基于确定学习理论的转子系统故障诊断方法

文档序号:6221571阅读:139来源:国知局
专利名称:基于确定学习理论的转子系统故障诊断方法
技术领域
本发明属于系统故障诊断领域,具体涉及一种基于确定学习理论的转子系统故障诊断方法。
背景技术
旋转机械是工农业生产中应用最广泛的一类机械设备,在工农业生产中发挥着重要作用。转子系统作为旋转机械的核心部件,常常由于出现各种不同形式的故障而影响其正常工作,有时甚至会发生严重的机毁人亡的事故,造成重大的经济损失。因此,转子系统的故障诊断对旋转机械的安全运行和维护保养具有重要意义。目前,转子系统的故障诊断主要是以信号分析和人工智能方法为基础,根据采集到的振动、应力、压力、温度等参数,依赖现场经验和专家分析,实现有无故障和故障类型的定性诊断(见韩清凯等著,《故障转子系统的非线性振动分析与诊断方法》,北京:科学出版社,2010)。在定性诊断的基础上,转子系统的定量诊断进一步发展,它主要采用基于模型的方法,根据关键部位的振动信号,通过系统辨识方法建立转子系统的动力学模型,其中包括正常状态和各种故障状态,然后根据正常转子和各种故障转子的状态、轨迹和振动频谱等的比较,确定故障发生的位置、故障参数的大小和故障程度的 评估。但由于转子系统具有高复杂性、非线性,故障之间相互耦合,甚至有些故障机理尚未明确,在实际应用中很难获得其精确的数学模型,目前转子系统的定量诊断的对象主要是不平衡、转静子碰摩、转轴裂纹等。神经网络以其独特的联想、记忆和学习功能在机械设备故障诊断领域得到了较多的应用。目前,人工神经网络应用于故障诊断还存在一些问题,如难以揭示出系统内部的一些潜在关系,无法对诊断过程给予明确解释,难以保证神经网络权值收敛到最优值,以及难以保证神经网络真正逼近系统动态进而对故障进行建模。系统辨识领域的预测误差理论指出,当持续激励条件满足时,估计模型中的参数将收敛到真实参数,并且所辨识模型收敛到真实系统。对于非线性动态系统,由于持续激励条件很难被满足,使得对其真实模型的建模或辨识极为困难。在对径向基函数(Radial Basis Function,RBF)神经网络的持续激励特性研究的基础上,确定性学习理论为非线性动态系统提出了新的辨识方法。该理论证明了通过采用RBF神经网络作为参数化的模型结构,沿着回归轨迹构造的RBF部分回归子矢量满足持续激励条件,由此实现非线性系统的局部准确神经网络辨识。因此,运用确定学习理论,可以对复杂过程和系统的未知动态进行局部准确建模。转子系统的状态轨迹是指系统的状态向量随时间的变化在状态空间中形成的轨迹。本发明中所考虑的状态包括转子系统各点的位移和速度,并且这些状态全部可测。

发明内容
本发明的目的在于克服上述现有技术的缺点和不足,提供一种基于确定学习理论的转子系统故障诊断方法,该方法可对具有未知动态的复杂转子系统进行故障诊断。由于转子系统的高复杂性、强非线性以及各故障之间的耦合性,建立故障转子系统的精确数学模型是一个很大的难题。本发明根据确定学习理论,采用RBF神经网络对转子系统的各种运行模式进行学习,学到的知识全面而准确地表达各种模式下的转子系统行为,以常数神经网络权值的形式方便地存储于模式库中,并在动态模式识别的过程中被充分而有效地利用,从而实现转子系统的快速故障诊断。这里的转子系统模式是指动态模式,由两个方面的因素构成,一是系统的轨迹,二是沿着系统轨迹的内部动态。这些模式可以从历史数据或者实时数据中获得。当有新故障发生时可以对新模式进行学习、升级模式库。