磁场传感器的制作方法

文档序号:11132185阅读:349来源:国知局
磁场传感器的制造方法与工艺

技术领域

本发明的实施例涉及包括磁体的磁场传感器,该磁体也被称为背偏置磁体。



背景技术:

在许多技术领域中,磁场传感器被采用来例如检测对象的运动。在一些应用中,作用在磁场传感器上的磁场受相应的对象的运动影响,使得在对象的运动方面可以在通过磁场传感器检测的磁场的改变的基础上得出结论。

尤其在汽车应用的领域中找到示例,在ABS应用(ABS=防抱系统)例如使用相应的磁场传感器监视车轮的运动。汽车技术领域中的其他应用包括观察或监视曲轴、凸轮轴和机动车辆领域中的其他轴的运动。

取决于相应磁场传感器的特定实施方式,它们包括所谓的背偏置磁体,其位于关于磁场传感器的实际磁场传感器元件的固定布置中。在这种磁场传感器中,通过磁场传感器自身检测的磁场因此可以是至少部分地由背偏置磁体引起的。其运动例如经由磁场传感器监视的对象通过其自身的磁体或磁场分量可能地影响或补充大部分磁场,其然后将通过磁场传感器来检测。

取决于在实际磁场传感器元件的上下文中采用的技术,被经常实施为永久磁体的背偏置磁体具有不同的需求。这可尤其计及下述事实:一些磁场传感器元件技术对不同的磁场分量敏感,展示对磁场的不同响应以及包括特定于相应类型的不同磁场边界。



技术实现要素:

磁场传感器的一个实施例包括磁场传感器布置和磁性体,其包括相对于延伸通过磁性体的横截面的非凸横截面区域,该磁性体包括非均匀磁化。

磁场传感器的另一实施例包括磁场传感器布置、包括第一磁化方向的第一磁性体以及包括第二磁化方向的第二磁性体,第一和第二磁化方向不同于彼此。

产生磁场传感器的方法的一个实施例包括:提供磁性体,该磁性体包括相对于延伸通过磁性体的横截面平面的非凸横截面区域,该磁性体具有非均匀磁化;关于磁性体的第一和第二空间区域存在,使得在第一空间区域中由磁性体引起的磁通量密度关于预定空间方向在第一通量密度范围内,并且使得在第二空间区域中由磁性体关于预定空间方向引起在第二通量密度范围内的磁通量密度;以及布置包括第一和第二磁场传感器元件的磁场传感器布置,使得在第一空间区域中布置第一磁场传感器元件并且在第二空间区域中布置第二磁场传感器元件。

产生磁场传感器的方法的另一实施例包括:提供具有第一磁化方向的第一磁性体以及具有第二磁化方向的第二磁性体;第一和第二磁化方向不同;关于第一磁性体和第二磁性体的第一空间区域和第二空间区域存在,使得在第一空间区域中由第一磁性体和第二磁性体关于预定空间方向引起在第一通量密度范围内的磁通量密度,并且使得在第二空间区域中由第一磁性体和第二磁性体关于预定空间方向引起在第二通量密度范围内的磁通量密度;以及提供包括第一和第二磁场传感器元件的磁场传感器布置,使得在第一空间区域中布置第一磁场传感器元件并且在第二空间区域中布置第二磁场传感器元件。

附图说明

本发明的实施例将随后参考附图被详述,在附图中:

图1a示出磁场传感器的第一实施例的横截面视图;

图1b示出磁场传感器的另一实施例的横截面视图;

图2示出磁场传感器的实施例的使用的潜在示例的示意性表示;

图3a和图3b示出磁场传感器的另外的实施例的横截面视图;

图4示出在磁场传感器及其背偏置磁体的实施例的情况下的所得到的磁流体密度的数值模拟的结果;

图5示出在图4中示出的背偏置磁体的情况下的磁通量密度的x分量的表示;

图6a和图6b示出磁场传感器的另外的实施例的横截面视图;

图7示出针对磁场传感器或其背偏置磁体的实施例的磁通量密度的数值模拟的结果;

图8示出针对在图7中示出的数值模拟的磁通量密度的x分量的曲线;

图9示出图8中示出的曲线的放大表示;

图10a和图10b示出磁场传感器的另外的实施例的横截面视图;

图11示出关于磁场传感器的实施例的磁通量密度的数值模拟的结果;

图12a和12b示出针对图11中示出的数值模拟的磁流体密度的x分量的各种曲线;

