基于金属碳配合物的气体感测器的制作方法

文档序号:11141985阅读:1687来源:国知局
基于金属碳配合物的气体感测器的制造方法与工艺

本申请要求2014年3月2日提交的美国申请No.61/946,872的优先权,其通过引用将其整体并入。

联邦资助研究或开发

本发明是在陆军研究办公室授予的合同No.W911NF-13-D-0001的政府支持下完成的。政府具有发明中的某些权利。

技术领域

发明涉及基于金属配合物(金属络合物,metal complexes)的感测器(传感器,sensor)组合物。



背景技术:

乙烯气体对于和制造业和农业相关的工业相当重要。然而,乙烯由于其小的体积和受限的化学功能是检测上具有挑战性的化学分析物。用于确定乙烯浓度的现有的可用方法诟病于高成本和在场地中(在田地中,in the field)实施的不切实际性。



技术实现要素:

总的来说,化学响应组合物可包括金属配合物,该配合物包括这样的金属:其键合(结合,bond)至烯烃且活化烯烃使得其与亲核试剂反应以提供具有金属碳单键的金属配合物。所述化学响应组合物在暴露于目标化合物时改变性质例如导电性。所述金属配合物可与烯烃反应而在所述组合物中产生化学电阻响应(chemiresistive response)。所述金属配合物可进一步反应以再生与另外的烯烃反应的金属配合物。

一方面,感测器可包括与至少两个电极电连通的导电区,所述导电区包括导电材料和与烯烃相互作用的金属配合物。

另一方面,感测分析物的方法可包括将感测器暴露于样品,所述感测器包括与至少两个电极电连通的导电区,所述导电区包括导电材料和与烯烃相互作用的金属配合物,和测量所述电极处的电性质。所述电性质可为所述导电区的例如电阻或电导。

在某些实施方式中,所述样品可为气体。

在某些实施方式中,所述分析物可为乙烯、1-甲基环丙烯、丁二烯、异戊二烯、一氧化碳或乙炔。

在某些实施方式中,所述导电材料可包括碳纳米管、石墨、石墨烯、与烯烃相互作用的金属配合物、导电聚合物、金属氧化物或无机半导体。

在某些实施方式中,所述与烯烃相互作用的金属配合物可包括能够通过与烯烃的反应形成稳定配合物的金属大环配合物。所述大环配合物可包括酞菁或或卟啉。所述大环配合物包括Mn、Re、Fe、Ru、Os、Co、Rh、Ir、Ni、Pd、Pd、Cu、Ag、Au或Hg,例如钴离子、铱离子或钯离子。例如,所述金属大环配合物可包括5,10,15,20-四苯基卟啉合钴或5,10,15,20-四(五氟苯基)卟啉合钴。

在某些实施方式中,所述金属大环配合物可包括非配位阴离子,例如Cl-、ClO4-、BF4-、RSO3-,其中R为CF3、CH3、芳基、烷基或氧键合的烷基或芳基、PF6-、或BAr4-,其中Ar为芳族基团(例如,所述烷基或芳基可为C1-C8烷基或C6-C14芳基或杂芳基)。例如,所述与烯烃相互作用的金属配合物可包括三氟乙酸钯(II)或乙酸钯(II)。

另一方面,制备感测器的方法可包括形成包括与至少两个电极电连通的导电区的配合物,所述导电区包括导电材料和与烯烃相互作用的金属配合物,和与至少两个电极电连通地放置所述导电材料。在某些实施方式中,可无线读取所述感测器。在其它实施方式中,所述感测器包括可无线读取的RFID标签。

