一。与其它氨基酸不同,亮氨酸和其它支链氨基酸(异亮氨酸及缬氨酸)因支链氨基酸转氨酶的缺陷而不参与肝代谢,对肌肉蛋白质合成产生直接的影响。亮氨酸不仅充当蛋白质合成的基质,而且被认为是有力的调节蛋白质代谢的信号营养素。亮氨酸的口服施用会增加鼠的骨骼肌蛋白质合成的速率(Crozier SJ等,J Nutr.135(2005),376-382),若从完全饮食去除亮氨酸则避免了对蛋白质合成的刺激(Stipanuk MH., Nutr Rev.65 (2007),122-129)。由亮氨酸诱导的蛋白质合成受到由雷帕霉素哺乳动物革巴标(mTOR)、雷帕霉素哺乳动物革巴标的调节相关蛋白(Raptor)、G蛋白β亚基样蛋白(Gi3L)和富集在脑内的Ras同系物(Rheb)构成的mTOR复合物I (mTORCl)的影响(Bgaskar PT 等,The two TORCs and Akt.Dev Cell、12(2007),487-502)。mTORCl 将 S6K和4E-BP磷酸化(翻译过程的速度决定步骤),引起展示出5’帽结构的mRNA的翻译起始(Ma XM, Nat Rev Mol Cell Biol.10(2009), 307-318 ;Holz MK等,Celll23 (2005),569-580页)。
[0004]mTORCl通过协调数种上游输入(如生长因子、细胞内能量状态和氨基酸可及性)来调节翻译和细胞生长。结节性硬化复合物(TSC) I和TSC2调节Ras样GTP酶、Rheb的GTP/⑶P交换,从而将生长因子和细胞内能量信号传递至mTORCl。与GTP结合时,Rheb与mTORCl相互作用并使其活化(Tee AR等,Curr Biol.13 (2003),1259-1268),并且对于mTORCl受所有信号(包括氨基酸可及性)的活化而言可能是必要的。相比之下,TSC1-TSC2对于mTORCl受氨基酸的调节而言是可有可无的,且在缺乏TSC2的细胞中,mTORCl路径对于氨基酸匮乏敏感,但是对于生长因子脱除(withdrawal)具有抵抗性(Roccio M等,Oncogene.25(2006),657-664)。
[0005]最近,也作为GTP结合蛋白的Ras家族成员的Rag GTP酶据显示是mTORCl途径的氨基酸特异性调节物(Sancak Y等,CellHl (2010),290-303)。哺乳动物表达4种Rag蛋白(RagA、RagB、RagC和RagD),其形成由RagA或RagB与RagC或RagD构成的异二聚体。如RagA和RagB那样,RagC和RagD相互极其类似,在功能是冗余的(Schurmann A等,JBiol Chem.270 (1995),28982-28988)。包含结合有 GTP 的 RagB 的 Rag 异二聚体与 mTORCl相互作用,并且氨基酸通过增进RagB的GTP加载而诱导mTORCl-Rag相互作用,这使其与mTORCl 的Raptors成分直接相互作用(Sancak Y,CellHl (2010),290-303 ;Kim E,Nat CellBiol.10(2008) ,935-945)。mTORCl路径受氨基酸的活化与mTORCl从不限定的位置向包含Rab7 的区室的移动有关(Sancak Y 等,Science320 (2008),1496-1501),Rab7 是晚期内体和溶酶体的标记物(Bucci C等,Mol Biol Cell,11 (2000),467-480)。最近的报告显示,氨基酸诱导mTORCl向RagGTP酶所驻留的溶酶体移动。由MAPKSP1、R0BLD3以及cllorf59基因产物构成的调节复合体与RagGTP酶相互作用并将其募集至溶酶体,这对mTORCl活化至关重要(Sancak Y等,CellHl (2010),290-303)。但是,尚不知道细胞内亮氨酸如何被感受以进行mTORCl的活化,以及Rag GTP酶的GTP/⑶P循环如何被氨基酸所调节以进行mTORCl的活化。
[0006]氨酰tRNA合成酶(ARS)对于细胞蛋白质合成和活力是必须的酶,其催化特定氨基酸与它们的同源tRNA的连接。酶反应分为2个步骤:为了氨基酸的活化的ATP-PPi交换反应,和 tRNA 的氨酸化(aminoacylation) (Park S 等,Trends Biochem Sc1.30 (2005),569-574)。基于氨基酸序列的比对和结构特性,ARS被分成两个类别(Eriani G等,Nature347(1990),203-206 ;Burbaum JJ 等,J Biol Chem.266(1991),16965-16968)。I 类合成酶共享 2 个共有序列(HIGH(His-1le-Gly-His)和 KMSKS(Lys-Met-Ser-Lys-Ser)基序),这些共有序列形成核苷酸结合性罗斯曼折叠(Rossman fold) (Arnez JG等,TrendsBiochem sc1.22 (1997),211-216)。相比之下,II类合成酶不包含罗斯曼折叠,但共享极其不同的催化结构域(Cusack S 等,Nucl Acids Res.19 (1991),3489-3498)。亮氨酸 tRNA合成酶(LRS)是I类酶,其由HIGH和KMSKS基序所表征(Cusack S等,EMBO J.19(2000),2351-2361)。在结构上,LRS由二部罗斯曼折叠的催化结构域组成,该二部罗斯曼折叠具有称为CPl的大插入结构域(tRNA结合性反密码子结构域)和C末端扩展结构域(Cusack S等,EMBO J.19 (2000) ,2351-2361)。在高等真核细胞中,LRS作为ARS复合体的成分存在,该ARS复合体由9个不同的tRNA合成酶和3个非酶成分(pl8/AIMP3、p38/AIMP2以及p43/AIMP1)构成(Lee SW 等,J Cell Sc1.117 (2004), 3725-3734 ;Park S 等,Trends BiochemSc1.30(2005),569-574 ;Park SG 等,Proc Natl Acad Sci USA105 (2008),11043-11049)。据显示,LRS的C末端结构域对于与ARS复合体的其它成分的相互作用很重要(Ling C等,JBiol Chem.280 (2005),34755-3463)。在该复合体的成分中,各个不同的成分参与各种各样的细胞信号传导过程(Lee YN等,Immunity20 (2004), 145-151 ;Park S 等,Trends BiochemSc1.30(2005), 569-574 ;Park SG 等,Proc Natl Acad Sci USA105(2008),11043-11049)。例如,谷氨酰-脯氨酰tRNA合成酶(EPRS)通过形成干扰素Y激活的翻译抑制子(GAIT)复合体而抑制靶标炎性mRNA的翻译(Sampath P等,Cell.119 (2004),195-208)。赖氨酰tRNA合成酶(LRS)和其产物Ap4A通过调节基因表达而在免疫响应中起到信号传导调节物的作用(Lee YN 等,Immunity20 (2004), 145-151 ;Yannay-Cohen N 等,Mol Cell34 (2009),603-611)。甲硫氨酰tRNA合成酶(MRS)和谷氨酰氨酰tRNA合成酶(QRS)分别参与rRNA生物发生(Ko YG等,J Cell Bioll49 (2000), 567-574)和抗凋亡性信号调节(Ko YG等,JBiol Chem276 (2001) ,6030-6036)。此外,据报道,胞质LRS有可能牵涉肺癌生长(Shin SH等,Exp Mol Med.40 (2008),229-236),且线粒体LRS可能与糖尿病相关(’t Hart LM等,Diabetes.54(2005),1892-1895 ;Li R.等,MolCell Biol.30 (2010),2147-2154)。

【发明内容】
[0007]发明要解决的课题
[0008]本发明人对LRS的不同于其对于蛋白质合成的催化功能的非典型功能进行了研究。在该研究中,发明人发现LRS是mTORCl相关蛋白并且对于由氨基酸诱导的mTORCl活化起到至关重要的作用。另外,对LRS的亮氨酸结合能力的消除会使mTORCl路径对于氨基酸去敏化(desensitized)。在mTORCl的成分中,发明人发现LRS以氨基酸依赖性方式与Rag GTP酶直接相互作用,并且充当Rag GTP酶的GTP酶活化蛋白(GAT)而使mTORCl活化,由此完成了本发明。
[0009]因此,本发明的目的在于提供一种筛选用于预防和治疗mTORCl介导的疾病的试剂的方法,所述方法包括以下步骤:
[0010](a)使LRS (亮氨酰tRNA合成酶)和RagD在有测试试剂或无测试试剂的条件下接触;
[0011](b)对有测试试剂时LRS和RagD间的结合亲和力与无测试试剂时LRS和RagD间的结合亲和力进行比较;和
[0012](C)测定LRS和RagD间的结合亲和力的变化。
