一种光纤光栅三维振动传感器的制造方法

文档序号:6252333阅读:210来源:国知局
一种光纤光栅三维振动传感器的制造方法
【专利摘要】本发明提供了一种光纤光栅三维振动传感器,采用单膜片敏感结构,该三维光纤光栅振动传感器包括设置在壳体内的膜片、惯性质量块,以及传感光栅,所述惯性质量块位于膜片的几何中心,并固定于膜片下方,膜片固定于外壳的内壁;所述膜片上表面设置有三个传感光栅,传感光栅通过光纤出孔与外部解调单元相连。本发明利用光纤光栅的波长传感原理,在外界振动信号作用下使传感器敏感膜片的上表面不同位置产生拉应变和扭应变,当外界振动信号作用于该结构时,引起传感器内惯性质量块的振动,进而产生惯性力和扭矩,使得封装于其上的光栅的波长漂移,通过检测三只光栅波长的变化,实现三个方向振动信号的检测。
【专利说明】一种光纤光栅三维振动传感器 【【技术领域】】
[0001] 本发明属于光纤传感器【技术领域】,具体涉及一种用于测定物体振动的方向、幅度 和频率的光纤光栅三维振动传感器。 【【背景技术】】
[0002] 光纤光栅作为一种波长选择器件,在光通信领域和光传感领域具有广泛的应用, 特别是在光传感领域,具有广泛的应用前景。光纤光栅在准静态传感领域已取得了长足的 发展,但在动态传感领域仍然是一个研宄热点问题,特别是光纤光栅三维振动检测工程领 域设计的一个难点问题。光纤光栅的反射或透射波的波长与光栅的折射率调制周期以及 纤芯折射率有关,而外界温度或应变的变化会影响光纤光栅的折射率调制周期和纤芯折射 率,从而引起光纤光栅的反射或透射波长的变化,这就是光纤光栅传感器的基本工作原理。
[0003] 与传统的强度调制型或相位调制型光纤传感器相比,光纤光栅作为波长调制型传 感器具有许多独特的优点:(1)测量信号避免了"光强型"传感器(读取信息是测量光强大 小,因光源起伏、连接损耗、光纤弯曲损耗等因素造成的测量精度下降的影响;(2)避免了 "干涉型"传感器(读取信息是观察干涉条纹的变化)中相位测量的不清晰和对固定参考点 的需要;(3)光纤光栅传感器是自身参考的,可以通过对光纤光栅定标后对被测量进行绝 对测量,不必基于条纹计数的干涉型传感器那样要求初始参考;(4)传感探头结构简单、尺 寸小,其外径与光纤本身相同,适于各种精密测量;(5)光纤光栅传感器能方便的利用波分 复用技术在一根光纤中串联多个光纤光栅进行分布式测量,构成光纤传感网络。在实际工 程领域经常需要三维探测,例如井间地震勘探,为了精细描述油藏的分布,需要用到三维检 波器,由于油井中的环境比较恶劣,传统的电类单个检波器很难实现三维信号的检测,而光 纤光栅检波器则可发挥其耐高温、耐腐蚀和抗电磁干扰的特点。目前对光纤光栅振动传感 器的研宄主要集中在一维,多维振动传感器是通过三个单维振动方向的组合来实现三维振 动检测,并不是真正意义的三维振动传感器,要通过一个振动传感器实现三个方向振动检 测是一个难题,但具有重要的应用价值。因此,光纤光栅三维振动传感器在测量领域的应用 引起了人们的广泛关注和极大兴趣,具有重要的学术研宄价值和市场应用前景,实有必要 提供一种光纤光栅三维振动度感器以克服以上技术缺陷。 【
【发明内容】

[0004] 本发明所要解决的技术问题在于克服上述振动传感器的缺点,提供一种光纤光栅 三维振动传感器。
[0005] 为解决上述技术问题所采用的技术方案是:
[0006] -种光纤光栅三维振动传感器,包括设置在传感器外壳内的传感器敏感膜片、惯 性质量块,以及传感光栅;所述惯性质量块位于传感器敏感膜片的几何中心,并固定于传感 器敏感膜片的底部,所述传感器敏感膜片固定于传感器外壳的内壁;所述传感器敏感膜片 的上表面沿圆周方向在不同的位置固定有三个所述传感光栅,传感光栅串联后通过光纤出 孔与外部解调单元相连;三个传感光栅分别感应空间三个方向的振动信号,且通过三个传 感光栅的配合实现空间任意方向振动信号检测。