其它方面、实施方式和特征根据以下说明书、附图和权利要求书会是显然的。

附图说明

图1显示在乙烯检测器中采用的卟啉合钴(III)的化学结构。为了清楚,已经省略水合配体。

图2显示具有空间受限的金属配位位点的加冠的(canopied)吡咯衍生的卟啉的结构。

图3显示[Co(tpfpp)]ClO4在二氯甲烷(DCM)中和在甲醇(MeOH)中的紫外-可见谱图。

图4显示[Co(tpfpp)Cl]在二氯甲烷中的紫外-可见谱图。

图5显示[Co(tpfpp)(H2O)2]ClO4的红外谱图。

图6显示[Co(tpfpp)(H2O)2Cl]的红外谱图。

图7显示化学电阻乙烯检测器阵列的示意性描绘。

图8显示在SWNT复合材料中的tpfppH2、tppH2、[CoII(tpp)]和[CoII(tpfpp)]对在100、200、300、400和500秒时刻时施加30秒的在氮气中稀释的20ppm的乙烯的化学电阻响应。

图9A显示卟啉合钴(III)-SWNT装置对多个浓度的在氮气中稀释的乙烯的线性化学电阻响应。

图9B显示基于[Co(tpp)]ClO4的装置100暴露于在氮气中稀释的80ppm的乙烯的响应。

图10显示相比于其对氮气中的80ppm的乙烯的响应,[Co(tpp)]ClO4-SWNT装置对用氮气稀释的各种化学干扰物的响应。

图11显示磺化的MWCNT的结构。

图12显示Pd(OCOCF3)2和原始的(未加修饰的,pristine)MWCNT(a)、低磺酸密度(1/120)的MWCNT(b)和高磺酸密度的MWCNT(c)对于空的小瓶(对照)以及水和1-己烯的感测响应。

具体实施方式

乙烯气体,作为促进果实成熟以及在植物发育中的其它进程的原因的激素,对于生产和农业相关的产业是相当重要的分析物。乙烯由于其小的尺寸和受限的化学功能在检测上是具有挑战的化学分析物。现有的用于确定乙烯浓度的可用方法诟病于高成本和在场地中实施的不切实际性。参见例如Esser,B.;Swager,T.M.,Angew.Chem.Int.Ed.2010,49,8872-8875,其通过引用以其整体并入。为了克服这些缺陷,可使用通过由单壁碳纳米管(SWNT)和氢化三[3,5-双(三氟甲基)吡唑-1-基]硼酸合铜(I)构成的感测材料构造的可逆的化学电阻乙烯感测器。参见例如Esser,B.;Schnorr,J.M.;Swager,T.M.,Angew.Chem.Int.Ed.2012,51,5752-5756,其通过引用以其整体并入。然而,感测器的寿命由于铜(I)配合物对于需氧氧化和湿气的敏感性而受到限制。

感测器可包括与至少两个电极电连通的导电区,所述导电区包括导电材料和与烯烃相互作用的金属配合物。为了进一步反应,所述与烯烃相互作用的金属配合物可与烯烃键合或者以其它方式活化烯烃。所述与烯烃相互作用的金属配合物可包括能够通过与烯烃的反应而形成稳定配合物的金属大环配合物。大环可为环状大分子或分子的大分子环状部分;它可包含九个或更多个原子的环。所述金属配合物的金属是亲电性的,例如处于+2或更高的氧化态。所述金属配合物可处于具有高度离子特性的状态,例如在金属中心具有正电荷。所述与烯烃相互作用的金属配合物可包括很多种过渡金属,其包括Mn、Re、Fe、Ru、Os、Co、Rh、Ir、Ni、Pd、Pd、Cu、Ag、Au或Hg。在替代的实施方式中,所述金属可为铜系元素或镧系元素。所述金属配合物的配体可为α-二亚胺配体、卟啉或其它大环配体。与烯烃相互作用的金属配合物的实例包括具有氯化物、乙酸盐或三氟乙酸盐配体的钴(III)或钯(II)配合物。这些是在Wacker反应中与烯烃例如乙烯进行反应的化合物的实例,其中乙烯通过键合至金属和与亲核试剂反应而被活化。通过用其它金属进行活化,可发生类似的反应,只要它们与烯烃键合且在活化所述烯烃以受到亲核试剂的攻击上是足够亲电的。