本发明的目的通过以下技术方案实现:一种基于确定学习理论的转子系统故障诊断方法,所述故障包括转子静动件之间的碰摩、转子裂纹、轴承座与基础之间的松动、轴承油膜震荡,以及由上述故障组合而成的耦合故障等,这些故障发生时转子系统的状态轨迹是回归轨迹(回归轨迹代表了一大类从非线性系统产生的轨迹,不仅包括周期轨迹,还包括拟周期轨迹、概周期轨迹甚至部分混沌轨迹),该方法包括如下步骤:(I)对转子系统的正常模式和故障模式进行学习,利用学到的知识建立模式库:采用RBF神经网络对正常模式和故障模式下的转子系统未知动态进行学习,所述学习采用基于李亚普诺夫的学习方法并根据确定学习理论,实现RBF神经网络的部分权值收敛和RBF神经网络对各模式下系统内部动态的局部准确逼近;取权值收敛后的一段时间内各权值的均值作为学到的知识,将其存贮于模式库中,建立包含转子系统正常模式和故障模式的模式库;(2)建立各模式的状态估计器,将被监测转子系统的状态与状态估计器的状态进行比较产生残差:利用步骤(I)中所述模式库中的权值构造常数RBF神经网络,然后以常数RBF神经网络建立状态估计器,每一个状态估计器对应一种模式;将各状态估计器的状态分别与被监测转子系统的状态进行比较,将它们之间的误差作为残差;(3)对残差进行分析与评估,实现故障的检测与分离:在故障检测阶段,设定一个阈值,若正常模式状态估计器产生的残差`小于该阈值,则判断被监测转子系统运行正常;若残差大于该阈值,则判断转子系统发生了故障,并进行下一步的故障分离;在故障分离阶段,比较各模式状态估计器产生的残差,最小残差所对应的状态估计器与被监测转子系统最匹配,如果被监测系统与某个故障模式状态估计器匹配,则说明该故障发生;如果被监测系统与正常模式状态估计器匹配,则说明被监测转子系统重新正常工作;如果最小残差大于阈值,则认为没有与被监测转子系统匹配的状态估计器,即说明系统发生了新故障。上述方法中,步骤(I)中所述的部分权值收敛是指:靠近系统轨迹的RBF神经网络的神经元满足持续激励条件,其权值收敛到最优值;而远离系统轨迹的RBF神经网络的神经元不受激励,其权值基本为零。上述方法中,步骤(I)中所述的局部准确逼近是指沿着系统轨迹的内部动态的逼近,而远离系统轨迹的内部动态不被逼近。上述方法中,步骤(I)中所述的学习是获取知识的过程,所述知识是以时不变且空间分布的方式表达、以常数RBF神经网络权值的形式存储于模式库中,每组权值对应一种模式,作为这种模式的静态表达。上述方法中,步骤(2)中所述的状态估计器是对所述知识的利用,作为模式的动态表达,再现对应的模式的动态行为;当状态估计器对应的模式发生时,常数RBF神经网络能快速回忆已学到的知识,提供该模式下的转子系统内部动态信息。上述方法中,步骤(3)所述的残差是被监测系统与状态估计器之间动态差异的度量;为避免因为不匹配的状态估计器与被监测转子系统比较产生的残差接近于零而造成误判,对残差取平均I1范数。上述方法中,步骤(3)中所述的阈值是依据正常模式的状态估计器与被监测转子系统匹配时残差的最大值来设定的。上述方法中,如果步骤(3)所述有新故障发生,则再次启动步骤(I)所述的学习方法对新故障进行学习,并将学到的知识存储于模式库中,升级模式库。上述方法中,步骤(2)和(3)是对转子系统进行故障诊断的过程,而对所有故障的诊断是动态模式识别的过程。上述方法中,步骤(3)所述的匹配是指被监测转子系统与状态估计器之间具有相似性,其相似性的衡量因素为:i)被监测转子系统的状态与状态估计器的状态之间的差异;ii)沿着被监测转子系统的轨迹,被监测转子系统的内部动态与状态估计器的内部动态之间的差异。本发明与现有技术相比,有如下优点:1、不需要建立精确的数学模型,对于具有高复杂性、强非线性、故障机理不明确的转子系统,很难用精确的数学模型来表示。本发明通过运用确定学习理论,可实现神经网络对各种模式下的转子系统动态的局部准确逼近,采用包含了大量运行模式的模式库来精确而全面地描述转子系统的动态行为,可以帮助人们对转子系统和故障的机理进行深入的认识,同时提高诊断过程的可靠性。2、与传统的神经网络学习方法相比,本发明中的神经网络能真正地学到转子系统动态知识,这种知识以时不变且空间分布的方式表达,以常数神经网络权值的形式存储,可方便有效地应用于故障诊断中。