[0007] 在所述三个传感光栅中,有两个传感光栅固定于传感器敏感膜片与惯性质量块的 有效接触区域边缘位置,另外一个传感光栅固定于传感器敏感膜片与惯性质量块的有效接 触区域之外。
[0008]固定于传感器敏感膜片与惯性质量块的有效接触区域之外的传感光栅的优选位 置为:i,其中,d是固定于传感器敏感膜片与惯性质量块的有效接触区域之外的 传感光栅与传感器敏感膜片中心的距离,^是惯性质量块与传感器敏感膜片的效接触区域 的半径,r2是传感器敏感膜片的半径。
[0009] 所述三个传感光栅分别为第一、第二和第三传感光栅,其中,第一和第二传感光栅 用于感应X方向和y方向的振动,对z方向的振动不敏感,第三传感光栅用来感应z方向振 动,对X方向和y方向的振动不敏感。
[0010] 所述惯性质量块位于传感器敏感膜片的几何中心,包括上下两个半径不同的圆柱 体,其中,半径较小的第一圆柱体与传感器敏感膜片接触固定。
[0011] 所述传感器外壳的顶部与所述传感器敏感膜片之间留有距离,所述惯性质量块与 传感器外壳的底部之间留有距离。
[0012] 所述传感器外壳的内部设置有一对凸台,所述传感器敏感膜片固定在所述凸台 上。
[0013] 所述惯性质量块的顶部与传感器敏感膜片底部固定,其他部位呈悬空状态。
[0014] 所述惯性质量块的顶部与传感器敏感膜片底部固定,其两侧与传感器外壳的内壁 留有距离,其底部与传感器外壳的底部留有距离。
[0015] 所述第一和第二传感光栅封装于传感器敏感膜片上表面扭应变敏感区,第三传感 光栅封装于传感器敏感膜片上表面拉应变敏感区。
[0016]与现有技术相比,本发明至少具有以下有益效果:本发明利用光纤光栅的波长传 感原理,在外界振动信号作用下使传感器敏感膜片的上表面不同位置产生拉应变和扭应 变,当外界振动信号作用于该结构时,引起传感器内惯性质量块的振动,进而产生惯性力和 扭矩,使得封装于其上的光栅的波长漂移,通过检测三只光栅波长的变化,实现三个方向振 动信号的检测,同时可以消除温度的影响,与普通振动传感器相比,利用一个质量块实现三 个方向振动信号的检测问题。 【【专利附图】

【附图说明】】
[0017] 图1为本发明的结构示意图。
[0018] 图2为本发明光栅封装的结构示意图。
[0019] 其中,1为传感器顶盖,2为光纤出孔,3、8、9分别为第一、第二和第三传感光栅,4 为传感器敏感膜片,5为惯性质量块,6为底座固定孔,7为传感器外壳。 【【具体实施方式】】
[0020] 下面结合附图和各实施例对本发明做进一步详细说明,但本发明不限于这些实施 例。
[0021] 实施例I
[0022] 请参阅图1所示,本发明光纤光栅三维振动传感器采用单膜片特殊质量块结构, 为单圆形膜片结构,主要由传感器顶盖1、传感光纤出孔2、第一传感光栅3、传感器敏感膜 片4、惯性质量块5、底座固定孔6、传感器外壳7、第二传感光栅8、第三传感光栅9构成。 所述惯性质量块5主要由两个半径不等的圆柱体结构构成(所述惯性质量块的两圆柱体 的半径和高度均不同),与传感器敏感膜片接触并固定连接的圆柱体的半径小于下面圆柱 体的半径,所述惯性质量块的中心轴线与传感器敏感膜片的法线重合(即传感器敏感膜片 与惯性质量块的联接位置处于传感器敏感膜片的几何中心,以最大限度的感应三维方向的 振动),通过焊接的方式固定在传感器敏感膜片的底部中心位置;所述传感器的敏感元件 膜片和惯性质量块由相同的材料制成。传感器敏感膜片通过固支的方式固定于传感器外 壳7上(具体地说,所述传感器外壳的内壁设置有凸台,所述传感器敏感膜片设置在该凸台 上),所述第一和第二传感光栅3、8封装于传感器敏感膜片上表面内侧(内侧指传感器敏感 膜片4与惯性质量块的有效接触区域边缘位置),第三传感光栅9封装于传感器敏感膜片上 表面外侧(外侧指传感器敏感膜片4与惯性质量块的有效接触区域之外),三只光栅串联。 传感器顶盖1中心部位设有光纤出孔2,并通过焊接的方式与传感器外壳密封焊接,传感光 纤通过光纤出孔2与外部解调单元相连接。