电极之间的间隔可在0.005mm-10mm的范围内。导电材料和与烯烃相互作用的金属配合物的层厚度可在0.01μm和5μm之间。所述与烯烃相互作用的金属配合物对所述导电材料的质量比可在1:0.5和1:100之间。在一些情况下,与烯烃相互作用的配合物可为固有导电的,且为了形成化学电阻感测器,不需要添加额外的导电材料。

感测器的电阻或电导当感测器暴露于分析物时可变化。导电材料导电。导电材料可包括碳纳米管、导电聚合物、无机半导体或金属氧化物。导电材料可包括金属、有机材料、介电材料、半导体材料、聚合物材料、生物材料、纳米线、半导纳米粒子、纳米纤维、碳纤维、碳粒子、碳纳米管、石墨、石墨烯、碳糊(carbon paste)、金属粒子、或导电墨,或其组合。导电材料可包括有机电子材料、导电聚合物、掺杂的共轭聚合物、或导电无机材料。

导电聚合物可包括聚(芴)、聚亚苯基、聚芘、聚聚萘、聚(吡咯)(PPY)、聚咔唑、聚吲哚、聚氮杂聚苯胺(PANI)、聚(噻吩)(PT)、聚(3,4-亚乙基二氧噻吩)(PEDOT)、聚(对亚苯基硫醚)(PPS)、聚(乙炔)(PAC)、聚(对苯亚乙烯基)(PPV)、或其共聚物。金属氧化物可包括ZnO2、SnO2、TiO4、WO3、MoO3、NiO、SnO或、其组合。所述无机半导体可包括MoS2、MoSe2、ZnS2、Si、Ge、InP或其组合。

乙烯剂量计可使用具有对氧气和水可表现出增加的耐久性(robustness)的卟啉合钴(III)的基于化学电阻SWNT的装置平台。烯烃与卟啉合钴(III)的加合物可为用于形成有机钴卟啉配合物的反应性中间产物,且可与其它π配体(例如CO、C2H2)形成加合物。Sugimoto,H.;Ueda,N.;Mori,M.,Bull.Chem.Soc.Jpn 1981,54,3425-3432;Setsune,J.Ito,S.;Takeda,J.;Ishimaru,Y.;Kitao,T.;Sato,M.;Ohya-Nishiguchi,H.;Organomet.1997,16,597-605;Schmidt,E.;Zhang,H.;Chang,C.K.;Babcock,G.T.;Oertling,W.A.,J.Am.Chem.Soc.1996,118,2954-2961,其通过引用以其整体各自并入。

掺入SWNT网络中的卟啉合钴(III)在乙烯的化学电阻检测上可是活性的。可使用一系列的卟啉合钴(III)(图1)。对乙烯的灵敏性可受益于通过使用相对吸电子的卟啉配体和弱配位的抗衡阴离子(反荷阴离子,counter anion)两者引起的钴(III)中心的亲电子性的增加。因此,一系列卟啉合钴(III)可容许在5,10,15,20-四苯基卟啉(tpp)和较吸电子的5,10,15,20四(五氟苯基)卟啉(tpfpp)配体之间以及Cl-和较弱配位的ClO4-抗衡阴离子之间进行比较。

具有空间上受保护的金属中心的卟啉可通过排除(拒绝)较大的化合物或将以垂直于卟啉环的近似面的η1方式键合至金属中心的化合物(例如CO、MeCN)提供对乙烯提高的选择性。加冠的吡咯可通过如下给予这样的保护:在其被掺入到卟啉配体的结构(图2)时限制三价基团9金属中心的空间,防止较大的干扰物分子例如较庞大的(体积较大的,bulkier)烯烃和其它配位挥发性有机化合物的键合,同时仍容许特别小的分子乙烯以较平缓的从侧面的方式接近金属中心,以及潜在地排除可由于高于金属中心之上的冠盖(canopy)的空间障碍物而迫使与端点(end-on)键合的较大分子。参见例如Lee,D.;Swager,T.M.,J.Am.Chem.Soc.2003,125,6870-6871;Lee,D.;Swager,T.M.,Chem.Mater.2005,17,4622-4629,其通过引用以其整体并入。限制干扰物向金属键合位点的接近可在用于该气体检测平台时导致对乙烯的选择性增大以及对其它化合物和环境干扰物的稳定性增强。例如,可在1-甲基环丙烯的存在下检测乙烯。