[0013]本发明的另一目的在于提供一种相对于对照组减小细胞的尺寸的方法,所述方法包括抑制细胞内LRS的表达。
[0014]本发明的另一目的在于提供一种筛选用于预防和治疗mTORCl介导的疾病的试剂的方法,所述方法包括以下步骤:
[0015](a)使LRS (亮氨酰tRNA合成酶)和RagD在有测试试剂或在无测试试剂的条件下接触;
[0016](b)对有测试试剂时LRS和RagD间的结合亲和力与无测试试剂时LRS和RagD间的结合亲和力进行比较;和
[0017](C)鉴定出抑制LRS和RagD间的结合亲和力的测试试剂。
[0018]用于解决课题的方案
[0019]为了达到上述目的,本发明提供一种筛选用于预防和治疗mTORCl介导的疾病的试剂的方法,所述方法包括以下步骤:
[0020](a)使LRS (亮氨酰tRNA合成酶)和RagD在有测试试剂或无测试试剂的条件下接触;
[0021](b)对有测试试剂时LRS和RagD间的结合亲和力与无测试试剂时LRS和RagD间的结合亲和力进行比较;和
[0022](c)测定LRS和RagD间的结合亲和力的变化。
[0023]为了达到本发明的另一目的,本发明提供一种相对于对照组减小细胞的尺寸的方法,所述方法包括抑制细胞内LRS的表达。
[0024]为了达到本发明的另一目的,本发明提供一种筛选用于预防和治疗mTORCl介导的疾病的试剂的方法,所述方法包括以下步骤:
[0025](a)使LRS (亮氨酰tRNA合成酶)和RagD在有测试试剂或在无测试试剂的条件下接触;
[0026](b)对有测试试剂时LRS和RagD间的结合亲和力与无测试试剂时LRS和RagD间的结合亲和力进行比较;和[0027](c)鉴定出抑制LRS和RagD间的结合亲和力的测试试剂。
[0028]下面,详细说明本发明。
[0029]本发明首次查明,亮氨酰tRNA合成酶(LRS)在氨基酸诱导的mTORCl活化方面起着关键作用。即,发明人查明,本发明的LRS以氨基酸依赖性方式与Rag GTP酶(其为向mTORCl的信号传导的介导物)直接结合,并且充当Rag GTP酶的GTP酶活化蛋白(GAP)以使mTORCl活化。
[0030]本发明人确认,亮氨酰tRNA合成酶(LRS)在由氨基酸诱导的mTORCl的活化中起到关键作用,LRS感知细胞内的亮氨酸浓度,并介导由亮氨酸诱导的mTORCl的活化。更具体而言,发明人确认,LRS以氨基酸依赖性方式与Rag GTP酶(其为向mTORCl的信号传导的介导物)直接结合,并且充当Rag GTP酶的GTP酶活化蛋白(GAP)以使mTORCl活化。
[0031]定义
[0032]只要没有其它定义,则本说明书中使用的所有科技用语具有与本领域技术人员通常理解的相同的含义。下述参考文献为本领域技术人员提供了本发明中使用的许多术语的一般性定义:Singleton 等,DICTIONARY OF MICROBIOLOGY AND MOLECULAR B10L0TY(第二版,1994) ;THE CAMBRIDGE DICTIONARY OF SCIENCE AND TECHNOLOGY (Walker 编著,1988);和 Hale&Marham,THE HARPER COLINS DICTIONARY OF BIOLOGY。另外,提供下述定义以帮助读者实施本发明。
[0033]如本发明所用,“表达”是指由在细胞中形成蛋白质或核酸。
[0034]如本发明所用,“宿主细胞”是指包含通过任意手段(例如电穿孔、磷酸钙沉淀、显微注射、转化和/或病毒感染等)导入细胞内的异源性DNA的原核或真核细胞。
[0035]在本文中,术语“多肽”与术语“多种多肽”或“(一种或多种)蛋白质”互换性地使用,并且是指例如通常见于自然界中的蛋白质那样的氨基酸残基的聚合物。
[0036]术语“LRS多肽”是指称作亮氨酰tRNA合成酶的多肽。上述LRS多肽可以是具有SEQ NO:1 (Genbank登记号NP_064502.9)的氨基酸序列的多肽。并且本发明的LRS包含其功能等价物。
[0037]上述功能等价物是指具有至少70%氨基酸序列同源性(即同一性)、优选至少80 %、更优选至少90%的氨基酸序列同源性(例如,70%、71%、72%、73%、74%、75%、76%,77%,78%,79%,80%,81 %,82%,83%,84%,85%,86%,87%,88%,89%,90%,91%、92%、93%、94%、95%、96%、97%、98%、99%、100%的氨基酸序列同源性)的多肽,其与SEQ NO:1的多肽显示出基本相同的生理活性。此处,“基本相同的生理活性”是指:与RagD结合,并充当Rag GTP酶的GTP酶激活蛋白(GAP)以使T0RC1活化。上述功能等价物可以包括例如因SEQ NO:1中某些氨基酸的添加、取代或缺失而生成的肽。上述之中,氨基酸的取代优选为保守取代。天然存在的氨基酸的保守取代的示例如下:脂肪族氨基酸(Gly、Ala、Pro)、疏水性氨基酸(Ile、Leu、Val)、芳香族氨基酸(Pyr、Tyr、Trp)、酸性氨基酸(Asp、Glu)、碱性氨基酸(His、Lys> Arg、Gin、Asn)和含硫氨基酸(Cys> Met)。此外,功能等价物还包括本发明的LRS的氨基酸序列的一部分缺失的变体。氨基酸的缺失或取代优选位于不与本发明的多肽的生理活性直接相关的区域。并且氨基酸的缺失优选位于不直接参与LRS的生理活性的部分。另外,功能等价物还包括在LRS的氨基酸序列的两端末或序列内添加了若干个氨基酸的变体。此外,本发明的功能等价物还包括在维持本发明的多肽的基本骨架和其生理活性的同时对本发明的多肽的部分化学结构进行了修饰的多肽衍生物。例如,这种修饰的实例包括用于使本发明的多肽的稳定性、储藏性、挥发性或溶解度等改变的结构修饰。
[0038]序列同一性或同源性在本文中如下定义:在进行序列比对并在必要时导入空位(gap)以获得最大百分比序列同一性后,候选序列中与LRS的氨基酸序列(SEQ ID NO:1)相同的的氨基酸残基的百分比,并且不考虑保守取代作为序列同一性的部分。此外,LRS的氨基酸序列的N-末端、C-末端或内部的延伸、缺失或插入不应认为会对序列同一性或同源性产生影响。因此,序列同一性可以通过通常用于对两个多肽的氨基酸位置的相似性进行比较的标准方法来确定。利用如BLAST或FASTA等计算机程序,可以对两个多肽进行比对以便对其各自的氨基酸进行最佳地匹配(沿着一个或两个序列的全长序列,或沿着一个或两个序列的预先确定的部分)。上述程序提供默认开放罚分(default opening penalty)和默认空位罚分(default gap penalty),以及能够与计算机程序一起共同使用的如PAM250 (标准记分矩阵;参见 Dayhoff 等,Atlas of Protein Sequence and Structure,第 5 卷,增刊3,1978)等记分矩阵。例如,百分比同一性可以如下计算。将同一性匹配的总数乘以100,然后除以以下两者的总和:匹配跨度(matched span)内的更长的序列的长度,和为了比对两个序列而导入所述更长序列内的空位数。
[0039]本发明的多肽可以分离自天然材料,或者可以通过基因工程的方法制备。例如,根据常规方法构建了编码LRS或其功能等价物的DNA分子(例如,在LRS的情况下为SEQ ID N0:2(Genbank 登记号 ΝΜ_020117.9),在 RagD 的情况下为 SEQ ID NO: 3 (Genbank登记号NM_021244.4))。DNA分子可以通过使用适当的引物进行PCR而合成。作为另一选择,也可以利用通过本领域所公知的标准方法,例如使用自动DNA合成仪(可商购自Biosearch或Applied Biosystems)来合成DNA分子。所构建的DNA分子被插入下述载体并用所得的重组表达载体来转化宿主细胞,所述载体包含至少一个表达控制序列(例如启动子、增强子),该表达调节序列与DNA序列可操作地连结从而控制所述DNA分子的表达。将转化的细胞在适合上述DNA序列表达的培养基和条件下进行培养,并从培养基收集由所述DNA序列表达的基本纯的多肽。纯多肽的收集可以利用本领域所公知的方法(例如色谱)进行。在这方面,术语“基本纯的多肽”是指基本不含源自宿主细胞的其它任何蛋白质的本发明的多肽。对于合成本发明的多肽的基因工程学方法,读者可以参考下述文献:Maniatis 等,Molecular Cloning ;A laboratory Manual, Cold Spring Harborlaboratory, 1982 ;Sambrook 等,Molecular Cloning:A Laboratory Manual, Cold SpringHarbor Press、N.Y.,第二版(1998)和第三版(2000) ;Gene Expression Technology,Method in Enzymology, Genetics and Molecular Biology, Method in Enzymology,Guthrie&Fink(编著),Academic Press, San Diego, Calif, 1991 ;和 Hitzeman 等,J.Biol.Chem.,255:12073-12080,1990。