图13示出磁场传感器的另一实施例的横截面表示;

图14A图示根据本公开的另一非均匀磁体的横截面视图;

图14B图示另一非均匀磁体的示例性形状的空间视图;

图14C图示结合裸片传感器的非均匀背偏置磁体;

图14D图示根据本公开的非均匀背偏置磁体的另一实施方式;

图15图示针对非均匀和均匀磁场的Bx分量;

图16图示针对另一非均匀磁体的磁化的模拟分布;以及

图17图示针对指示另一磁体的不同非均匀磁化水平的不同角度α的模拟的Bx分量。

具体实施方式

图1a至13示出具有其磁性体或背偏置磁体的磁场传感器以及形式为曲线或其他表示的数值模拟的结果的各种实施例的示意性表示。然而,在图2的上下文中给出磁场传感器的潜在应用场景的更详细描述之前,描述将在图1a的上下文中由磁场传感器连同磁性体或背偏置磁体的第一实施例初始地给出。

图1a示出包括磁性体或背偏置磁体110和磁场传感器布置120的磁场传感器100的第一实施例。图1a中的磁性体包括凹部130,其面向磁场传感器布置120并且具有关于延伸通过磁性体的横截面的多边形横截面,如在图1a中描绘的那样。

在这里,凹部130在图1a示出的实施例中具有带有总共七个顶点140-1至140-7的多边形横截面。不同于在图1a中示出的磁性体110的横截面形状,在磁场传感器100的其他实施例中,磁性体110的凹部130也可以包括偏离七的顶点140的数目。例如,在三角形凹部的情况下,关于延伸通过磁性体110的相应横截面平面,该凹部也可以仅包括三个顶点140。然而,原则上,任何数目的顶点140可以定义相对于横截面平面的凹部130的相应的横截面形状。

在垂直于图1a中示出的横截面平面的磁性体110的形状和延伸方面,相应的磁性体110可以包括例如关于突出超过图1a中示出的横截面平面或与其垂直的横截面平面的相同横截面平面。换言之,取决于凹部130的特定实施方式,关于延伸通过中心点或任何其他指定点的横截面平面的相同形状可以产生。例如,在这种情况下,所有潜在顶点140的集合将关于垂直于图1a中示出的平面的平面形成点的圆形和/或椭圆形集合,或者可能地形成具有部分圆形或部分椭圆形的形状的点的集合。

在磁场传感器100的其他实施例中,磁性体110可以展示关于不是横截面平面的平面的凹部130的其他形状。例如,这种凹部130可以关于垂直于图1a中示出的平面的平面包括与其偏离的横截面形状。因此,有可能例如相应凹部130以磁性体110内的凹槽的形状来实施,使得在该情况下通过相应磁性体110的相应横截面具有例如矩形形状、方形形状或任何其他形状,其是凸的。

当然,存在磁场传感器100的实施例的磁性体110的其他配置,其中垂直于图1a中示出的平面的相应横截面也具有多边形、椭圆形或任何其他横截面形状。

另外,以非均匀方式磁化的磁性体110的其他配置也可以自然地被采用在磁场传感器100的实施例中。例如,关于被绘制为图1a中的虚线的直连接线160和/或关于通常在本文中定义的非凸横截面平面形状,以非均匀方式磁化的磁性体110也可以呈现“被视为与其镜像”的横截面形状,只要磁性体110以非均匀方式磁化。

然而,在以下提出的实施例中,应特别参考非凸磁性体110,以便简化描述,然而,随后说明可适用于实质上所有磁性体110,其以非均匀方式磁化。

如例如在图1a中描绘的磁性体110因此包括关于延伸通过磁性体110的横截面平面的非凸横截面平面150。在该上下文中,平面(即,例如还有横截面区域诸如横截面区域150)内的点的集合精确地在对于相应量的分别的任何两个点诚然也是这两个点之间的直接直连接线完全延伸在相应量内即在横截面区域150内时是凸的。换言之,平面内的量精确地在相应量的所有潜在点的所有潜在直连接线完全延伸在该量内时是凸的。

如以上解释的,磁性体110的横截面区域150是非凸的,因为例如被绘制为图1a中的虚线的直连接线160(其端点两者都位于横截面区域150内是相应量的元件)即是相应量的元件,然而不完全位于相应量内,即在横截面区域150内。相反,直连接线160与凹部130相交。因此,横截面区域150是非凸的,使得其也可以被称为凹面。术语凹和非凸因此可以可能地被同义地使用。