包括大环金属配合物(例如Co(tpp)Cl、[Co(tpp)]ClO4、[Co(tpfpp)Cl]或[Co(tpfpp)]ClO4)的感测器可表现对乙烯的剂量测定响应,这可暗示乙烯与卟啉合钴(III)配合物和亲核试剂不可逆地反应直至可仍被化学电阻地转换的程度。

感测分析物的方法可包括将感测器暴露于样品,和测量所述电极处的电性质。所述感测器可包括与至少两个电极电连通的导电区,所述导电区包括导电材料和与烯烃相互作用的金属配合物。样品可为气体样品。所述气体样品可包括乙烯。所述气体样品可包括己烯。所述气体样品可包括1-甲基环丙烯。

制备感测器的方法可包括:形成包括与至少两个电极电连通的导电区的配合物,所述导电区包括导电材料和与烯烃相互作用的金属配合物,和以与至少两个电极电连通地放置所述导电材料。

有机钴配合物形成机理

[Co(tpp)]ClO4与乙烯在甲醇-d4中的反应通过在室温的1H NMR可显示出非常弱的在-2.64(t,J=8Hz)和-4.31ppm(t,J=8Hz)处的共振。这些信号将与[Co]-CH2CH2OR(在NMR实验中,R=CD3)的形成相一致;高场化学位移与和[Co(tpp)]ClO4的其它烯烃反应的类似产物的光谱数据相称(与……成比例,commensurate)而且通过卟啉的抗磁环电流在环的中心处的效应而预期。此外,它们的J值对于烷烃中的邻近H-H耦合是代表性的。该有机钴配合物在CNT网络中不可逆形成的转换与乙烯检测器的剂量测定行为相一致。碳纳米管的导电性质对于其电子环境是高度灵敏的,且如在方案1中描述的[Co]金属配合物在烷基化之后的电子变化和更加中性的特性通过电导的降低可能对于CNT的化学电阻转换是足够的。

以下方案1显示了所提出的C2H4和[M]在ROH亲核试剂的存在下的反应机理,其中R是碳链段(例如取代的或未取代的烷基或芳基)或氢。

形成假定的有机钴配合物的反应可通过在方案1中所示的与由Sugimoto和同事先前提出的关于由[Co(tpp)]ClO4和乙基乙烯基醚在乙醇的存在下形成2,2-乙氧基乙基卟啉合钴(III)的机理类似的概括机理进行。参见例如Sugimoto,H.;Nagano,M.;Yoshida,Z.;Ogoshi,J.,Chem.Lett.1980,521-524,其通过引用以其整体并入。乙烯取代配体,然后变成水合的和脱质子的,全部在金属中心处的式符(formal)氧化态没有变化的情况下进行。

这些步骤也可在使用催化性Pd2+氧化烯烃的Wacker工艺(方案2)中发生,其也可以PdCl2的形式用于乙烯感测或以除氯化物(PdCl2)之外的配体例如α-二亚胺所支持的形式用于乙烯感测。参见例如Winston,M.S.;Obland,P.F.;Labinger,J.A.;Bercaw,J.E.,Angew.Chem.Int.Ed.2012,51,9822-9824,其通过引用以其整体并入。Wacker工艺的若干种不同具体形式在工业上也用于千吨规模地制造氧化烯烃。先前已经显示,可使用CNT通过在Pd0和Cu2+之间转移电子而加快Wacker工艺,该Cu2+用于促使发生空气氧化以再生Pd2+催化剂。参见例如Schnorr,J.M.;Swager,T.M.,J.Mater.Chem.2011,21,4768–4770,其通过引用以其整体并入。Pd2+和乙烯的反应生成Pd0,该Pd0为可遏止(淬灭,quench)SWCNT的带正电荷的(p-型)载体的还原剂,导致电导降低形式的化学电阻响应。

