确定流量计的第一传感器信号和第二传感器信号之间相差的流量计电子器件和方法

文档序号:6215533阅读:213来源:国知局
确定流量计的第一传感器信号和第二传感器信号之间相差的流量计电子器件和方法
【专利摘要】依据本发明的实施例提供了一种处理流量计中传感器信号的流量计电子器件(20)。该流量计电子器件(20)包括用于接收第一传感器信号和第二传感器信号的接口(201)以及处理系统(203),所述处理系统(203)与所述接口(201)通信并且用于接收所述第一传感器信号和所述第二传感器信号、根据所述第一传感器信号产生90度相移、以及根据所述第一传感器信号和所述90度相移计算频率。所述处理系统(203)进一步用于使用所述频率产生正弦和余弦信号、以及使用所述正弦和余弦信号正交解调所述第一传感器信号和所述第二传感器信号以便确定所述相差。
【专利说明】确定流量计的第一传感器信号和第二传感器信号之间相差的流量计电子器件和方法
[0001]本申请是于2008年4月18日进入中国国家阶段的申请号为200680038839.8且发明名称为“确定流量计的第一传感器信号和第二传感器信号之间相差的流量计电子器件和方法”的中国发明专利申请的分案申请。
【技术领域】
[0002]本发明涉及确定流量计的第一传感器信号和第二传感器信号之间相差的流量计电子器件和方法。
【背景技术】
[0003]已知利用科里奥利质量流量计测量流过管道的材料的质量流量、密度和体积流量以及其它信息,如于1985年I月I日颁发给J.E.Smith等人的U.S.专利N0.4,491,025和于1982年2月11日颁发给J.E.Smith的Re.31,450中所公开的。这些流量计具有不同结构的一个或多个流管。每一个管道结构可以被视为具有一组固有振动模式,该模式包括例如简单的弯曲、扭转、径向和耦合模式。在典型的科里奥利质量流量测量应用中,当材料流过管道时,以一个或多个振动模式激励管道结构,并且在沿着管道相距间隔的点处测量管道的运动。
[0004]通过流管和流管中材料的组合质量可部分地确定材料填充系统的振动模式。材料从流量计的入口侧上的相连管道流进流量计。该材料然后被导引通过一个流管或多个流管,并且离开流量计至在出口侧上相连的管道。
[0005]驱动器向流管施加压力。该压力引起流管振动。当没有材料流过流量计时,沿着流管的全部点以相同的相位振动。当材料开始流过流管时,科里奥利加速度引起沿着流管的每一个点具有关于沿着流管的其它点不同的相位。流管的入口侧上的相位滞后于驱动器,而出口侧上的相位领先于驱动器。在流管上的不同点处布置传感器,以便产生表示不同点处流管的运动的正弦信号。两个传感器信号之间的相差成比例于流过一个流管或多个流管的材料的质量流量。在现有技术的方法中,离散傅立叶变换(DFT)或快速傅里叶变换(FFT)用于确定传感器信号之间的相差。该相差和流管装置的振荡频率响应用于获得质量流量。
[0006]在现有技术的方法中,独立的参考信号用于确定拾取信号频率,比如通过利用被发送至振动驱动器系统的频率。在另一现有技术方法中,通过集中于陷波滤波器中的频率可以确定拾取传感器产生的振动响应频率,其中现有技术流量计试图在拾取传感器频率处保持陷波滤波器的陷波。在流量计中的流动材料是均匀的并且得到的拾取信号频率相对稳定的场合下,这一现有技术在静止条件下相当好地工作。然而,当流动材料不均匀时,比如在流动材料包括液体和固体或者在液体流动材料中存在气泡这样的两相流中,现有技术的相位测量受损坏。在这种情况中,现有技术确定的频率可以快速地波动。在快速和大的频率过渡的条件过程中,对于拾取信号,可能在滤波器带宽之外移动,获得不精确的相位和频率测量。在空-满-空配料中这也是问题,在这种情况中,在交替空和满的条件下重复操作流量计。此外,如果传感器的频率快速移动,解调过程将不能够跟上实际或测量频率,引起不正确频率处的解调。应当理解,如果所确定的频率是不正确或不精确的,那么进而得到的密度值、体积流量值等也将是不正确或不精确的。此外,在随后的流动特性确定中误差被混

口 O