[0040]本发明的多肽可以通过本领域所公知的任何技术来容易地进行化学合成(Creighton, Proteins: Structures and Molecular Principles, ff.H.Freemanand C0.,NY, 1983)。作为典型技术,包括但不限于液相或固相合成、片段缩合、F-MOC或T-BOC化学法(Chemical Approaches to the Synthesis of Peptides and Proteins,Williams等编著,CRC Press,Boca Raton Florida, 1997 ;A Practical Approach,Atherton 和 Sheppard编著,IRL Press, Oxford,英国,1989)。
[0041]术语“核酸”、“DNA序列”或“多核苷酸”是指处于单链或双链形式的脱氧核糖核苷酸或核糖核苷酸聚合物,并且只要没有其它限制,还包括以与天然存在的核苷酸类似的方式杂交到核酸中的已知天然核苷酸类似物。
[0042]术语“编码LRS或功能等价物的多核苷酸”可以为编码下述多肽的核酸:具有SEQID NO:1的氨基酸序列的多肽,或与该多肽具有至少70%的氨基酸序列同源性的多肽。上述核酸包括DNA、cDNA或RNA。多核苷酸可以具有编码以下氨基酸序列的核苷酸序列:SEQID NO:1的氨基酸序列,或与其具有至少70%的氨基酸序列同源性的氨基酸序列。优选地,多核苷酸包含SEQ ID N0:2的核苷酸序列。上述核酸可以分离自天然来源或者通过本领域已知的基因工程方法进行制造。
[0043]术语“类似物”在本文中用于指下述分子:该物质与参照分子在结构上类似,但是其已通过用替代性取代基替换了参照分子的特定取代基而以靶向和受控方式进行了修饰。与参照分子比较时,本领域技术人员可预期,类似物会展示出相同、类似或者提高的功用性。为鉴定具有改善的性状(例如对于靶分子的更高的结合亲和力)的已知化合物的变体而进行类似物的合成和筛选是药物化学领域所公知的方法。
[0044]术语“同源性”在涉及蛋白和/或蛋白序列时是指其天然或人工地源自共同的祖蛋白或蛋白序列。类似地,当核酸和/或核酸序列天然或人工地源自共同的祖核酸或核酸序列时,其是同源的。
[0045]如本文所用,“接触”具有其通常含义,是指使2种以上的试剂(例如2种多肽)组合,或者使试剂和细胞(例如蛋白质和细胞)结合。接触可以在体外发生,例如,在试管或其它容器中使2种以上的试剂组合,或者使测试试剂和细胞或细胞溶解物组合。此外,接触也可以在细胞中或原位发生,例如,使编码2种多肽的重组多核苷酸在细胞内共表达,由此使所述2种多肽在细胞或细胞溶解物中接触。
[0046]术语“试剂”或“测试试剂”包括任意的物质、分子、元素、化合物、实体或这些的组合。其包括例如蛋白质、多肽、有机小分子、多糖类、多核苷酸等,但不限定于此。其可以为天然产物、合成化合物或化学化合物或2种以上物质的组合。只要没有特别指定,术语“试剂”、“物质”和“化合物”能够互换地使用。
[0047]更具体地,能够利用本发明的方法鉴定的测试试剂包括:多肽、β_转角模拟物(beta-turn mimetics)、多糖类、磷脂、激素、前列腺素、类固醇、芳香族化合物、杂环化合物、苯并二氮卓、低聚N-取代甘氨酸、低聚氨基甲酸酯、多肽、糖类、脂肪酸、类固醇、嘌呤、嘧啶或它们的衍生物、结构类似物或组合。某些测试试剂可以是合成分子,而其它可以是天然分子。上述测试试剂可以从包括合成或天然化合物的文库的各种来源获得。对于能够利用分步方式合成的多种化合物类型,可以生成组合文库。大的化合物组合文库的可以通过 TO95/12608、W095/12608、W093/06121、W094/08051、W095/395503 和 W095/30642 中所述的编码合成文库(ESL)法来构建。肽文库也可以通过噬菌体展示法(参见例如,Devlin,W091/18980)来产生。细菌、真菌、植物和动物提取物形式的天然化合物文库可以由商业来源获得,或者可以在现场收集。为了制造结构类似物,可以对已知的药物学试剂进行定向或随机的化学修饰,如酰基化、烷基化、酯化、酰胺化。
[0048]上述测试试剂可以是天然存在的蛋白质或其片段。这样的测试试剂可以获自天然来源,例如细胞或组织裂解物。多肽试剂文库也可以由商购的cDNA文库制备或者利用常规方法生成。测试试剂也可以为肽,例如具有约5个至30个氨基酸、优选约5个至20个氨基酸、进而优选约7个至15个氨基酸的肽。上述肽可以是天然存在的蛋白质、无规肽或“偏性(biased) ”无规肽的消化物。
[0049]测试试剂可以为“核酸”。核酸测试试剂可以是天然存在的核酸、无规核酸、或“偏性”无规核酸。例如,如上文关于蛋白所述,可以类似地使用原核或真核基因组的消化物。
[0050]在某些优选方法中,测试试剂可以为小分子(例如分子量不超过约1,000的分子)。优选地,高通量检测被适用于筛选此类小分子。此类筛选可以利用许多检测,例如 Shultz (1998)Bioorg.Med.Chem.Lett.,8:2409-2414 ;Weller (1997)Mo1.Drivers.,3:61-70 ;Fernandes (1998)Curr.0pin.Chem.Biol., 2:597-603 ;和Sittampalam(1997)Curr.0pin.Chem.Biol.,1:384-91 中所述。
[0051]本发明的测试试剂筛选方法的文库可以基于对LRS或片段或其类似物的结构研究来进行准备。这样的结构研究使得可以鉴定出能够与LRS结合的测试试剂。
[0052]LRS的三维结构可以以各种方式(例如晶体结构和分子建模)进行研究。利用X射线结晶学的蛋白质结构研究方法在文献中是众所周知的。参见Physical Bio-Chemistry,Van Holde,K.E.(P rentice-HalI, New Jerseyl971),第221-239页 jPPhysical Chemistrywith Applications to the Life Sciences, D.Eisengerg&D.C.Crothers(BenjaminCummings,Menlo Parkl979)。LRS的结构的计算机建模提供了用于设计LRS筛选用测试试剂的另一种手段。分子的建模方法已描述于文献中,例如,标题为“System and method formolecular modeling utilizing a sensitivity factor,,的美国专利第 5,612,894 号和标题为 “Molecular modeling method and system” 的美国专利第 5,583,973 号。另外,蛋白质结构也可以由中子衍射和核磁共振(NMR)来确定,参见例如,Physical Chemistry,第4版,]\100代,¥.]\ (Prentice-HalI, New Jerseyl972);和匪1? of Proteins and NucleicAcids, K.Wuthrich(ffiIey-1nterscience, New Yorkl986)。
[0053]下面,详细说明本发明。
[0054]本发明提供一种筛选用于预防和治疗mTORCl介导的疾病的试剂的方法,所述方法包括以下步骤:
[0055](a)使LRS和RagD与测试试剂一起或在无测试试剂的条件下接触;
[0056](b)对有测试试剂时LRS和RagD间的结合亲和力与无测试试剂时LRS和RagD间的结合亲和力进行比较;和
[0057](c)测定LRS和RagD间的结合亲和力的变化。
[0058]本发明中,Rag蛋白质属于Ras小GTP酶的Rag亚家族,存在RagA、RagB> RagC>RagD这四种Rag。其中,A和B是酵母的Gtrlp GTP酶的直系同源物(ortholog),C和D是酵母的Gtr2p GTP酶的直系同源物。RagD与A或B结合形成二聚体,介导氨基酸对mTORCl途径的活化(Trends in Biochemical Sciences, 33:565-568,2008)。优选地,Rag 可以为RagD。
[0059]已知mTOR(雷帕霉素的哺乳动物靶标)与癌、移植物排斥、自身免疫疾病、糖尿病、肥胖症、心血管疾病、神经系统异常、老化等疾病有关(Drug DiscoverryToday, 12:112-124,2007)。因此,本发明的mTOR介导疾病可以为癌、自身免疫疾病、糖尿病、肥胖症、心血管疾病。
[0060]具体地说,癌包括但不限于黑色素瘤、白血病、结肠癌、肺癌、肝癌、胃癌、食道癌、胰腺癌、胆囊癌、肾癌、膀胱癌、前列腺癌、睾丸癌、宫颈癌、子宫内膜癌、绒毛膜癌、卵巢癌、乳腺癌、甲状腺癌、脑肿瘤、头颈部癌、皮肤癌、淋巴瘤,并且其还包括B细胞赘生物(如前体B细胞赘生物)、T细胞和NK细胞赘生物(如前体T细胞赘生物)及霍奇金淋巴瘤(霍奇金病)(如经典霍奇金淋巴瘤)。