以下方案2显示了Hoechst-Wacker工艺的步骤。

[PdCl4]2-+C2H4+H2O→CH3CHO+Pd0+2HCl+2Cl-

Pd0+2CuCl2+2Cl-→[PdCl4]2-+2CuCl

2CuCl+1/2O2+2HCl→2CuCl2+H2O

在Wacker工艺(在方案2中描述的)中,第一反应步骤的金属-烷基产物进一步经历β-氢化物消去,其在再氧化之后可导致用于催化所述反应的原始钯(II)物种的再生和氧化烯烃的释放。尽管能够与如方案1中描述的卟啉合钴(III)具有相同的化学属性(chemistry),但是关于回收机理,可实现该反应性的Pd2+化合物或其它相关化合物可在CNT、导电聚合物、金属氧化物或半导体复合材料中产生可逆的乙烯感测器。在不存在回收机理且Pd0在与烯烃的反应之后继续存在的情形中,所述体系可充当剂量计。然而,由于通过方案1呈现的机理所形成的有机卟啉合钴(III)因缺少在烷基之间的开放配位位点(作为卟啉配体支架(scaffold)的结果)而无法经历β-氢化物消去,所以Wacker类型的回收机理是不可行的。在Co(III)配合物与乙烯反应之后重新设置卟啉合钴(III)-CNT感测器可通过如下完成:为了再次得到自由的Co(III)配合物而对所得的Co-C键进行质子交换,或者为了在Co(II)氧化回到Co(III)之后得到Co(II)·自由基而均裂Co-C键。卟啉合钴(III)可简单地吸附至导电材料,或者通过配位附着至Co(III)或通过共价键附着至卟啉。

也可使用除碳纳米管之外的其他导电材料。导电聚合物(CP)、C60、无机半导体和金属氧化物在具有这些过渡金属配合物的复合材料中也可产生对于乙烯的化学电阻响应。此外,在基于Wacker机理的烯烃感测方案中,导电材料(CNT、CP或金属氧化物)可扮演在传统Wacker机理(方案2)中CuCl2所担任的电子转移媒介的角色,或者扮演可能地由分子氧所担任的直接电子接受体的角色。参见例如Piera,J.;J-E.,Angew.Chem.Int.Ed.2008,47,3506-3523,其通过引用以其整体并入。多金属氧酸盐(POM)钼钒磷酸盐(phosphomolybdovanadate)可在Wacker类催化工艺中充当Pd和O2之间的电子传递媒介,其表明金属氧化物也可提供该功能。与为了再氧化金属配合物而还原半导体伴随的可为半导体的电导的显著变化。所还原的金属配合物可降低p-型半导电材料的电导且增大n-型半导电材料的电导。参见例如Grate,J.H.;Hamm,D.R.;Mahajan S.Palladium and Phosphomolybdovanadate Catalyzed Olefin Oxidation to Carbonyls;In polyxoxmetalates:From Platonic Solids to Antiretroviral Activity;Pope,M.T;Müller A.,Eds.;Kluwer:Dordrecht,1994;p 281-305,其通过引用以其整体并入。

Pd(II)复合材料在Wacker反应中的反应性可通过添加不同的配体体系而调节。所述配体可包括双吡啶基类型的配体和醌。这些配体可用来将金属保持在活性单体状态且防止胶体金属粒子的形成。这些配体可通过共价键附着到导电材料。为了反应通过亲核试剂将烯烃活化可由可能包括Mn、Re、Fe、Ru、Os、Co、Rh、Ir、Ni、Pd、Pd、Cu、Ag、Au或Hg、或者其组合的金属离子所致。特定的金属氧化态和配体对于产生所需的反应性可为必须的。