[0007]在现有技术中,拾取信号可被数字化和数字处理,从而执行陷波滤波。该陷波滤波器仅接收窄带频率。因此,当目标频率改变时,在一段时间内,陷波滤波器不能够跟踪目标信号。典型地,数字陷波滤波执行花费1-2秒对波动目标信号跟踪。由于用于确定频率现有技术需要的时间,该结果是:不仅频率和相位确定包含误差,而且误差测量包括超过在其过程中实际出现误差和/或两相流的时间间隔的时间间隔。这是由于陷波滤波执行的相对缓慢的响应。
[0008]结果是在流量计中的流动材料处于两相流过程中,现有技术流量计不能精确、快速或令人满意地跟踪或确定拾取传感器频率。因此,当现有技术利用所确定的拾取频率驱动相差时,相位确定同样缓慢和容易产生误差。因此,在相位确定中混合频率确定中的误差。结果是频率确定中和相位确定中增大的误差,导致质量流量的确定中误差增大。此外,由于确定的频率值用于确定密度值(密度近似等于一除以平方频率),在密度确定中重复或混合频率确定中的误差。当体积流量等于质量流量除以密度时,对于体积流量的确定这也是真实的。
[0009]由于可以使用所确定频率产生所述相差,因而改进的频率确定可以提供迅速和可靠的相差确定。

【发明内容】

[0010]通过提供一种确定流量计的第一传感器信号第二传感器信号之间相差的流量计电子器件和方法,解决了上面的以及其它的问题并且取得了对现有技术的改进。
[0011]依据本发明的实施例提供了一种确定流量计的第一传感器信号和第二传感器信号之间相差的流量计电子器件。该流量计电子器件包括用于接收所述第一传感器信号和所述第二传感器信号的接口以及与所述接口进行通信的处理系统。所述处理系统被配置用于接收所述第一传感器信号和所述第二传感器信号、根据所述第一传感器信号产生90度相移、以及根据所述第一传感器信号和所述90度相移计算频率。所述处理系统进一步被配置用于使用所述频率产生正弦和余弦信号、以及使用所述正弦和余弦信号正交解调所述第一传感器信号和所述第二传感器信号以便确定所述相差。
[0012]依据本发明的实施例提供了一种确定流量计的第一传感器信号和第二传感器信号之间相差的方法。该方法包括接收所述第一传感器信号和所述第二传感器信号、根据所述第一传感器信号产生90度相移、以及根据所述第一传感器信号和所述90度相移计算频率。该方法进一步包括使用所述频率产生正弦和余弦信号。该方法进一步包括使用所述正弦和余弦信号对所述第一传感器信号和所述第二传感器信号进行正交解调以便确定所述相差。
[0013]依据本发明的实施例提供了一种确定流量计的第一传感器信号和第二传感器信号之间相差的方法。该方法包括接收所述第一传感器信号和所述第二传感器信号、根据所述第一传感器信号产生90度相移、以及根据所述第一传感器信号和所述90度相移计算频率。该方法进一步包括使用所述频率产生正弦和余弦信号。该方法进一步包括使用所述正弦和余弦信号对所述第一传感器信号和所述第二传感器信号进行正交解调,并且所述正交解调产生第一解调信号和第二解调信号。该方法进一步包括对所述第一解调信号和所述第二解调信号进行滤波以便移除高频分量以及将所述第一解调信号和所述第二解调信号进行互相关以便确定所述相差。
[0014]在所述流量计电子器件的一个方面,所述处理系统进一步配置用于使用所述频率和所述相差中的一个或多个计算质量流量、密度、或体积流量中的一个或多个。
[0015]在所述流量计电子器件的一个方面,所述处理系统进一步配置用于使用希尔波特变换计算所述90度相移。
[0016]在所述流量计电子器件的另一个方面,所述正交解调产生第一解调信号和第二解调信号,并且所述处理系统进一步配置用于对所述第一解调信号和所述第二解调信号进行滤波以便移除高频分量以及将所述第一解调信号和所述第二解调信号进行互相关以便确定所述相差。
[0017]在所述方法的一个方面,该方法进一步包括使用所述频率和所述相差中的一个或多个计算质量流量、密度、或体积流量中的一个或多个。
[0018]在所述方法的另一个方面,该方法进一步包括使用希尔波特变换计算所述90度相移。
[0019]在所述方法的再一个方面,所述正交解调产生第一解调信号和第二解调信号,并且所述正交解调进一步包括对所述第一解调信号和所述第二解调信号进行滤波以便移除高频分量以及将所述第一解调信号和所述第二解调信号进行互相关以便确定所述相差。