[0061]可以利用本领域所公知的各种生物化学和分子生物学技术或检测来实施本发明。此类技术描述于 Sambrook 等,Molecular Cloning:A Laboratory Manual, Cold SpringHarbor Press, N.Y.,第二版(1989)和第三版(2000);和 Ausubel 等,Current Protocolsin Molecular Biology, John ffiley&Sons, Inc., New York(1987-1999)。
[0062]优选的是,首先检测测试试剂的调节LRS的生物化学活性的能力(第一检测步骤)。具体地说,在第一步骤中,通过检测在测试试剂的存在下分离的LRS的生物活性,从而鉴定调节所述多肽的生物活性的调节剂。更优选地,本发明可以包括:
[0063](a)在测试试剂的存在下使LRS与测试试剂接触;和
[0064](b)测定LRS的活性,选择出改变LRS的活性的测试试剂。
[0065]更优选地,本发明可以包括:
[0066](a)使LRS (亮氨酰tRNA合成酶)和RagD与测试试剂一起或在无测试试剂的条件下接触;
[0067](b)对有测试试剂或没有测试试剂时LRS和RagD间的结合亲和力进行测定;
[0068](c)对有测试试剂时LRS和RagD间的结合亲和力与无测试试剂时LRS和RagD间的结合亲和力进行比较;和
[0069](d)对有测试试剂时LRS和RagD间的结合亲和力与无测试试剂时LRS和RagD间的结合亲和力的变化进行测定。
[0070]在第一步骤中,可以检测对于LRS的各种生物活性的调节。例如,可以检测测试试剂的调节LRS表达水平的活性(例如转录或翻译)。也可以检测测试试剂在调节LRS的细胞内水平或稳定性方面的活性(例如翻译后的修饰或水解)。
[0071]通过第一检测步骤鉴定出使LRS的生物活性增加的调节制剂,然后使其在LRS的存在下进行进一步测试,以检测其是否具有与Rag(更确切为RagD (或RagD GTP酶)结合的能力(第二试验步骤)。
[0072]上述第一步骤和第二步骤中均可以使用完整LRS和亚基或其片段、类似物或功能衍生物。这些检测中能够使用的片段通常保有LRS的一种或多种生物学活性。包含上述片段或类似物的融合蛋白也可以在测试试剂的筛选中使用。LRS的功能衍生物具有氨基酸缺失和/或插入和/或取代,同时保有一种或多种生物活性,因而也能够用于本发明的筛选方法的实施中。
[0073]可以使用各种公知技术来鉴定出调节LRS的测试试剂。优选的是,测试试剂可以通过基于细胞的检测系统进行筛选。例如,在典型的基于细胞的检测中(即第二筛选步骤中),在测试试剂的存在下测定报告基因活性(即酶活性),然后将其与不存在测试试剂时的报告基因的活性进行比较。报告基因能够编码本领域所公知的任意可检测多肽(响应或报告多肽),例如能够通过荧光或磷光检测出的多肽、能够通过其具有的酶活性而检测出的多肽。可检测的响应多肽例如为荧光素酶、α -葡萄糖醛酸酶、α -半乳糖苷酶、氯霉素乙酰转移酶、绿色荧光蛋白、增强型绿色荧光蛋白和人分泌的碱性磷酸酶。
[0074]在基于细胞的检测中,测试试剂(例如肽或多肽)可以由也存在于宿主细胞内的不同载体表达。某些方法中,测试试剂的文库可以由上述载体的文库(例如cDNA文库;参见下文实施例)编码。上述文库可以利用本领域所公知的方法进行制造(参见例如,SambiOOk等和Ausubel等,见上文),或者可以由各种商业来源获得。
[0075]除了上述基于细胞的检测以外,还可以利用不基于细胞的方法进行筛选。这些方法例如包括迁移率变动DNA结合检测、甲基化和尿嘧啶干扰检测、DNA酶和羟基自由基足迹分析、荧光偏振和紫外线交联或化学交联剂。一般性综述参见例如上文的Ausubel等(第12章,DNA-Protein Interactions)。一种用于分离共结合蛋白(包括核酸和DNA/RNA结合蛋白)的技术包括对紫外线交联或化学交联剂的利用(包括例如,可切割交联剂二硫代双(琥珀酰亚氨基丙酸酯)和3,3’ - 二硫代双(磺基琥珀酰亚氨基丙酸酯));参见例如,McLaughlin, Am.J.Hum.Genet., 59:561-569,1996 ;Tang, Biochemistry, 35:8216-8225,1996 ;Lingner, Proc.Natl.Acad.Sc1.U.S.A.,93:10712, 1996 ;和 Chodosh, Mol.Cell.Biol.,6:4723-4733, 1986。
[0076]第一检测步骤:调节LRS的测试试剂的筛诜(可诜)
[0077]许多检测系统能够适用于筛选用于LRS的调节物的测试试剂。如上所述,筛选可以利用体外检测系统或基于细胞的检测系统。该筛选步骤中,可以针对与LRS的结合、LRS的细胞水平变化、或LRS的其它生物活性的调节对测试试剂进行筛选。
[0078]I)与LRS结合的测试试剂的筛选
[0079]在第一筛选步骤中,可以测定LRS与测试试剂的结合。例如,其可以通过标记的体外蛋白-蛋白结合检测、电泳迁移率变动检测、蛋白结合的免疫检测和功能性检测(磷酸化检测等)等各种方法进行检测。参见例如,美国专利第4,366,241 号、4,376,110 号、4,517,288 号和 4,837,168 号;和 Bevan 等,Trends inBiotechnology, 13:115-122,1995 ;Ecker 等,Bio/Technology, 13:351-360,1995 ;和Hodgson, Bio/Technology, 10:973-980, 1992。测试试剂可以通过检测出与LRS的直接结合来鉴定,例如通过针对LRS的抗体的与LRS的共免疫沉淀。此外,测试试剂可以通过检测出表示LRS与测试试剂结合的信号(例如荧光猝灭)来鉴定。
[0080]竞争检测提供用于鉴定与LRS特异性结合的测试试剂的合适形式。在这些形式中,通过与已知会结合LRS的化合物的竞争来筛选测试试剂。已知的结合化合物可以是合成化合物。此外,其也可以是特异性识别LRS多肽的抗体,例如,针对LRS的单克隆抗体。如果测试试剂抑制了已知与LRS结合的化合物的结合,则该测试试剂也与LRS结合。
[0081]已知有许多类型的竞争检测,例如:固相直接或间接放射免疫检测(RIA)、固相直接或间接酶免疫检测(EIA)、夹心竞争检测(参见Stahli等,Methods inEnzymology, 9:242-2453,1983);固相直接生物素-亲和素 EIA (参见 Kirkland 等,J.1mmunol., 137:3619, 1986);固相直接标记检测、固相直接标记夹心检测(参见Harlow和 Lane, “Antibodies, A Laboratory Manual,,,Cold Spring Harbor Press, 1988);利用125I标记的固相直接标记RIA (参见Morel等,Mol..Immun0.,25(1) ;7_15,1988);固相直接生物素-亲和素EIA(参见Cheung等,Virology, 176:546-552,1990);和直接标记的RIA(MoIdenhauer 等,Scand.J.TmmunoT,., 32 ;77_82,1990)。一般而言,此类检测涉及利用细胞或结合于固体表面的纯化多肽,其携带有未经标记的测试试剂和经标记的参照化合物。通过确定在测试试剂的存在下与固体表面或细胞结合的标记的量来测定竞争性抑制。通常测试试剂过量存在。通过竞争检测鉴定出的调节剂包括与参照化合物结合于相同表位的试剂,和为了产生空间位阻而与充分接近参照化合物所结合的表位的相邻表位结合的试齐U。通常在竞争试剂过量存在时,对照化合物对于共同的靶多肽的特异性结合被抑制至少50%或 75%。
[0082]上述筛选检测可以为不溶性或可溶性形式。不溶性检测的一例为在固相基质上将LRS或其片段固体化。之后,用足以使测试试剂能够结合的时间间隔使固相基质与测试试剂接触。在从固相基质洗涤除去任何未结合的物质之后,结合于固相的试剂的存在使得能够对该试剂进行鉴定。上述方法可以包括从固相基质洗脱结合的制剂并由此将该试剂分离的步骤。作为另一选择,除使LRS固定化外,可使测试试剂与固相基质结合然后添加LRS。
[0083]可溶性检测包括如上所述的组合文库筛选方法中的一些。在可溶性检测形式下,测试试剂或LRS均不与固体支持物(solid support)结合。LRS或其片段对于测试试剂的结合例如可以通过LRS和/或测试试剂的荧光的变化来确定。荧光可以为固有的,或者可以通过用荧光团标记任一成分来赋予。
[0084]在一些结合检测中,LRS、测试试剂或第三分子(例如针对LRS的抗体)可以作为标记的实体提供(即,可以共价地附接或连接至可检测的标记或基团或交联性基团),以便辅助在给定的情境下对多肽的鉴定、检测和定量。这些可检测基团可以包括可检测多肽基团,例如可检测的酶或抗体表位。作为另一选择,上述可检测基团可以选自各种其它可检测基团或标记,例如,放射性标记(例如1251、32P、35S)或者化学发光基团或荧光基团。同样地,上述可检测基团可以为底物、辅因子、抑制剂或亲和配体。