诊断故障的过程就是利用知识的过程,由于不需要再进行参数估计,故障诊断时间也就大大减少了,从而可以快速地进行故障的检测和分离。3、与基于信号分析的方法相比,基于确定学习理论的转子系统故障诊断方法更全面地获取和更充分地利用了系统信息。利用各种信号处理技术从转子系统的信号数据中提取对故障识别有用的信息,根据所提取的故障特征进行故障诊断,这势必丢失大量信息,其中可能包括有用的信息,从而容易造成误判漏判。本发明中所获取的系统信息包括转子系统各种模式下的状态轨迹以及沿着状态轨迹的系统内部动态,当对应的模式发生时,常数神经网络能快速回忆已学到的知识,提供该模式下的系统内部动态的准确信息,这样转子系统的行为过程可被完整地记录并利用起来。4、基于确定学习理论的转子系统故障诊断方法是一种对转子系统进行自动动态监测的方法,可反映系统瞬态行为和非线性特性。各种模式的学习是通过神经网络自动学习的,并根据残差进行自动故障诊断,大大提高了转子系统故障诊断的自动化程度。5、基于确定学习理论的转子系统故障诊断方法将诊断过程分为故障检测和故障分离,检测故障时只需 要将被监测转子系统与正常模式状态估计器进行比较,仅当检测到故障后才进行故障分离,这样避免了转子系统与所有的状态估计器比较,从而简化诊断方案、提高诊断效率。


图1是RBF神经网络对转子系统未知动态进行学习的结构简图。图2是本发明所采用的RBF神经网络示意图。图3是本发明实施例中转子系统残差产生的结构简图。图4是实施例中转子系统正常模式下的轴心轨迹图。图5是实施例中转子系统故障模式I下的轴心轨迹图。图6是实施例中转子系统故障模式2下的轴心轨迹图。图7a是实施例中转子系统故障模式2下神经网络#Λ\Ζ)的部分权值的收敛情况。图7b是实施例中转子系统故障模式2下神经网络fWZ)的部分权值的收敛情况。图8a是实施例中神经网络风Z)(直线一)逼近转子系统故障模式2下的未知系统动态病2 (星号*)。图8a是实施例中神经网络少/Λ' 、Ζ)(直线一)逼近转子系统故障模式2下的未知系统动态真(星号*)。图9a 是实施例中各状态估计器与发生故障I的被监测转子系统在X方向的速度残差范数的时域曲线。图9b是实施例中各状态估计器与发生故障I的被监测转子系统在Y方向的速度残差范数的时域曲线。
具体实施例方式实施例下面结合实施例及附图,对本发明的具体实施方式
作进一步地说明。以诊断现有的Jeffcott转子系统的碰摩故障为例,所述Jeffcott转子系统是具有弹性支承、非线性刚度和线性阻尼、可能发生动静件碰摩的转子系统,所述JefTcott转子系统的运动微分方程表示如下:(I)
'IOO
mx + cx + Lx + k、.(λ* ;十 ν~ )χ - Fv + me or cos cot
_-6 Vtr JX<^ 0
my + cy + ky + k.(x- + V) v = Fv + meco" sin ω — mg
、y其中,x、y为转子中心相对初始位置的位移,m是转子质量,c是转轴阻尼系数,k是轴刚度系数,ks是转轴刚度非线性项系数,e是圆盘质量偏心量,ω是转子转速,Fx和Fy分别是在X和y方向的碰摩力,表示如下:
JFr _ r-δ \ 1- /I J λ'1f I()⑵
F =Fy=O(r < δ)其中,δ为静止时转子与定子之间的间隙,f为转子与定子间的摩擦系数,k。为定子的径向刚度,
权利要求
1.基于确定学习理论的转子系统故障诊断方法,其特征在于,包括如下步骤: (I)对转子系统的正常模式和故障模式进行学习,利用学到的知识建立模式库:采用RBF神经网络对正常模式和故障模式下的转子系统未知动态进行学习,所述学习采用基于李亚普诺夫的学习方法并根据确定学习理论,实现RBF神经网络的部分权值收敛和各模式下系统内部动态的局部准确逼近;取权值收敛后的一段时间内各权值的均值作为学到的知识,将其存贮于模式库中,建立模式库; (2 )建立各模式的状态估计器,将被监测转子系统的状态与状态估计器的状态进行比较产生残差:利用步骤(I)中所述模式库中的权值构造包含常数RBF神经网络的状态估计器,每一个状态估计器对应一种模式;将各状态估计器的状态分别与被监测转子系统的状态进行比较,将误差作为残差; (3)对残差进行分析与评估,实现故障的检测与分离:在故障检测阶段,设定一个阈值,若正常模式状态估计器产生的残差小于该阈值,则判断被监测转子系统运行正常;若残差大于该阈值,则判断转子系统发生了故障,并进行下一步的故障分离;在故障分离阶段,比较各模式状态估计器产生的残差,最小残差所对应的状态估计器与被监测转子系统最匹配,如果被监测系统与某个故障模式状态估计器相匹配,则说明该故障发生;如果被监测系统与正常模式状态估计器匹配,则说明被监测转子系统重新正常工作;如果最小残差大于阈值,则认为没有与被监 测转子系统匹配的状态估计器,即说明系统发生了新故障。
2.根据权利要求1所述的转子系统故障诊断方法,其特征在于,步骤(I)中所述的部分权值收敛是指: 靠近系统轨迹的RBF神经网络的神经元满足持续激励条件,其权值收敛到最优值;而远离系统轨迹的RBF神经网络的神经元不受激励,其权值为零。
3.根据权利要求1所述的方法,其特征在于步骤(I)中所述的局部准确逼近是指沿着系统轨迹的内部动态的逼近,而远离系统轨迹的内部动态不被逼近。
4.根据权利要求1 3任一项所述的转子系统故障诊断方法,其特征在于,步骤(I)中,所述的学习是获取知识的过程,所述知识是以时不变且空间分布的方式表达、以常数RBF神经网络权值的形式存储于模式库中,每组权值对应一种模式,作为这种模式的静态表达。
5.根据权利要求4所述的转子系统故障诊断方法,其特征在于,步骤(2)中,所述的状态估计器是对知识的利用,作为模式的动态表达,再现对应的模式的动态行为;当状态估计器对应的模式发生时,常数RBF神经网络能快速回忆已学到的知识,提供该模式下的转子系统内部动态信息。
6.根据权利要求5所述的转子系统故障诊断方法,其特征在于,步骤(3)中,所述的残差是被监测转子系统与状态估计器之间动态差异的度量。
7.根据权利要求5所述的转子系统故障诊断方法,其特征在于,步骤(3)中,所述的阈值是依据正常模式的状态估计器与被监测转子系统匹配时残差的最大值来设定的。
8.根据权利要求5所述的转子系统故障诊断方法,其特征在于,如果步骤(3)中有新故障发生,则再次启动步骤(I)所述的学习方法,对新故障模式进行学习,并将学到的知识存储于模式库中,升级模式库。
9.根据权利要求5所述的转子系统故障诊断方法,其特征在于,步骤(2)和(3)是对转子系统进行故障诊断的过程,所述对故障的诊断是动态模式识别的过程。
10.根据权利要求1所述的转子系统故障诊断方法,其特征在于,步骤(3)中,所述匹配是指状态估计器与被监测转子系统之间具有相似性,所述相似性的衡量因素为:被监测转子系统的状态与状态估计器的状态之间的差异,或者所述相似性的衡量因素为:沿着被监测转子系统的轨迹 ,被监测转子系统的内部动态与状态估计器的内部动态之间的差异。
全文摘要
本发明公开了一种基于确定学习理论的转子系统故障诊断方法,包括如下步骤(1)对转子系统的正常模式和故障模式进行学习,利用学到的知识建立模式库;(2)建立各模式的状态估计器,将被监测转子系统的状态与状态估计器的状态进行比较产生残差;(3)对残差进行分析与评估,实现故障的检测与分离。该方法适用于含有未知动态的复杂转子系统的故障诊断,可以对运行于各种模式下的转子系统进行准确建模,建立模式库,从而快速地检测与分离故障。具有可靠性高、诊断效率高和自动化程度高等优点。
文档编号G01M13/00GK103245491SQ201310111708
公开日2013年8月14日 申请日期2013年4月1日 优先权日2013年4月1日
发明者吴玉香, 张景, 王聪 申请人:华南理工大学
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1