【专利附图】

【附图说明】
[0020]在所有附图中相同的附图标记表示相同的元件。
[0021]图1描述了本发明一个例子中的科里奥利流量计。
[0022]图2示出了依据本发明依据本发明的实施例的流量计电子器件。
[0023]图3是依据本发明的实施例的处理系统的一部分的方块图。
[0024]图4示出了依据本发明的实施例的希耳伯特变换块的细节。
[0025]图5是依据本发明的实施例的分析块的频率部分的方块图。
[0026]图6是依据本发明的实施例的分析块的相差部分的方块图。
[0027]图7是依据本发明的实施例的相差正交解调方法的流程图。
【具体实施方式】
[0028]图1-7和下面的说明描述了具体的例子,以便教导本领域技术人员如何获得和利用本发明的最佳模式。为了教导发明原理,已经简化或省略了一些常规的方面。本领域技术人员可以理解落入本发明的范围的这些例子的变形。本领域技术人员可以理解可以以各种方式组合下面所述的特征,以便形成本发明的多个变形。因此,本发明不局限于下面所述的具体例子,而是仅通过权利要求及其等价物来限定。
[0029]图1示出了包括流量计装置10和流量计电子器件20的科里奥利流量计5。流量计装置10响应于加工材料的质量流量和密度。经由引线100,流量计电子器件20被连接至流量计装置10,以便在路径26之上提供密度、质量流量和温度信息,以及与本发明无关的其它信息。尽管这里描述了 一种科里奥利流量计结构,对本领域技术人员来说显而易见,本发明可以实现为振动管密度计,而不具有科里奥利质量流量计所提供的附加测量能力。
[0030]流量计装置10包括一对歧管150和150’、具有凸缘颈部110和110’的凸缘103和103’、一对平行的流管130和130’、驱动机构180、温度传感器190、以及一对速度传感器170L和170R。流管130和130’具有两个基本上直的入口管腿131和131’和出口管腿134和134’,其在流管装配块120和120’处朝向彼此地收敛。流管130和130’在沿着其长度的两个对称位置处弯曲,并且贯穿其长度大致平行。撑杆140和140’用于确定轴W和W’,每一个流管关于该轴振动。
[0031]流管130和130’的侧管腿131,131’和134,134’固定连接至流管装配块120和120’,并且这些块进而固定连接至歧管150和150’。这提供了通过科里奥利流量计装置10的连续封闭材料路径。
[0032]当具有孔102,102’的凸缘103和103’经由入口端104和出口端104’连接到加工线(未示出)时,该加工线运载被测的加工材料,材料通过凸缘103中的孔101进入流量计的末端104,通过歧管150被引导至具有表面121的流管装配块120。在歧管150内,材料被分开并且路由通过流管130和130’。在流出流管130和130’后,加工材料在歧管150’中重新组合为单一流,并且其后路由从出口端104’流出,该出口端104’通过具有螺栓孔102’的凸缘103’连接至生产线(未示出)。
[0033]流管130和130’被选择并且恰当地装配至流管装配块120和120’,从而分别具有基本相同的质量分布、关于弯曲轴W-W和w’-w’的惯性矩和杨氏模量。这些弯曲轴通过撑杆140和140’。由于流管的杨氏模量随着温度改变,并且该改变影响流量和密度的计算,电阻式温度检测器(RTD) 190被装配至流管130’,以便连续地测量流管的温度。流管的温度以及对于通过其中的给定电流由此横越RTD显现的电压受到通过流管的材料的温度控制。横越RTD显现的取决于温度的电压以熟知的方法由流量计电子器件20使用,以便补偿由于流管温度的任何变化而产生的流管130和130’的弹性模量的变化。通过引线195,该RTD被连接至流量计电子器件20。
[0034]在关于它们各个弯曲轴W-W和W’ -W’的相对方向上,由驱动器180驱动两个流管130和130’,并且被称为流量计的第一异相弯曲模式。该驱动机构180可以包括多个熟知布置的任何一个,比如装配至流管130’的磁体,以及装配至流管130的相对线圈,并且为了使两个流管振动,交流电通过所述线圈。经由引线185,由流量计电子器件20施加适当的驱动信号至驱动机构180。