[0085]2)调节LRS的其它生物活性的试剂的筛选
[0086]测试试剂与LRS的结合表示该试剂可以为LRS的调节剂。此外,这也表明所述试剂能够调节Rag(优选为RagD或RagD GTP酶)的生物活性。因此,可以进一步测试与LRS结合的测试试剂的调节层粘连蛋白受体活性的能力。
[0087]作为另一选择,可以对与LRS结合的测试试剂进行进一步检验以确定其对于LRS的活性。这样的活性的存在、性质和程度可以通过活性检测来进行测试。上述活性检测可以确认与LRS结合的测试试剂实际上具有对LRS的调节活性。更通常而言,此类活性检测可以独立地用于鉴定调节LRS的活性的测试试剂(即,无需首先检测其与LRS结合的能力)。一般地,上述方法涉及:在存在或不存在LRS的生物学活性测试所必需的其它分子或试剂的情况下,向含有LRS的样品中添加测试试剂,并测定LRS的生物活性的变化。除了筛选调节LRS的酶活性或其它生物活性的试剂的检测以外,上述活性检测还包括针对LRS的表达或细胞水平的变化的体外筛选和体内筛选。
[0088]第二测试步骤:通讨Rag调节mTORCl活件的制剂的筛诜
[0089]一旦经鉴定调节剂与LRS结合和/或调节LRS的生物活性(包括细胞水平),则可以对测试该调节剂的通过Rag调节mTORCl的活性的能力,或者进一步测试其是否存在预防或治疗如癌等mTORCl介导疾病的能力。一般在LRS的存在下测试上述调节剂的调节。在利用基于细胞的筛选系统的情况下,LRS可以由已被导入宿主细胞的表达载体表达。作为另一选择,LRS也可在筛选系统中由宿主细胞内源性供给。
[0090]同时,本发明提供一种与对照组相比减小细胞的尺寸的方法,所述方法包括抑制细胞内LRS的表达。
[0091]已知mTORCl 调节细胞的尺寸(Fingar DC, Salama S,Tsou C, Harlow E, BlenisJ.Mammalian cell size is controlled by mTOR and its downstream targets S6Kland4EBPl/eIF4E.Genes Dev.16(2002), 1472-1487 页)。根据本发明人鉴定出的 LRS 与 mTORCl的关联性,本发明人确认到对LRS的表达的抑制导致细胞尺寸的减小。结果,确认到抑制了LRS的细胞与对照组细胞相比尺寸更小(图2e上部、图2f)。
[0092]通过本领域的各种公知方法来调节对细胞内LRS表达的抑制。对LRS的表达的抑制可以通过下述方式进行控制,但不限定于此:用包含可操作性连接于启动子的多核苷酸的载体来转化细胞,所述多核苷酸编码LRS的反义RNA或干扰RNA。
[0093]“启动子”是指在特定的宿主细胞中调节可操作地连接于启动子的核酸序列的表达的DNA序列,而术语“可操作性连接”是指一个核酸片段与其它核酸片段连接,从而其功能或表达受到所述其它核酸片段的影响。另外,启动子还可以包含:用于控制转录的任意的操纵子序列、编码合适的mRNA核糖体结合位点的序列、和控制转录和翻译的结束的序列。启动子可以是组成性诱导靶基因的表达的组成型启动子,或在特定位点和特定时间诱导靶基因的表达的诱导型启动子。
[0094]本发明的细胞可以为具备mTORCl介导的信号传导系统的细胞。
[0095]此外,本发明提供一种筛选用于预防和治疗mTORCl介导疾病的试剂的方法,所述方法包括以下步骤:
[0096](a)使LRS (亮氨酰tRNA合成酶)和RagD在有测试试剂或无测试试剂的条件下接触;
[0097](b)对有测试试剂时LRS和RagD间的结合亲和力与无测试试剂时LRS和RagD间的结合亲和力进行比较;和
[0098](c)鉴定出抑制LRS和RagD间的结合亲和力的测试试剂。
[0099]更优选地,本发明可以包括:
[0100](a)使LRS (亮氨酰tRNA合成酶)和RagD在有测试试剂或无测试试剂的条件下接触;
[0101](b)对有测试试剂或无测试试剂时LRS和RagD间的结合亲和力进行测定;
[0102](c)对有测试试剂时LRS和RagD间的结合亲和力与无测试试剂时LRS和RagD间的结合亲和力进行比较;和
[0103](d)鉴定出抑制LRS和RagD间的结合亲和力的测试试剂。
[0104]如上所述,筛选方法可以利用包括标记的体外蛋白-蛋白结合检测(体外下拉检测)、EMSA(电泳迁移率变动检测)、蛋白结合的免疫检测、功能性检测(磷酸化检测等)、酵母双杂交(yeast-2hybrid)检测、非免疫性免疫沉淀检测、免疫沉淀/蛋白印迹检测和免疫共定位检测等的本领域公知的各种方法进行。
[0105]例如,酵母双杂交检测可以利用表达LRS和RagD或这些蛋白的部分或同系物的酵母来实施,所述LRS和RagD或其部分或同系物与细菌阻遏因子Lexa或酵母GAL4的DNA结合结构域和酵母GAL4蛋白的反式激活结构域分别融合(Kim, M,J.等,Nat, Gent.,34:339-336,2003)。LRS和RagD的结合重建了反式激活因子,后者在具有与LexA蛋白或GAL4的DNA结合结构域结合的调节序列的启动子的控制下诱导报告基因的表达。
[0106]如上所述,报告基因可以是编码可检测多肽的本领域公知的任何基因。例如,可以使用氯霉素乙酰转移酶(CAT)、荧光素酶、β -半乳糖苷酶、β -葡萄糖苷酶、碱性磷酸酶、绿色荧光蛋白(GFP)等。若LRS和RagD或这些蛋白质的一部分或同系物的结合水平被测试试剂刺激或提高,则报告基因的表达与正常条件下的表达相比增加。相反地,若结合水平被测试试剂抑制或减低,则报告基因不表达,或者与正常条件下相比其表达更少。
[0107]此外,还可选择编码能够使酵母生长的蛋白的报告基因(即,当该报告基因不表达时,酵母的生长受抑制)。例如,报告基因可以是编码参与氨基酸或含氮碱基的生物合成通路的酶的营养缺陷型基因(例如,如ADE3、HIS3等酵母基因或来自其它物种的等同基因)。若在该体系中表达的LRS和RagD或这些蛋白的部分或同系物间的相互作用被测试试剂抑制或减弱,则报告基因不被表达。
[0108]因此,在上述条件下酵母的生长停止或变缓。由报告基因表达所引起的这种效果可以通过裸眼或通过装置(例如显微镜)来进行观察。
[0109]下面将对本发明的附图进行说明。
[0110]图1示出亮氨酰-tRNA合成酶(LRS)为mTOR关联蛋白。(a)LRS的亚细胞分级(subcellular fractionation)。各个级分用抗LRS、抗IRS、抗MRS和抗mTOR抗体进行免疫印迹。YYl和LAMP2分别用作细胞核和细胞内膜标记物。Nuc,细胞核;PM,质膜;EM,内膜;Cyt,胞质。(b) HeLa细胞中的LRS的免疫荧光染色。将HeLa细胞与抗LRS、抗钙联蛋白(ER标记物)、抗GM130 (高尔基体标记物)、抗LAMP2 (溶酶体标记物)或抗EEAl (核内体标记物)抗体反应,并分别通过alexa488缀合二抗和alexa504缀合二抗而可视化。(c) LRS的溶酶体定位。对293T细胞进行I小时氨基酸饥饿处理,并用氨基酸再激发5分钟。利用溶酶体分离试剂盒(Sigma-Aldrich)将细胞分级。溶酶体蛋白用抗mTOR、抗Raptor、抗LRS、抗LAMPl抗体进行了免疫印迹。(d)将293T细胞溶解物用抗mTOR抗体进行免疫沉淀,通过免疫印迹测定了共沉淀的LRS和Raptor。使用山羊IgG、抗mTOR抗体加上封闭表位肽和抗肌动蛋白抗体作为阴性对照。(e) 293T细胞被对照质粒(EV)、myc标记的LRS或MRS转染。细胞溶解物用抗myc抗体免疫沉淀,共沉淀的mTOR和Raptor通过免疫印迹进行测定。(f)HeLa细胞内mTOR与LRS的共定位(co-localization)。细胞与抗LRS、抗MRS、抗IRS和抗mTOR抗体反应,并分别利用alexa488缀合二抗和alexa594缀合二抗可视化。(g)HeLa细胞内的Raptor和LRS的共定位。细胞与抗LRS、抗MRS、抗IRS和抗Raptor抗体反应,并分别利用alex488缀合二抗和alex594缀合二抗可视化。
[0111]图2示出LRS对于mTORCl活化和溶酶体定位、细胞尺寸、自吞噬的效果。(a) 293T细胞被6种LRS siRNA转染48小时,通过免疫印迹测定了氨基酸依赖性S6K磷酸化。
(b)293T细胞被对照、mTOR、LRS、IRS,MRS或VRS siRNA转染48小时,并通过免疫印迹测定了氨基酸依赖行S6K磷酸化。(c) 293T细胞被对照、LRS、IRS,MRS或VRS siRNA转染48小时,并通过免疫印迹测定了亮氨酸依赖性S6K磷酸化。(d)293T被对照或LRS siRNA转染48小时,对细胞进行I小时氨基酸饥饿处理并用氨基酸再激发5分钟。细胞用溶酶体分离试剂盒(Sigma-Aldrich)进行分级。溶酶体蛋白用抗mTOR、抗Raptor、抗LRS和抗LAMP2抗体进行了免疫印迹。(e)用对照、LRS、IRS、VRS或MRS siRNA转染的细胞的细胞尺寸分布。(f)将来自(e)的细胞尺寸分布(Gl细胞的FSC)定量(η = 3,并且ρ〈0.0001)。(g) LC3切割对LRS下调的影响。293T细胞用指定的siRNA转化48小时,进行2小时亮氨酸饥饿处理。制备细胞溶解物,通过采用抗LC3抗体的免疫印迹来测定LC3-1和LC3-1I。自吞噬诱导由LC3II/LC3I的比例表示。(h)用指定的siRNA和EGFP-LC3的共转染后,对细胞进行2小时亮氨酸和血清饥饿处理。监测斑点(puncta)中的EGFP-LC3累积。(i)来自(f)的EGFP-LC3斑点的定量分析。对于每个样品分析至少8个细胞。数据表示平均值土S.D.。与对照siRNA转染的细胞相比,LRS siRNA及mTOR siRNA转染的细胞在统计学上显示出LC3斑点/细胞的的显著增加(分别为P = 0.0005和p〈0.0001)。