优选的分析物是乙烯,但是该感测方案对于很多挥发性的烯烃或炔烃是可有效进行的。可制作用于检测乙炔、1-甲基环丙烯、苯乙烯、异戊二烯、丁二烯、丙烯和1-己烯的感测器。为了对于特定分析物产生选择性响应,可选择性选择金属的本性及其配体。例如,应变的(strained)环体系如1-甲基环丙烯可具有比其它烯烃高的反应性,且可开发选择性检测方案。乙烯的选择性可通过在金属中心周围产生高度受限的环境来获得,该金属中心对于其它分析物太大而无法结合。

实施例

通用方法和设备

富含(6,5)手性的SWNT(SG65)可购自SouthWest NanoTechnologies。乙烯气体(99.5%和通过氮气稀释为1.001%)、一氧化碳气体和乙炔气体(99.5%)购自Airgas。5,10,15,20-四(五氟苯基)卟啉(tpfppH2)购自Frontier Scientific。高氯酸(70%)购自Sigma-Aldrich。氧化铝(经活化的,中性的,布罗克曼级I,)购自Alfa Aesar。溶剂购自Sigma-Aldrich或Avantor Performance Materials(Macron Fine Chemicals或J.T.Baker),且原样使用。

在Cary 4000UV-可见分光光度计上记录UV-Vis谱图。使用Thermo Scientific Nicolet 6700FT-IR光谱仪(ATR模式,Ge)进行FT-IR光谱法(谱图分析)。使用Bruker Avance 400MHz NMR波谱仪记录NMR谱图。使用安装有2.5μm球面探头(radius tip)的Veeco Dektak 6M Stylus Profiler采集轮廓分析测量结果。

合成方法

根据文献方法(程序,procedure)合成5,10,15,20-四苯基卟啉(tppH2)、5,10,15,20-四苯基卟啉合钴(II)[Co(tpp)]、5,10,15,20-四(五氟苯基)卟啉合钴(II)[Co(tpfpp)]、氯代(5,10,15,20-四苯基卟啉)合钴(III)[Co(tpp)Cl]和二水合高氯酸5,10,15,20-四苯基卟啉合钴(III)[Co(tpp)(H2O)2]ClO4。参见例如Adler,A.D.;Longo,F.R.;Finarelli,J.D.;Goldmacher,J.;Assour,J.;Korsakoff,L.,J.Org.Chem.1966,32,476;Dorough,G.D.;Miller,J.R.;Huennekens,F.M.,J.Am.Chem.Soc.1951,73,4315–4320;Kadish,K.M.;Araullo-McAdams,C.;Han,B.C.;Franzen,M.M.,J.Am.Chem.Soc.1990,112,8364-8368;Sakurai,T.;Yamamoto,K.;Naito,H.;Nakamoto,N.,Bull.Chem.Soc.Jpn 1976,49,3042-3046;Sugimoto,H.;Ueda,N.;Mori,M.,Bull.Chem.Soc.Jpn 1981,54,3425-3432,其各自通过引用以其整体并入。

二水合高氯酸5,10,15,20-四(五氟苯基)卟啉合钴(III)[Co(tpfpp)(H2O)2]ClO4的合成。将[Co(tpfpp)](0.060g,0.058mmol)溶解于甲醇(60mL)中。添加10%的水性HClO4溶液(2mL),且在室温下搅拌72h的同时使空气鼓泡通过所述溶液。使用旋转蒸发浓缩反应混合物。所得的紫色晶体通过真空过滤离析并容许其在空气下干燥,从而得到产物(0.043g),产率为66%。

氯代(5,10,15,20-四(五氟苯基)卟啉)合钴(III)[Co(tpfpp)Cl]的合成。将[Co(tpfpp)](0.060g,0.058mmol)溶解于甲醇(60mL)中。添加浓缩的HCl(0.6mL),且在室温搅拌72h的同时使空气鼓泡通过所述溶液。使用旋转蒸发浓缩反应混合物。所得的紫色晶体通过真空过滤离析并容许其在空气下干燥,从而得到以37%产率的产物(0.023g)。