[0035]流量计电子器件20在引线195上接收RTD温度信号,并且左和右速度信号分别在引线165L和165R上显现。流量计电子器件20产生显现在引线185上的驱动信号,以便驱动元件180和振动管130和130’。流量计电子器件20处理左和右速度信号和RTD信号,以便计算通过流量计装置10的质量流量和密度。通过路径26,这一信息与其它信息一起由流量计电子器件20应用于应用装置29。
[0036]图2示出了依据本发明的实施例的流量计电子器件20。流量计电子器件20可以包括接口 201和处理系统203。流量计电子器件20从流量计装置10接收第一和第二传感器信号210和211,比如拾取/速度传感器信号。流量计电子器件20可以作为质量流量计工作,或可以作为密度计工作,包括作为科里奥利流量计工作。流量计电子器件20处理第一和第二传感器信号210和211,从而获得流过流量计装置10的流动材料的流动特性。例如,流量计电子器件20可以确定例如传感器信号的相差、频率、时间差(△ t)、密度、质量流量和体积流量中的一个或者多个。此外,依据本发明可以确定其它流动特性。下面将讨论该确定操作。
[0037]相差确定和频率确定比现有技术中的这些确定快速的多并且更加精确和可靠。这有利地减小了为计算流动特性所需的处理时间并且这提高了两种个流动特性的精确性。因此,可以比现有技术更快速地确定频率和相差。
[0038]现有技术频率确定方法典型地花费1-2秒钟完成。相反,依据本发明的频率确定可以在仅仅50毫秒(ms)内完成。甚至可以预期更快速的频率确定,取决于处理系统的类型和配置、振动响应的采样速率、滤波器尺寸、抽取率等。在50 ms频率确定速率下,依据本发明的流量计电子器件20可以比现有技术快大约40倍。
[0039]经由图1的引线100,接口 201从速度传感器170L和170R中的一个接收传感器信号。接口 201可以执行任何需要的或期望的信号调整,比如任何方式的格式化、放大、缓冲等。可替代地,在处理系统203中可以执行其中的一些或全部信号调整。
[0040]此外,接口 201可以允许流量计电子器件20和外部装置之间的通信。接口 201能够进行任何方式的电、光或无线通信。
[0041]一个实施例中的接口 201与数字转换器202耦合,其中传感器信号由模拟传感器信号构成。数字转换器202对模拟传感器信号进行采样和数字化,并产生数字传感器信号。数字转换器202也可以执行任何需要的抽取,其中抽取数字传感器信号以便减小需要的信号处理量并减小处理时间。下面将更详细地讨论抽取操作。
[0042]处理系统2 03管理流量计电子器件20的操作,并且处理来自流量计装置10的流测量。处理系统203执行一个或多个处理程序,并因此处理流测量以便产生一个或多个流动特性。
[0043]处理系统203可以由通用计算机、微处理系统、逻辑电路或一些其它通用或定制处理装置构成。可以在多个处理装置中分布处理系统203。处理系统203可以包括任何方式的整体式或独立的电子存储介质,比如存储系统204。
[0044]处理系统203处理第一传感器信号210和第二传感器信号211,从而确定一个或多个流动特性。所述一个或多个流动特性例如对于流动材料来说可以包括相差、频率、时间差(At)、质量流量和/或密度。
[0045]在示出的实施例中,处理系统203根据两个传感器信号210和211和单个的90度相移213确定流动特性。处理系统203根据两个传感器信号210和211和单个的90度相移213至少可以确定相差和频率。此外,在其它数值中,处理系统203可以进一步确定流动材料的相差、时间差(At)和/或质量流量。
[0046]存储系统204可以存储流量计参数和数据、软件程序、常量和变量。在一个实施例中,存储系统204包括处理系统203所执行的程序。在一个实施例中,存储系统204存储相移程序212、相差程序215、频率程序216、时间差(At)程序217和流动特性程序218。