[0112]图3示出LRS和RagD GTP酶的直接相互作用。(a)将纯化的GST-LRS与来自用HA标记的 RagA、RagB, RagC, RagD, Rhebl、G β L、Raptor 或 mTOR 转染的 293T 细胞的蛋白提取物一起温育,通过采用抗HA抗体的免疫印迹来测定HA标记的蛋白的共沉淀。输入(input)为10%所用蛋白提取物的量。(b)293T细胞在表达载体中被指定的cDNA转染。细胞溶解物和HA标记的免疫沉淀物利用抗myc或HA抗体通过免疫印迹进行分析。WCL是指全细胞溶解物。(C)HA标记的RagD和myc标记的LRS、IRS、MRS或EPRS的共转染之后,利用抗HA抗体将细胞溶解物免疫沉淀,并通过利用抗myc抗体的免疫印迹来测定共沉淀的myc标记蛋白。
(d)293T细胞在表达载体中被指定的cDNA转染。制备细胞溶解物,细胞溶解物和myc标记的免疫沉淀物利用抗FLAG、抗myc或抗HA抗体通过免疫印迹来进行分析。(e) 293T细胞被对照或myc-RagD/HA-RagB转染。利用抗myc抗体使细胞溶解物免疫沉淀,并利用抗HA、抗LRS或抗Raptor抗体通过免疫印迹来分析myc标记的免疫沉淀物。(f)将RagDGTP酶的各个功能结构域作为GST融合蛋白表达。将GST-RagD蛋白与myc标记的LRS —起温育,myc标记的共沉淀物利用抗myc抗体通过免疫印迹来测定。(g)在将FLAG标记的LRS和HA标记的RagB以及myc标记的WT或突变RagD共转染之后,细胞溶解物利用抗myc抗体进行免疫沉淀,共沉淀的LRS和RagB利用抗FLAG和抗HA抗体通过免疫印迹来进行测定。(h)将LRS的各个C-末端片段作为GST融合蛋白表达。纯化的GST-LRS蛋白与HARagD转染的细胞溶解物一起温育,HA-RagD的共沉淀物利用抗HA抗体通过免疫印迹来进行测定。(i)HA标记的RagD和myc标记的WT或突变LRS共转染之后,细胞溶解物利用抗HA抗体进行免疫沉淀,共沉淀的LRS利用抗myc抗体通过免疫印迹来进行测定。
[0113]图4示出LRS与RagD和Raptor以氨基酸依赖性方式形成分子复合体。(a)LRS与RagD和Raptor的受氨基酸刺激的相互作用。对293T细胞进行I小时氨基酸饥饿处理,并用氨基酸再激发5分钟。利用抗Raptor抗体使细胞溶解物免疫沉淀,并利用抗LRS和抗RagD抗体通过免疫印迹来测定共沉淀的LRS和RagD。(b) 293T细胞在表达载体中用指定的cDNA转染。对细胞进行I小时亮氨酸饥饿处理,并用亮氨酸再刺激5分钟。细胞溶解物和myc标记的免疫沉淀物利用抗FLAG和抗myc抗体通过免疫印迹来进行分析。(c) 293T细胞在表达载体中用指定的cDNA转染。对细胞进行氨基酸饥饿处理I小时,并用氨基酸再刺激5分钟。细胞溶解物和HA标记的免疫沉淀物利用抗myc、抗FLAG和抗HA抗体通过免疫印迹来进行分析。(d) LRS对于RagD和Raptor的复合体形成是必需的。将293T细胞用对照或LRS siRNA转染48小时。对细胞进行氨基酸饥饿处理I小时,用氨基酸再刺激5分钟。细胞溶解物利用抗Raptor抗体进行了免疫沉淀,沉淀物利用抗LRS和抗RagD抗体通过免疫印迹来进行分析。
[0114]图5示出LRS充当mTORCl信号传导的亮氨酸受体。(a)几个物种的亮氨酰tRNA合成酶的N-末端区的主要序列比对。对于ATP结合重要的Ia类保守HIGH基序用灰色框表示。(b)通过使用4 μ M tRNALeu和50nM酶,通过LRS WT和突变体(F50A/Y52A、F50A以及Y52A)进行亮氨酰化。(c)将293T细胞用LRS WT或F50A/Y52A突变体转染24小时,然后进行氨基酸饥饿处理I小时,用氨基酸再刺激5分钟。亮氨酸依赖性S6K磷酸化通过免疫印迹进行测定。(d)在myc标记的WT LRS或突变LRS与HA-RagD/myc-RagB共转染之后,细胞溶解物利用抗HA抗体进行了免疫沉淀,共沉淀的LRS利用抗myc抗体通过免疫印迹来进行测定。(e)293T细胞在表达载体中用指定的cDNA转染。细胞溶解物利用抗HA抗体进行免疫沉淀,共沉淀的LRS和Raptor利用抗myc抗体通过免疫印迹进行测定。
[0115]图6示出依赖于RagD的核苷酸结合状态的方式的LRS和RagD的相互作用。响应于(a)氨基酸或(b)亮氨酸的饥饿处理和刺激的S6K的磷酸化受到所指定的蛋白的表达的影响。使293T细胞进行(a)氨基酸或(b)亮氨酸饥饿处理I小时并用氨基酸或亮氨酸刺激5分钟,从所述293T细胞制备细胞溶解物。(c)将纯化的GST或GST-LRS蛋白在⑶P β S或GTP Y S的存在下与HA-RagD转染的细胞溶解物一起温育。共沉淀的RagD利用抗HA抗体通过免疫印迹进行测定。(d)将纯化的GST或GST-LRS蛋白与myc标记的RagD WT、S77L(⑶P)或Q121L(GT0)转染的细胞溶解物一起温育。共沉淀的RagD利用抗myc抗体通过免疫印迹进行测定。(e)在myc标记的WT RagD或突变RagD与FLAG标记的LRS的共转染之后,细胞溶解物利用抗myc抗体进行了免疫沉淀,共沉淀的LRS和RagD利用抗FLAG和抗myc抗体通过免疫印迹进行了测定。(f)293T细胞在表达载体中用指定的cDNA转染。制备细胞溶解物,并将细胞溶解物和myc标记的免疫沉淀物利用抗FLAG或抗myc抗体通过免疫印迹进行分析。(g)将293T细胞在表达载体中用指定的cDNA转染。制备细胞溶解物,将细胞溶解物和myc标记的免疫沉淀物利用抗FLAG、抗HA或抗myc抗体通过免疫印迹进行分析。
[0116]图7示出LRS充当RagD的GTP酶激活蛋白。(a)将指定量的His标记的LRS (759?1176位氨基酸)片段在37°C与0.15 μ M RagD温育20分钟。误差线表示平均S.D.(η =3)。(b)将His标记的LRS片段(0.3 μ M)与RagD温育指定时间。误差线表示平均S.D.(η= 3)。(c)推定的LRS GAP基序与几个物种的ADF-核糖基化因子-GAP (ARF-GAP)的序列比对。保守的残基为黑色。h,疏水性;s,Gly或Ala ;x,任意残基;hs,智人;rn,褐家鼠;dm,果蝇;sc,酿酒酵母;ss,野猪。(d) LRS WT和突变体对RagD的GTP水解的影响。将纯化的LRSWT (759?1176位氨基酸)片段或突变体(H844A,R845A)片段在37°C与RagD —起温育20分钟。误差线表示平均S.D.(η = 3)。(e)将293T细胞用LRS WT或GAP突变体(H844A,R845A)转染24小时,然后进行氨基酸饥饿处理I小时,并用氨基酸再刺激5分钟。亮氨酸依赖性S6K磷酸化通过免疫印迹进行了测定。(f)图示表示的LRS在mTORCl的氨基酸信号传导中的作用。
[0117]图8显示了 LRS的溶酶体定位的时间推移共聚焦活细胞成像。将293T细胞用EGFP-LRS (a)或EGFP对照(b)表达载体转染36小时,然后用LysoTracker RedDND-99 (Molecular Probes)染色30分钟。对细胞进行亮氨酸饥饿处理50分钟,并用0.8mM亮氨酸再刺激12分钟。在亮氨酸饥饿处理期间,以10分钟间隔监测细胞,然后在用亮氨酸再刺激后以I分钟间隔进行监测。(c)定量分析显示出亮氨酸依赖性的LRS溶酶体定位。[0118]图9示出LRS敲低(knockdown)对于受亮氨酸或亮氨酸类似物刺激的S6K磷酸化所产生的影响。(a)亮氨酸类似物对于亮氨酸刺激的S6K磷酸化所产生的影响。对293T细胞进行亮氨酸饥饿处理I小时,并与0.8mM或8mM的亮氨醇或亮氨酰胺进行预温育。5分钟后,添加0.8mM亮氨酸。温育5分钟后,收集细胞并通过免疫印迹测定S6K磷酸化。(b)对HeLa细胞进行I小时亮氨酸饥饿处理,并与0.8mM或8mM的亮氨醇或亮氨酰胺预温育。5分钟后,添加0.8mM亮氨酸。温育5分钟后,收集细胞,并通过免疫印迹测定S6K磷酸化。
(c)将293T细胞用对照或LRS siRNA转染48小时,通过免疫印迹测定受亮氨酸或亮氨酸类似物刺激的S6K磷酸化。L-亮氨酸和亮氨酰胺的浓度为0.8mM, D-亮氨酸、正亮氨酸和亮氨醇的浓度为8mM。(d)将HeLa细胞用对照或LRS siRNA转染48小时,通过免疫印迹测定受亮氨酸或亮氨酸类似物刺激的S6K磷酸化。L-亮氨酸和亮氨酰胺的浓度为0.8mM,D-亮氨酸、正亮氨酸和亮氨醇的浓度为8mM。