图3显示[Co(tpfpp)]ClO4在二氯甲烷(DCM)中和在甲醇(MeOH)中的紫外-可见谱图。图4显示[Co(tpfpp)Cl]在二氯甲烷中的紫外-可见谱图。图5显示[Co(tpfpp)(H2O)2]ClO4的红外谱图。图6显示[Co(tpfpp)(H2O)2Cl]的红外谱图。

装置准备

在通过于丙酮中进行超声而清洗的显微镜载玻片(VWR)上准备装置。所述载玻片安装有常规的铝罩(掩膜,mask),且使用购自Angstrom Engineering的热蒸发器在所述玻璃上沉积10nm的铬(99.99%,R.D.Mathis)层,随后沉积100nm的金(99.99%,R.D.Mathis)。

在典型的装置中,将0.25mg(21μmol的C)的SWNT和0.44mmol的卟啉悬浮于1.0mL的1,2-二氯苯中并在室温短暂地进行超声。使用微量移液管将所得的悬浮液滴涂(滴落流延,drop-cast)到金电极之间的载玻片上。所述溶剂被真空除去。重复施加分散液随后除去所述溶剂的步骤直至整个SWNT网络的电阻到达1-10kΩ的电阻,通过万用表测量。

图7显示典型装置的示意图,其通过将富含(6,5)手性SWNT和给定的卟啉合钴(III)悬浮于1,2-二氯苯(DCB)中而构造。初始的优化实验显示乙烯的灵敏性在21:1的卟啉:CSWNT的摩尔比下最大化;该摩尔比在我们气体检测研究中保持恒定。将该悬浮液短暂地超声,然后滴涂,从而形成在具有共用反电极的14通道阵列中的金电极(1mm的间隔)之间0.3μm厚的复合材料的膜,其容许通过不同的卟啉-SWNT复合材料多重地同时测量。为了获得超静定性(冗余redundancy)和在对于乙烯和干扰物的响应之间进行区分的能力,也可使用阵列装备制造具有对于乙烯气体灵敏的不同复合材料的通道的装置。

气体检测测量

通过用MUX16多路转换器将所述装置的金电极连接到PalmSens EmStat稳压器而获取气体检测测量。对于乙烯检测测量,将所述装置密封在PTFE室中,并且使用气体混合器系统将通过氮气稀释的低浓度乙烯输送到所述室。所述气体混合器包括两个购自Sierra Instruments的数字质量流控制器。MicroTrak质量流控制器用于输送最大4mL/分钟的在氮气中的1%乙烯的混合物,其被由另一个MFC以2.00L/分钟输送的氮气在所述气体混合器中进一步稀释。所述稳压器用于横跨所述电极施加0.100V的恒定电势,且使用PSTrace软件(版本3.0)当所述装置以在连续测量之间至少50s的时间下暴露于不同浓度的乙烯100s时记录电流。使用乙炔替代1%氮气中的乙烯以类似的方式进行乙炔测量。为了测量装置对于挥发性液体有机化合物和水的响应,对于各化合物在校准之后使用KIN-TEK气体发生器系统。将乙烯检测测量的数据校正至在气体暴露之前测量的基线电流的线性拟合;对于其它分析物,将数据校正至横跨全部数据获取时间的基线的线性拟合。

图8显示在SWNT复合材料中的tpfppH2、tppH2、[CoII(tpp)]和[CoII(tpfpp)]对于在100、200、300、400和500s的时刻施加30s的在氮气中稀释的20ppm乙烯的化学电阻响应。

乙烯检测测量

对于乙烯检测测量,将所述装置密封在PTFE室中,且将金电极附着到装备有多路转换器的稳压器。使用气体混合器系统将低浓度的乙烯引入到以固定流速穿过所述装置上方的作为载气的氮气流中。所述稳压器横跨所述电极施加0.100V的恒定电压,且当所述装置暴露于不同浓度的乙烯时记录电流。将由暴露于乙烯所导致的电流变化转换为电导的变化(-ΔG/G0),其被当作是所述装置的响应。