[0047]在一个实施例中,存储系统204存储用于操作流量计比如科里奥利流量计5的变量。一个实施例中的存储系统204存储变量,比如第一传感器信号210和第二传感器信号211,其从速度/拾取传感器170L和170R接收。此外,存储系统204可以存储为了确定流动特性而产生的90度相移213。
[0048]在一个实施例中,存储系统204存储从流动测量获得的一个或多个流动特性。在一个实施例中的存储系统204存储流动特性,比如相差220、频率221、时间差(At) 222、质量流量223、密度224和体积流量225。
[0049]相移程序212对输入信号执行90度的相移,也就是对传感器信号210。一个实施例中的相移程序212执行希耳伯特变换(下面讨论)。
[0050]利用正交解调,相差程序215确定相差。也可以使用附加信息计算相差。在一个实施例中,根据第一传感器信号210、第二传感器信号211和频率221计算相差。所确定的相差可被存储于存储系统204的相差220中。当使用所确定的频率221进行确定时,可以比现有技术更快速地计算和获得相差。这可以在具有高流量或者其中出现多相流的流量计应用中提供临界差。
[0051]频率程序216根据90度相移213确定频率(比如由第一传感器信号210或第二传感器信号211显示出的)。所确定的频率可被存储于存储系统204的频率221中。当根据单个的90度相移213和传感器信号210或211确定时,可以比现有技术更快速地计算和获得频率。这可以在具有高流量或者其中出现多相流的流量计应用中提供临界差。
[0052]时间差(At)程序217确定第一传感器信号210和第二传感器信号211之间的时间差(At)。时间差(At)可被存储于存储系统204的时间差(Λ t)222中。该时间差(At)基本上包括被所确定的频率除的所确定相位,并因此用于确定质量流量。
[0053]流动特性程序218可以确定一个或多个流动特性。流动特性程序218例如可以利用所确定的相差220和所确定的频率221,从而实现这些附加的流动特性。应当理解,对于这些确定可以需要附加的信息,比如质量流量或密度。流动特性程序218可以根据时间差(Λ t) 222并因此根据相差220和频率221确定质量流量。在Titlow等人的U.S.专利N0.5,027,662中给出用于确定质量流量的公式,并且于此被参考结合。质量流量涉及流量计装置10中流动材料的质量流。同样地,流动特性程序218也可以确定密度224和/或体积流量225。所确定的质量流量、密度和体积流量可被分别存储于存储系统204的质量流量223、密度224和体积225中。此外,通过流量计电子器件20可以传送流动特性至外部装置。
[0054]图3是依据本发明的实施例的处理系统203的一部分的方块图300。在该图中,方块表示处理电路或处理动作/程序。方块图300包括I阶滤波器块301、2阶滤波器块302、希耳伯特变换块303和分析块304。LPO和RPO输入包括左拾取信号输入和右拾取信号输入。LPO或RPO可以包括第一传感器信号。
[0055]在一个实施例中,I阶滤波器块301和2阶滤波器块302包括数字有限脉冲响应(FIR)多相抽取滤波器,在处理系统203中被实施。这些滤波器提供用于滤波和抽取一个或两个传感器信号的最佳方法,在相同的时序时间处和以相同的抽取率执行滤波和抽取。作为替代,I阶滤波器块301和2阶滤波器块302可以包括无限脉冲响应(IIR)滤波器或其它合适的数字滤波器或滤波处理。然而,应当理解,可以预期其它滤波处理和/或滤波实施例,并且在说明书和权利要求书的范围内。
[0056]图4示出了依据本发明的实施例的希耳伯特变换块303。在示出的实施例中,希耳伯特变换块303包括与LPO滤波器块402并联的LPO延迟块401。LPO延迟块401引入采样延迟。LPO延迟块401因此选择LPO数字信号采样,该LPO数字信号采样比通过LPO滤波器块402滤波的LPO数字信号采样在时序时间上要晚。该LPO滤波器块402对所输入的数字信号采样执行90度相移。
[0057]希耳伯特变换块303是第一步骤,用以提供相位测量。该希耳伯特变换块303接收滤波的、抽取的LPO和RPO信号,并且执行希耳伯特变换。该希耳伯特变换产生LPO信号的90度相移版本。与原始、同相信号(I)分量LPO I 一起,希耳伯特变换块303的输出因此提供新的正交(Q)分量LPO Q0