[0119]图10示出LRS以不依赖tRNA的方式参与mTORCl的活化。(a)tRNA对于体外LRS-RagD结合的影响。在存在亮氨酸(0.1mM) ,ATP (0.1mM)和?ΚΝΑ^(25 μ g)的组合时,将293T细胞溶解物与纯化的GST或GST融合LRS温育。沉淀的RagD通过利用抗RagD抗体进行免疫印迹而确定。(b)几个物种的亮氨酰tRNA合成酶的主要序列比对。对tRNA结合重要的Ia类保守KMSKS基序以黑色框示。(c)进行了通过LRS K716A/K719A突变体的亮氨酰化和ATP-PPi交换活动。(d)K716A/K719A突变体对于RagD结合所产生的影响。将293T细胞用myc标记的LRS WT或突变体和HA标记的RagD转染24小时。细胞溶解物用抗HA抗体进行免疫沉淀,共沉淀的LRS和RagD利用抗myc和抗myc抗体进行免疫印迹来确定。
(e)将293T细胞用指定的cDNA转染24小时,通过免疫印迹确认了亮氨酸依赖的S6K磷酸化。
[0120]图11示出亮氨酸以剂量依赖性方式使mTORCl活化。(a)以指定浓度的亮氨酸对293T细胞进行5分钟处理。通过免疫印迹确认了亮氨酸依赖性的S6K磷酸化。(b)对(a)中的P-S6K条带的定量。对于mTORCl的亮氨酸刺激的EC5tl为约80mM。(c) WTLRS的亮氨酰化和ATP-PPi交换活动的动力学参数。
[0121]图12示出氨基酸刺激对于RagD的GTP/⑶P状态的影响。使myc-RagD的野生型和突变体形式转染到293T细胞内,将所述细胞用32P磷酸标记。将myc-RagD免疫沉淀,洗脱出结合的核苷酸并用TLC进行分析。EV是指对照空载体。
[0122]图13是测定LRS和Rag间结合亲和力的ELISA检测结果。(a)ELISA结果示出RagD蛋白与LRS-(1-1176)以剂量依赖性方式结合(96孔板用LRS-(1-1176)(碳酸盐缓冲液中500ng/ml)涂布;GST为阴性对照;RagD蛋白以GST-RagD形式使用;一抗是抗GST抗体(z-5,l:100稀释);二抗是HRP缀合的抗兔抗体(1:5000稀释))。(b)对于以LRS-(1-1176)涂布的96孔板上的对照(GST)、RagD和RagD+LRS-(759-1176)的结合亲和力的比较结果。LRS-(759-1176)减少了以LRS-(1-1176)涂布的板上的RagD的结合亲和力。
[0123]有益效果
[0124]本发明涉及LRS的新用途,并提供了筛选用于预防和治疗mTORCl介导疾病的试剂的方法以及相对于对照组减小细胞尺寸的方法。因此,所述筛选方法能够用于如癌等疾病的新型治疗剂的开发。【专利附图】

【附图说明】
[0125]图1示出亮氨酰tRNA合成酶(LRS)为mTOR关联蛋白。
[0126]图2示出LRS对于mTORCl活化和溶酶体定位、细胞尺寸、自吞噬的效果。
[0127]图3示出LRS和RagD GTP酶的直接相互作用。
[0128]图4示出LRS与RagD和Raptor以氨基酸依赖性方式形成分子复合体。
[0129]图5示出LRS充当mTORCl信号传导的亮氨酸受体。
[0130]图6示出依赖于RagD的核苷酸结合状态的方式的LRS和RagD的相互作用。
[0131]图7示出LRS充当RagD的GTP酶激活蛋白。
[0132]图8显示了 LRS的溶酶体定位的时间推移共聚焦活细胞成像。
[0133]图9示出LRS敲低对于受亮氨酸或亮氨酸类似物刺激的S6K磷酸化的影响。
[0134]图10示出LRS以不依赖tRNA的方式参与mTORCl活化。
[0135]图11示出亮氨酸以剂量依赖性方式使mTORCl活化。
[0136]图12示出氨基酸刺激对于RagD的GTP/⑶P状态的影响。
[0137]图13是测定LRS和Rag间结合亲和力的ELISA检测结果。
【具体实施方式】
[0138]〈方法〉
[0139]1.细胞培养和试剂
[0140]HEK293T细胞和HeLa细胞在含有10 %的胎牛血清和抗生素的DMEM(Hyclone)中进行生长。CH0-tSHl细胞由Mike Clemens博士馈赠。CH0_tSHl细胞于34°C在补充了9 % (v/v)胎牛血清、100mg/ml链霉素硫酸盐以及100单位/ml青霉素G的Dulbecco改良Eagle培养基/Ham F12营养混合物(Sigma)中生长。tSHl细胞系含有在34°C为活性但在39.5°C为非活性(defective)的温度敏感性亮氨酰tRNA合成酶。氨基酸缺乏和追加实验利用DMEM(+AA)和包含25mM葡萄糖、ImM丙酮酸钠、I XMEM维生素(Invitrogen)的DPBS(-AA)来实施。L-亮氨酸、D-亮氨酸、L-亮氨酰胺、亮氨醇、正亮氨酸(Sigma Aldrich)用PBS [pH7.6]溶解,以0.8mM或8mM的浓度进行处理。[32P]焦磷酸盐(80.70mCi/mL)由PerkinElmer Life Sciences 获得。[3H]亮氨酸由 American Radiolabeled Chemicals 获得。RagC 和 RagD siRNA 由 Invitrogen 获得。
[0141]2.细胞的氨基酸或亮氨酸饥饿处理和刺激
[0142]为将亮氨酸耗尽,细胞用无亮氨酸DMEM洗涤2次,在无亮氨酸DMEM中温育60分钟,用52mg/ml亮氨酸刺激5分钟至60分钟。为了进行氨基酸饥饿处理,将细胞用含有25mM葡萄糖、ImM丙酮酸钠、I XMEM维生素的DPBS洗涤并在其中温育60分钟,然后替代为DMEM并在其中培养5分钟至60分钟。
[0143]3.抗体和质粒
[0144]抗体由下述来源获得:抗mTOR封闭肽、针对mTOR(用于IP)、HA、c_MYC、核纤层蛋白A的抗体以及HRP标记的抗小鼠、抗兔二抗获自Santa Cruz Biotechbology ;针对磷酸化T389S6K1、磷酸化 S473Akt/PKB、磷酸化 T308Akt、S6K1、Akt、LC3、RagC、RagD 抗体来自 CellSignaling Technology ;针对 LAMP2 (H4B4)、mTOR(Y391)、Raptor 的抗体来自 Abcam(用于Western);针对 Raptor、mTOR、FLAG 的抗体来自 Invitrogen (用于 Western、IF、IP);针对mTOR、克隆体2ID8.2的小鼠单克隆抗体来自Millipore (用于Western) ;LysoTracker RedDND-99来自Molecular Probe ;单克隆小鼠抗I丐联蛋白抗体来自BD Pharmigen ;由D_H.Kim博士(明尼苏达大学)和E.J.Kim博士(大邱加图立大学)慷慨提供的包括RagA、RagB,RagC,RagD,mTOR,Raptor,GbL,RhebI 的 HA 标记的 mTORCl 成分构建体。包括 LRS、IRS,MRS以及EPRS在内的所有其它DNA构建体为实验室储备物。转染利用Gen印orter系统(GeneTherapysystem)进行。
[0145]4.细胞溶解物的制造和免疫沉淀
[0146]将细胞溶解于含有I % Triton X_100、40mM HEPES (pH7.4)、2mM EDTA、IOmM焦磷酸盐、IOmM甘油磷酸盐以及蛋白酶抑制剂混合物的分解缓冲液中,将溶解物以13,OOOrpm离心30分钟。之后,通过SDS-PAGE将20 μ g提取的蛋白分级。为了进行免疫沉淀,将细胞溶解(50mM Tris-HCL (pH7.4) UOmM NaClUmM EDTA、0.5mM EGTAUmM MgCl2、0.1% CHAPS 和0.5% TritonX-100、lmM苯甲基磺酰氟),向溶解物添加一抗,于4°C旋转温育2小时。然后添加蛋白质琼脂糖G-琼脂糖凝胶的50%浆料,并继续培养额外4小时。用冰冷的溶解缓冲液洗涤3次后,沉淀物用SDS样品缓冲液溶解,用SDS-PAGE分离。
[0147]5.免疫荧光染色
[0148]将细胞置于盖玻片上,用100%丙酮于_20°C固定5分钟。在含有2%BSA的PBS封闭缓冲液中温育后,将细胞与一抗(1:100)温育2小时,并在含有2% BSA和10%胎牛血清的封闭缓冲液中与Alexa488缀合二抗或Alexa595缀合二抗(1:1,000)温育I小时。用DAPI将细胞核染色。用PBS洗涤后,将细胞固定,通过共聚焦激光扫描显微镜(Nikon AIR)进行观察。
[0149]6.LRS 和 RagD 的突变
[0150]LRS和RagD的点突变通过利用QuickChange试剂盒(Stratagene)的定点突变产生,突变体通过DNA测序进行确认。
[0151]7.亚细胞分级
[0152]接种细胞并培养至70%融合(confluence)。将细胞用无氨基酸培养基洗涤3次,添加正常培养基5分钟。之后按照制造者的说明,利用溶酶体分离试剂盒(SIGMA-ALDRICH)提取溶酶体级分。简言之,向细胞添加提取缓冲液,利用Dounce均质器以20次冲程(stroke)使细胞破裂。将样品以IOOOg离心10分钟后,将上清液以20,OOOg再离心20分钟。细胞团(pellet)在提取缓冲液中再分散(溶酶体级分)。