图1a中示出的磁场传感器100的实施例的磁性体110可以例如由永久磁性材料制成。取决于在其上磁场传感器的实施例不要被采用的边界条件,即尤其关于潜在温度的使用、成本、有用磁场和其他参数,磁性体110也可以例如由以下各项制成:铁、钴镍或其他相对复杂化合物和合金,其可能地包括以上提及的金属作为成分。原则上,相应的磁性体或背偏置磁体110可以从铁氧体、铝-镍-钴(AlNiCo)、还有钐-钴(SmCo)或钕-铁-硼(NdFeB)制造。当然,其他材料组合或材料作为针对相应磁性体110的应用领域也是可行的。

如在图1a中由箭头170指示的,磁性体或背偏置磁体110具有非均匀磁化。磁性体110的磁化M在这里已经被特别生成为非均匀的、各种磁化发生在各种点处特别是在横截面区域150内,该磁化至少关于其幅值或强度和/或其方向而不同。

换言之,磁性体的磁化在其大部分不是均匀时是非均匀的,均匀磁化被理解为在本申请的上下文中意指关于其方向和强度是恒定和单向的磁化。换种说法,磁性体110具有如箭头170示出的非均匀磁化,因为磁性体110的磁化不具有在向量意义上跨整个磁性体或跨整个磁性体的主要部分的磁化M的恒定方向和/或恒定幅值。在本申请的上下文中,整个磁性体110或磁性体110的主要部分被理解为意指范围从50%到100%即例如95%、90%、80%、75%、70%或60%的磁性体110的体积分数,有可能相应体积分数根据磁场传感器的实施例的应用和实施方式的相应领域而产生。

另外,应当在这里指出的是,对于在整体体积中包括在幅值和方向方面是恒定的磁化的许多磁体,即以均匀方式磁化的磁体而言,从其产生的磁场可以在磁体的外部和内部两者上是非均匀的。换言之,在磁体的外部和/或内部上的非均匀磁场的存在不需要是磁化也是非均匀的指示。在许多情况下,均匀磁化是特别有吸引力的,因为它们可以以相当简单和廉价方式制造。

如例如图5a中示出的磁场传感器100的实施例的磁性体110或背偏置磁体110经常包括取决于使用的示例范围从几百毫特斯拉(≥100 mT)到几特斯拉(3T)的剩余磁通量密度。取决于磁场传感器110的实施例的特定实施方式和规范,磁性体100因此可以包括例如典型地为500 mT或1 T的“磁化”或剩余磁通量密度Brem,其因为磁化而存在。然而,应当在该上下文中指出的是,以上提及的通量密度范围不要以限制意义进行理解。相反,它们仅仅是如可以用在磁场传感器100的实施例的应用的一些领域中的示例。原则上,其他的磁化可以根据各种参数,即,例如个体磁场传感器元件技术的参数、相应的磁场传感器的尺寸和其他参数而被使用。

除了磁性体之外或背偏置磁体110之外,图1a中示出的磁场传感器100的实施例也包括磁场传感器布置120,其包括例如衬底或芯片180和一个或几个磁场传感器元件190作为可选部件。在图1a中示出的实施例中,传感器布置120包括在图1a中绘制的至少两个磁场传感器元件190-1、190-2。取决于所使用的技术,磁场传感器元件190可以是磁阻传感器元件(xMR传感器元件)、霍尔传感器元件、或对磁影响进行反应的其他传感器元件,诸如磁二极管或磁晶体管。

关于本发明,应当指出的是,磁场传感器元件可以特别地以展示饱和特性的这种传感器或传感器元件(即,例如xMR传感器元件)被有利地采用。

相比之下,霍尔探头例如几乎没有饱和。然而,由于从霍尔探头下游连接的放大器展示饱和特性(因为放大器在其动态范围之外变得饱和),还可能有利的是,以霍尔探头使用在这里描述的磁性体。

磁阻传感器元件尤其包括AMR传感器元件(AMR = 各向异性磁阻)、GMR传感器元件(GMR = 巨磁阻)、CMR传感器元件(CMR = 庞磁阻)、EMR传感器元件(EMR = 非凡的磁阻)、TMR传感器元件(TMR = 隧道磁阻)、或自旋阀传感器元件。霍尔传感器可以是水平或垂直的霍尔传感器。