[0023] 所述第三传感光栅9的优选位置为:d= ,其中,d是固定于传感器敏感膜 片4与惯性质量块的有效接触区域之外的传感光栅与传感器敏感膜片中心的距离,Γι是惯 性质量块与传感器敏感膜片的效接触区域的半径,r2是传感器敏感膜片的半径。
[0024] 所述传感光栅位于传感器敏感膜片的上表面,其中感应z方向光栅的位置与传感 器敏感膜片的外半径和惯性质量块上圆柱体的半径的比值有关,比值越大,灵敏度越大;其 它两个光栅位置处在传感器敏感膜片与惯性质量块的有效接触区域之内,与惯性质量块上 圆柱体的半径有关,半径越大,这两个方向的灵敏度越大,三个传感光栅通过封装胶与膜片 封装为一体。
[0025] 所述传感器外壳7的顶部被传感器顶盖1密封,所述传感器外壳的底部设置有底 座固定孔6,所述传感器顶盖1与传感器敏感膜片之间留有一定距离,所述惯性质量块与传 感器外壳底面之间留有一定的距离。所述传感器外壳7的内部设置有一对台阶,所述传感 器顶盖1设置在该台阶上并与传感器外壳7焊接固定。
[0026] 如图1所示,所述第一和第二传感光栅3、8主要用来感应X方向和y方向振动,对 z方向的振动不敏感,第三传感光栅9主要用来感应z方向振动,对X方向和y方向振动不 敏感,所述第一和第二传感光栅3、8通过383ND胶封装于传感器敏感膜片上表面扭应变敏 感区,第三传感光栅9通过383ND胶封装于传感器敏感膜片上表面拉应变敏感区,光纤输 出端通过光纤出孔2穿出传感器的顶盖1,并通过胶383ND密封。本实施例的第一、第二和 第三传感光栅3、8、9为均勾光纤光栅,光纤光栅的中心波长分别为1555. 35nm、1557. 6nm、 1559. 32nm,3dB带宽分别为0· 223nm、0. 25nm、0. 271nm,光纤光栅的几何长度分别为8mm、 7mm、10mm,光栅的反射率均大于80%,传感器敏感膜片4的厚度为0· 2mm,半径为12mm,质量 块中半径较小的圆柱体的高度为10mm,半径为4mm,半径较大的圆柱体的高度6mm,半径为 IOmm0
[0027] 实施例2
[0028] 本实施例中,传感器的结构参数和材料均与实施例1相同,不同在于:传感光栅8 的位置处在膜片4的d区域,传感光栅8的中心波长为1557. 223nm,3dB带宽为0. 25nm,光 纤光栅的几何长度为9mm,光栅的反射率大于85%,其它零部件以及零部件的联接关系与 实施例1相同。
[0029] 实施例3
[0030] 本实施例中,传感器的结构参数和材料均与实施例1相同,不同在于:传感光栅3、 8的位置分别处在膜片4的c和d区域,传感光栅3的中心波长为1555. 251nm,3dB带宽 为0. 26nm,光纤光栅的几何长度为8mm,光栅的反射率大于80%,传感光栅8的中心波长为 1557. 223nm,3dB带宽为0. 25nm,光纤光栅的几何长度为9mm,光栅的反射率大于85%,其它 零部件以及零部件的联接关系与实施例1相同。
[0031] 实施例4
[0032] 在以上的实施例1?3不同点在于:膜片4的厚度为0.25mm,半径为15mm,上质量 块的高度为18mm,半径为5mm,下质量块的高度10mm,半径为10mm,其它零部件以及零部件 的联接关系与实施例1相同。
[0033] 使用时,将本发明安装在被测对象上,将信号传输光纤与光纤光栅解调模块相连, 当外界的振动信号作用于被测物体时,惯性质量块5在惯性力的作用下,传感器敏感膜片 (4)上表面不同区域的应变对振动方向响应不同,不同的区域对应不同的应变,使得粘贴在 悬臂梁上的三只传感光栅的波长发生漂移,通过波长解调单元实现三维振动信号的处理, 从而检测出被测物体的振动方向、幅度和频率。
[0034] 本发明的工作原理如下:
[0035] 将第一、第二和第三传感光栅3、8、9封装在圆形膜片的不同位置,当被测对象发 生振动时,惯性质量块5振动,在惯性质量块5的惯性力作用下,传感器敏感膜片的上表面 不同的位置在不同的振动方向下产生相应的应变,使得光纤光栅的布拉格波长发生变化, 其中,第三传感光栅9只对z方向振动信号敏感,第一传感光栅3只对X方向振动信号产生 的扭应变敏感、第二传感光栅8只对y方向振动信号产生的扭应变敏感,通过解调单元检测 三个光栅波长的动态变化实现外界三维振动信号的检测。整个膜片结构可看成一个特殊的 E型膜片结构,第一传感光栅3和第二传感光栅8分别环向封装于E型膜片内半径边缘上的 X方向和y方向,第三传感光栅9封装于与E型膜片内半径有关的位置上,当该振动在外界 沿z方向信号q作用下,膜片上光纤位置处的环向应变为:
[0036]
【权利要求】
1. 一种光纤光栅三维振动传感器,其特征在于:所述光纤光栅三维振动传感器包括设 置在传感器外壳(7)内的传感器敏感膜片(4)、惯性质量块(5),以及传感光栅;所述惯性 质量块(5)位于传感器敏感膜片(4)的几何中心,并固定于传感器敏感膜片(4)的底部,所 述传感器敏感膜片(4)固定于传感器外壳(7)的内壁;所述传感器敏感膜片(4)的上表面 沿圆周方向在不同的位置固定有三个所述传感光栅(3、8、9),传感光栅串联后通过光纤出 孔(2)与外部解调单元相连;三个传感光栅分别感应空间三个方向的振动信号,且通过三 个传感光栅的配合实现空间任意方向振动信号检测。
2. 根据权利要求1所述的光纤光栅三维振动传感器,其特征在于:在所述三个传感光 栅中,有两个传感光栅固定于传感器敏感膜片(4)与惯性质量块的有效接触区域边缘位置 上,另外一个传感光栅固定于传感器敏感膜片(4)与惯性质量块的有效接触区域之外。
3. 根据权利要求2所述的光纤光栅三维振动传感器,其特征在于:固定于传感器敏感 膜片(4)与惯性质量块的有效接触区域之外的传感光栅的优选位置为:
,其中, d是固定于传感器敏感膜片(4)与惯性质量块的有效接触区域之外的传感光栅与传感器敏 感膜片中心的距离,^是惯性质量块与传感器敏感膜片的效接触区域的半径,1~2是传感器 敏感膜片的半径。
4. 根据权利要求1所述的光纤光栅三维振动传感器,其特征在于:所述三个传感光栅 分别为第一、第二和第三传感光栅,其中,第一和第二传感光栅用于感应x方向和y方向的 振动,对z方向的振动不敏感,第三传感光栅用来感应z方向振动,对x方向和y方向的振 动不敏感。
5. 根据权利要求1所述的光纤光栅三维振动传感器,其特征在于:所述惯性质量块(5) 位于传感器敏感膜片的几何中心,包括上下两个半径不同的圆柱体,其中,半径较小的第一 圆柱体与传感器敏感膜片接触固定。
6. 根据权利要求1所述的光纤光栅三维振动传感器,其特征在于:所述传感器外壳(7) 的顶部与所述传感器敏感膜片之间留有距离,所述惯性质量块与传感器外壳的底部之间留 有距离。
7. 根据权利要求1至6中任意一项所述的光纤光栅三维振动传感器,其特征在于:所 述传感器外壳的内部设置有一对凸台,所述传感器敏感膜片固定在所述凸台上。
8. 根据权利要求1至6中任意一项所述的光纤光栅三维振动传感器,其特征在于:所 述惯性质量块的顶部与传感器敏感膜片底部固定,其他部位呈悬空状态。
9. 根据权利要求1至6中任意一项所述的光纤光栅三维振动传感器,其特征在于:所 述惯性质量块的顶部与传感器敏感膜片底部固定,其两侧与传感器外壳的内壁留有距离, 其底部与传感器外壳的底部留有距离。
10. 根据权利要求3所述的光纤光栅三维振动传感器,其特征在于:所述第一和第二传 感光栅封装于传感器敏感膜片上表面扭应变敏感区,第三传感光栅封装于传感器敏感膜片 上表面拉应变敏感区。
【文档编号】G01H9/00GK104483008SQ201410751923
【公开日】2015年4月1日 申请日期:2014年12月9日 优先权日:2014年12月9日
【发明者】刘钦朋, 乔学光, 傅海威, 贾振安, 禹大宽, 高宏 申请人:西安石油大学
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1