[0153]8.时间推移活细胞成像
[0154]利用共聚焦激光扫描显微镜(Nikon AIR)进行细胞成像。所有图像通过CFI PlanApochromat VC物镜(60X/1.400il)利用数码变焦以512X 512的分辨率拍摄。所有图像储存为ND或JPG2000文件,其为Nikon AlRsi共聚焦显微镜的标准格式。
[0155]9.图像分析
[0156]将细胞图像用于定量分析。该过程利用尼康成像软件NIS-element AR64位3.00版进行。利用NIS-element软件将图像文件格式从ND或JPG2000文件转换为ICS或TIFF格式。溶酶体共定位的定量分析通过NIS-element软件利用“时间测定(Time measurement) ”工具进行以得到“强度区(Region Of Intensity) ”(ROI)。根据LysoTracker的定位确定ROI后,其它成分的定位利用已确定的ROI进行测定。相对荧光单位(RFU)针对ROI的初始强度进行标准化,之后利用OriginPr07.5作图。为了进行共定位的定量分析,还利用了ImageJ共定位搜寻器插件。对于每个共同标记(co-labeling)对多于10个细胞获得重叠系数,共定位的指数对应于重叠系数(R)*100的平均值土S.D0绿色与红色信号间的比例为0.8 至 1.2。
[0157]10.体外下拉检测
[0158]将重组LRS或RagD片段蛋白作为GST融合蛋白表达,通过谷胱甘肽琼脂糖凝胶纯化。利用体外结合检测来测试RagD片段和myc-LRS过表达的细胞溶解物间的相互作用,或LRS片段和HA-RagD过表达的细胞溶解物间的相互作用。结合检测在含有IOmM NaClUmMMgCl2UmM EDTA、0.5mM EGTA 和 0.5% TritonX-1OO 的 25mM Tris-HCl 缓冲液(ρΗ7.4)中实施。
[0159]11.细胞的尺寸的测定
[0160]利用前向散射单元(FSC)测定未固定的细胞的细胞尺寸。将293Τ细胞平板接种,用PBS洗涤I次,并重悬于含有0.1%血清、5mM EDTA、5ng/ml碘化丙啶(PI ;Sigma)的PBS中。利用FACS分析(FACS 口径;Becton Dickinson)分析样品的细胞尺寸(FSC)。测定Gl期细胞的FSC的平均值。
[0161]12.ATP-PPi 交换检测
[0162]ATT-PPi 交换反应在含有 2mM[32P]焦磷酸(PPi) (80.70mCi/mL)、50mMHEPES-KOH(pH7.6)、2mM MgCl2、8mM KF、4mM ATP、各种浓度的亮氨酸以及 25nM 的 LRS 的反应混合物中进行。用酶初始化反应,并在37°C的加热块(heat block)中进行。在不同的时间点取得等分试样(10 μ I),利用Iml猝灭缓冲液(50mM NaPPi,3.5% HC104、2%活性炭)停止反应。通过Whatman GF/A过滤器过滤活性炭悬浮液,用5ml水洗漆4次,并用10mll00%乙醇冲洗。对过滤器上的活性炭粉进行干燥,并利用闪烁计数器(Beckman Coulter)对合成的[32P] ATP计数。
[0163]13.亮氨酰化检测
[0164]亮氨酰化检测在含有ImM精胺、50mM HEPES-K0H(ρΗ7.6)、25mM KCl、5mM MgCl2、4mMATP、2mg/ml 牛肝 tRNAleu、各种浓度的[3H] Leu (60Ci/mmol)以及 IOnM ?IOOnM 的 LRS 的缓冲液中进行。用酶初始化反应,并在37°C的加热块中进行。在不同的时间点取得等分试样(10 μ I),用预先浸有5%三氯乙酸(TCA)的Whatman过滤垫中止。将过滤垫分别用冷的5%TCA以10分钟洗涤3次,用冷的100%乙醇洗涤I次。然后将洗涤后的垫干燥。放射性用闪烁计数器(Beckman Coulter)定量。
[0165]14.体外GTP酶检测
[0166]根据制造公司说明,利用GTP酶检测试剂盒(Innova Biosciences)在最终体积为200ml的含有0.1%胎牛血清白蛋白的检测缓冲液(20mM哌嗪-N,N9-双(2-乙磺酸)、20mMHEPES、5mM MgCl2、125mM NaCl、5mM KCl, pH7.0,0.5mM GTP)中进行 GTP 酶分析。
[0167]15.体内GTP酶检测
[0168]将293T细胞用无磷酸盐的DMEM洗涤,在ImM无磷酸盐的DMEM中温育60分钟。之后,在IOOiiCi的[32P]憐酸盐/ml中培养8小时。在标记后,将细胞在冰上用预先冷却的溶解缓冲液(0.5% NP-40,50mM Tris [ρΗ7.5]、IOOmM NaClUOmM MgCl2、ImM 二硫苏糖醇(DTT)、ImM苯甲基磺酰氟、10 μ g/ml亮肽素、10 μ g/ml抑肽酶)溶解30分钟。之后,将溶解物于4°C以12,OOOXg离心15分钟。将上清液(160 μ I)转移至新的试管中,为了抑制GAP活性而添加16 μ I NaCl (500mM)。然后将myc-RagD于4°C用抗myc_抗体和蛋白质-G琼脂糖凝胶珠进行I小时免疫沉淀。于4°C用洗涤缓冲液l(50mM Tris [pH8.0]、500mM NaCl、5mM MgCl2UmM DTT.0.5% TritonX-100)将珠洗涤3次,进而于4°C用洗涤缓冲液2 (50mMTris [pH8.0]U00mM NaCl、5mM MgCl2UmM DTT.0.1% TritonX-100)洗涤 3 次。于 68°C用20 μ I洗脱缓冲液(2mM EDTA、0.2%十二烷基硫酸钠、ImM⑶P、ImM GTP)将myc-RagD结合的核苷酸洗脱10分钟。将洗脱的核苷酸涂敷至聚乙烯亚胺纤维素板(Baker-flex),用
0.75M KH2PO4[pH3.4]溶液进行显影。通过磷光影像分析仪将GTP和⑶P可视化并定量。
[0169]16.RT-PCR
[0170]利用RNA提取试剂盒(RNeasy Mini)从培养的细胞提取RNA。总RNA(Img)与ImldNTP (各2.5mM)、ImM随机六聚体(5mM)以及200单位MMLV逆转录酶一起在20ml反应液中进行逆转录。对cDNA溶液进行1:4稀释后,将Iml用于PCR反应(Takara)。
[0171]正义RagC:5’ -TCGGCTACGGCGTGGAGGAG-3’ (SEQ ID NO:: 19);
[0172]反义RagC:5’ -CGCCCCCCGGACCACAGCCA-3’ (SEQ ID NO::20);
[0173]正义RagD:5’ -TGAGCTGGTGGGGCTAGCGG-3’ (SEQ ID NO::21);
[0174]反义RagD:5’ -GGGTCACTGAAGTCCAGAACTC-3’ (SEQ ID NO::22)。
[0175]17.用于测定LRS和RagD间的结合亲和力的ELISA检测
[0176]为了检验LRS和RagD蛋白是否相互结合,制备了 SEQ ID NO:1至8所表示的引物。
[0177][表1]用于LRS片段合成的引物组
[0178]
【权利要求】
1.一种筛选用于预防和治疗mTORCl介导的疾病的试剂的方法,所述方法包括以下步骤:(a)使LRS(亮氨酰tRNA合成酶)和RagD在有测试试剂或无所述测试试剂的条件下接触; (b)对有所述测试试剂时LRS和RagD间的结合亲和力与无所述测试试剂时LRS和RagD间的结合亲和力进行比较;和 (c)测定LRS和RagD间的结合亲和力的变化。
2.如权利要求1所述的方法,所述mTORCl介导的疾病选自由癌、自身免疫疾病、糖尿病、肥胖症和心血管疾病组成的组。
3.一种相对于对照细胞或正常细胞减小细胞的尺寸的方法,所述方法包括抑制LRS的表达的步骤。
4.如权利要求3所述的方法,所述抑制通过用表达载体将细胞转化来进行,所述表达载体包含启动子和与该启动子可操作地连结的LRS的反义RNA或干扰RNA。
5.一种筛选用于预防和治疗mTORCl介导的疾病的试剂的方法,所述方法包括以下步骤: (a)使LRS(亮氨酰tRNA合成酶)和RagD在有测试试剂或无所述测试试剂的条件下接触; (b)对有所述测试试剂时LRS和RagD间的结合亲和力与无所述测试试剂时LRS和RagD间的结合亲和力进行比较;和 (c)鉴定出抑制LRS和RagD间的结合亲和力的测试试剂。
6.如权利要求5所述的方法,所述mTORCl介导的疾病选自由癌、自身免疫疾病、糖尿病、肥胖症和心血管疾病组成的组。
【文档编号】G01N33/15GK103959058SQ201280056503
【公开日】2014年7月30日 申请日期:2012年9月24日 优先权日:2011年9月22日
【发明者】金圣勋, 韩政旼 申请人:医药生命融合研究团
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1