取决于特定的实施方式,磁场传感器布置120可以包括另外的部件,诸如评价电路、传感器电路或用于保护个体的磁场传感器元件190的相应包封材料。

在磁场传感器100的一些实施例中,如图1a所示,例如,磁化M关于在磁化M的x分量Mx的x坐标(x = 0)和磁化的y分量My的图1a所示的对称线195具有以下的对称条件:

Mx(x) = -Mx(-x)

My(x) = My(x) (1)。

这意味着磁化的x分量Mx关于x = 0处的对称线195具有奇对称性,并且y分量My关于x坐标和对称线195具有偶对称性。更一般地说,磁化M在磁场传感器的一些实施例中关于相对于部件的相关联的磁性体110具有奇对称关系,并且关于另一部件具有偶对称关系。更具体地说,在磁场传感器的一些实施例中,磁性体110的磁化M关于矢量分量具有偶对称关系,并且关于垂直于该矢量分量的矢量分量具有奇对称关系。

在将结合图1b到13描述和解释磁场传感器的另外的实施例之前,应当指出的是,具有相同或类似功能属性和特征的对象、结构和部件由相同参考标记指定。除非另外明确声明,否则,具有类似或相同功能属性和特征的对象、结构和部件的描述可以互换。另外,在本申请的另外的过程中,概述参考标记应当用于在一个实施例中以相同或类似的方式出现几次的或在不同附图、实施例中以类似方式出现的对象、结构和部件,除非解释和讨论了非常特定的对象、结构或部件的特征或属性。概述参考标记的利用因此能够实现对本发明的实施例的更简洁和更清楚的描述。

图1b示出仅略微不同于图1a中示出的实施例的磁场传感器100的另一实施例。图1b中示出的磁场传感器100的实施例再次包括磁性体110,磁性体110的磁化M再次由箭头170指示。在图1b中描绘的实施例中,磁化M在磁性体的大部分中也是非均匀的,如由箭头170的轨迹指示的那样。更具体地说,磁性体110的磁化M再次具有结合方程(1)描述的对称条件。

不同于图1a中描绘的实施例,图1b中示出的磁场传感器100的实施例的磁性体110具有关于上边缘不同的轨迹。更具体地说,在图1a描绘的实施例中,磁性体110的上边缘由直线定界,而在图1b中的磁性体110中,磁性体向上延伸超出在图1b中表示的区域。然而,不管其图1b中描绘的磁性体中,横截面区域150关于图1b中重现的横截面平面是非凸的,因为其端点位于横截面区域150内的直接直连接线160再次自身与凹部130相交,并且因此位于横截面区域150内。换言之,不管上形状或外形状,磁性体110的横截面区域150是非凸的,不管磁性体110的外、上或横向界限区域的特定形状。

另外,图1b中描绘的实施例关于凹部130而不同。虽然在图1a中示出的实施例中凹部具有多边形横截面,但是在图1b中示出的实施例中,在那里示出的凹部的横截面是椭圆形的。

除此以外,在图1a和1b中示出的磁场传感器100的实施例几乎没有不同。在图1b中示出的实施例中,磁性体110的横截面可以包括关于垂直于图1b中示出的横截面平面的平面不同形状、类似的形状或甚至相同的形状。

在图1a和1b所示的两个实施例中,相对于磁性体110布置磁场传感器布置120,使得也理想地定位布置120以使得其也在对称线195上具有磁场传感器布置120的重心点或中心点。另外,相对于对称线195理想地对准磁场传感器布置120,使得在那里示出的两个磁场传感器元件190的图1a和1b中未绘制的连接线以直角与对称线195相交。换言之,理想地布置磁场传感器布置120,使得其复制或采用磁性体110的磁化M的以上描述的对称性。当然,在磁场传感器100的相应实施例的实际实施方式的情况下,偏差可以关于x方向上和/或y方向上的偏移并且关于绕任何这些轴或与其垂直的任何轴的旋转而出现。

如将在本申请的另外过程中解释的,磁性体110的该恰好是以上描述的非均匀磁化M在磁场传感器的一些实施例中结合其横截面形状同时考虑磁场传感器元件190所使用的技术能够实现磁场传感器布置120关于磁性体110的定位公差的增加的改进。换言之,在磁场传感器100的一些实施例中,更大的公差可以相对于磁场传感器布置120的精确布局被实现,而没有必要在磁场传感器100的实施例的随后操作中接受涉及测量精度、功能性或其他参数的不利效果,其可以可能地由磁场传感器元件190引起,磁场传感器元件190关于磁性体110不利地定位。