将每次使基于Co(III)的装置暴露于多种低浓度的乙烯100s所导致的响应显示于图9A中的校准曲线中。进行最大80ppm的测量,且能够检测低至低于20ppm的乙烯浓度。所述装置可逆地运转(图9B)且在该浓度范围内对于乙烯呈线性响应,容许使用图9A中所示的校准曲线直接定量乙烯。使用弱配位的阴离子对于改善乙烯的灵敏性以及配体中的中间苯环的氟化是重要的。因此,可使用具有其它非配位阴离子(例如BF4-和CF3SO3-)的类似化合物或具有其它双阴离子大环配体(例如酞菁和其它卟啉)的类似化合物,包括生物衍生的那些。正如之前所指出的,原始的SWNT对于20ppm的乙烯没有给出可评估的化学电阻响应。

基于金属大环-碳的感测器的稳定性和选择性

由于这些卟啉配合物中的Co(III)中心已经处于钴的两个最常见氧化态的较高者且其实际上由其Co(II)前体通过空气氧化而合成,我们预期由它们构造的装置对于在环境条件下分子氧的氧化是稳定的。

为了评价所述装置对于乙烯的选择性,我们测量[Co(tpp)]ClO4-SWNT装置对于水和为了代表宽范围的有机官能团而挑选的若干种挥发性有机化合物的响应。相对于80ppm乙烯的响应的结果显示于图10中。

基于钯的气体感测器

以下实施例描述使用磺化的MWCNT和作为感测层的Pd(OCOCF3)2的感测器的构造和使用。合成磺化的MWCNT(sulfMWCNT)。参见例如J.M.Schnorr,T.M.Swager,J.Mater.Chem.,2011,21,4768-4770;PCT/US2009/006512,其各自通过引用以其整体并入。

制备两个sulfMWCNT样品,并且磺酸基团的密度分别经测定为每30MWCNT碳原子之1(高sulfMWCNT)和每120MWCNT碳原子之1(低sulfMWCNT)。另外,使用原始的MWCNT(得自Bayer Group,C 150P,>95%的纯度)。

感测器基底是载玻片上的金电极图案。电极间隔尺寸为1mm。载玻片(VWR显微镜载片)通过在丙酮中超声3分钟、随后在水中超声3分钟而清洗。之后,将所述载片在氮气下干燥,然后用玻璃切割机进行刻划以得到6个区段(每个0.5英寸x 1英寸)。金层使用荫罩在金溅射涂布机(Polaron SC7620)中以18mA沉积180秒两次,得到约45nm的层厚度。然后,将载玻片分开成6个小片(piece),各自携带一对相距1mm的电极。

MWCNT/选择器悬浮液通过以1:1的比率混合1mg/mL浓度的MWCNT(高sulfMWCNT、低sulfMWCNT或原始的MWCNT)在水中的悬浮液和Pd(OCOCF3)2的溶液(在水中3.3mg/mL)而制备。然后,MWCNT层通过在基底的电极之间滴涂5μL的MWCNT/Pd(OCOCF3)2的悬浮液两次、随后在空气中进行干燥而制备。

所述装置的感测性质通过监测感测器在暴露于分析物时的电导变化而测量。沉积到电极上的感测器连接至稳压器(Autolab PGSTAT 20,Eco Chemie),在0.05V的恒定电势下监测电流。然后,将感测器通过将其直接夹持在容纳约2mL水或1-己烯和棉絮的20mL玻璃小瓶上方而暴露于分析物。也进行使用空的玻璃小瓶的对照实验。在大气气氛中在室温进行感测实验。将基于Pd(OCOCF3)2及原始的MWCNT的感测器、基于低磺酸密度(1/120)的MWCNT的感测器和基于高磺酸密度(1/30)的MWCNT的感测器分别在暴露于空的玻璃小瓶、水和1-己烯的感测描记线(迹线,trace)显示于图12中。

其它实施方式在以下权利要求的范围内。

当前第1页1 2 3 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1