[0058]对希耳伯特变换块303的输入可以表示为:
【权利要求】
1.用于确定流量计的第一传感器信号和第二传感器信号之间的相差的流量计电子器件(20),其包括: 接口(201 ),用于接收第一传感器信号和第二传感器信号;以及 处理系统(203),其与所述接口(201)通信并且被配置为接收所述第一传感器信号和所述第二传感器信号,根据所述第一传感器信号产生90度相移,根据所述第一传感器信号和所述90度相移计算传感器信号频率,其中包括作为实部和虚部分量的所述第一传感器信号和所述90度相移的复信号与所述复信号的延迟复共轭相乘,使用所计算的传感器信号频率产生正弦和余弦信号、以及使用所述正弦和余弦信号来正交解调所述第一传感器信号和所述第二传感器信号以便确定所述第一传感器信号和第二传感器信号之间的所述相差。
2.权利要求1所述的流量计电子器件(20),其中所述处理系统(203)进一步被配置为使用所述频率和所述相差中的一个或多个来计算质量流率、密度、或体积流率中的一个或多个。
3.权利要求1所述的流量计电子器件(20),其中所述处理系统(203)进一步被配置为使用希尔波特变换计算所述90度相移。
4.权利要求1所述的流量计电子器件(20),其中所述正交解调产生第一解调信号和第二解调信号,并且其中所述处理系统(203)进一步被配置为对所述第一解调信号和所述第二解调信号进行滤波以便移除高频分量以及将所述第一解调信号和所述第二解调信号进行互相关以便确定所述相差。
5.一种用于确定流量计的第一传感器信号和第二传感器信号之间的相差的方法,该方法包括: 接收所述第一传感器信号·和所述第二传感器信号; 根据所述第一传感器信号产生90度相移; 根据所述第一传感器信号和所述90度相移计算传感器信号频率,其中包括作为实部和虚部分量的所述第一传感器信号和所述90度相移的复信号与所述复信号的延迟复共轭相乘; 使用所计算的传感器信号频率产生正弦和余弦信号;以及 使用所述正弦和余弦信号对所述第一传感器信号和所述第二传感器信号进行正交解调以便确定所述第一传感器信号和第二传感器信号之间的所述相差。
6.权利要求5所述的方法,进一步包括使用所述频率和所述相差中的一个或多个来计算质量流率、密度、或体积流率中的一个或多个。
7.权利要求5所述的方法,进一步包括使用希尔波特变换计算所述90度相移。
8.权利要求5所述的方法,其中所述正交解调产生第一解调信号和第二解调信号,并且其中所述正交解调进一步包括: 对所述第一解调信号和所述第二解调信号进行滤波以便移除高频分量;以及 将所述第一解调信号和所述第二解调信号进行互相关以便确定所述相差。
9.一种用于确定流量计的第一传感器信号和第二传感器信号之间的相差的方法,该方法包括: 接收所述第一传感器信号和所述第二传感器信号;根据所述第一传感器信号产生90度相移; 根据所述第一传感器信号和所述90度相移计算传感器信号频率,其中包括作为实部和虚部分量的所述第一传感器信号和所述90度相移的复信号与所述复信号的延迟复共轭相乘; 使用所计算的传感器信号频率产生正弦和余弦信号; 使用所述正弦和余弦信号对所述第一传感器信号和所述第二传感器信号进行正交解调,其中所述正交解调产生第一解调信号和第二解调信号; 对所述第一解调信号和所述第二解调信号进行滤波以便移除高频分量;以及将所述第一解调信号和所述第二解调信号进行互相关以便确定所述第一传感器信号和第二传感器信号之间的所述相差。
10.权利要求9所述的方法,进一步包括使用所述频率和所述相差中的一个或多个来计算质量流率、密度、或体积流率中的一个或多个。
11.权 利要求9所述的方法,进一步包括使用希尔波特变换计算所述90度相移。
【文档编号】G01F1/84GK103852120SQ201410007975
【公开日】2014年6月11日 申请日期:2006年10月16日 优先权日:2005年10月18日
【发明者】C.B.麦卡纳利, D.M.亨洛特 申请人:微动公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1