特别是在磁阻磁场传感器元件190的情况下,在磁场传感器100的一些实施例中,将如被包括在实施例的框架中的磁性体110可能是有利的。如以下将解释的,在一些实施例中,相应的磁阻传感器元件190的过载可以可能地被抑制,和/或相应的传感器元件的定位公差可以可能地增加,而没有或几乎没有任何负面后果对于实际测量操作是预期的。

图2示出结合确定轴的旋转速率或旋转速度的磁场传感器100的实施例的使用的典型领域。更具体地说,图2示出磁场传感器100的实施例,除了可以被实施例如为永久磁体的磁性体110和磁场传感器布置120以外,磁场传感器100包括在磁场传感器100中包括的保护外壳。如以上已经解释的,磁场传感器布置120另外包括两个磁场传感器元件190,其例如可以是磁阻、磁敏感传感器元件。如以上解释的,磁性体110已经以简化的方式被绘制在图2中,而不表示相对于图2中描绘的横截面平面的横截面和关于磁化的磁性体的以上解释的特征。特征不仅仅被再现在图2中,以便简化表示。

在离磁场传感器元件190的平面一距离处,距离在图2中由箭头200标记并且也被称为磁气隙或气隙,在磁场传感器100的实施例下面安装发电机对象210,其是有齿的轮,其有时也被称为可透过的发电机轮。其他发电机对象210包括钻轮、磁体轮或考虑它们选择的材料和/或它们的拓扑适合的其他圆形或椭圆形对象,以影响磁场,其在发电机对象210的运动发生时由磁性体110生成,并且可能地在磁体轮的情况下生成其自身的磁通量密度。

取决于特定实施方式和应用场景,磁场传感器100的实施例也可以结合其他发电机对象210来采用。例如,相应的实施例可以结合磁体杆、钻杆或齿条被采用作为发电机对象210,例如以检测线性运动或致使其可检测。在很多情况下,发电机对象210包括关于磁化、拓扑或其他特征的周期结构,使得在发电机对象210的运动的情况下,引起磁场(尤其是磁性体110的磁场)的周期改变。相应的发电机对象210经常被实施为相应运动部件的部分或者被连接到该部分。

在作为发电机对象210的有齿的轮的情况下,如图2所示,其可以例如被耦合到轴(即,曲轴或凸轮轴)或者被耦合到。如果使发电机对象210运动,即在图2描绘的有齿的轮的情况下旋转,如由箭头220指示的,则这引起可以由磁场传感器100检测的磁场的改变。

取决于应用磁场传感器100的实施例的领域中设想的目标,轮的运动因此可以例如借助于磁传感器检测,如可以例如在ABS系统的上下文中期望的。磁场传感器100的其他实施例可以例如在引擎控制和监视的领域中被采用例如作为曲轴传感器或凸轮轴传感器。在该上下文中,有齿的轮210尤其结合小的永久磁体使用作为实际传感器或磁场传感器布置120的后侧上的磁性体110。使轮运动或旋转然后导致磁场元件190的区域中的正弦磁场,磁场的分量在磁阻传感器(xMR传感器)的情况下以芯片级或衬底级来评估。同时,轮的旋转运动的方向也可以可能地通过另一传感器或借助于其他技术测量来评估和检测。

在许多应用中,小的永久磁体因此作为磁性体110被安装在磁场传感器布置120上,使得两者可以被布置在有齿的轮形的可透过圆盘之前,如在图2中示意性描绘的。当圆盘旋转时,有齿的轮210的齿以磁气隙的距离通过磁场传感器元件190的平面并且因此生成小的场变化,其可以通过磁场传感器100的实施例检测并且包括关于圆盘的角度位置和旋转速度的信息。在许多情况下,磁场变化的波形几乎是正弦的,并且其幅度根据增加的(磁)气隙急剧减少。

在作为发电机对象210的有齿的轮的情况下,如在图2中描绘的,波形的幅度经常根据磁气隙和所谓节距的比率(可能地乘以倍)粗略地指数地减少。在该上下文中,所谓节距被定义为有齿的轮的半圆周除以齿数的商,如果其等距地分布跨有齿的轮的圆周。因此,节距表示有齿的轮的半周期。出于这个原因,可能可取的是,在磁场传感器100的一些实施例中并且在磁场传感器的应用的各种领域中,尽可能靠近发电机对象190操作实施例以便绕开和防止例如磁气隙大于齿的近似宽度。从大约一个齿的宽度到齿的宽度的大约150%的磁气隙的增加可以例如取决于特定环境将磁场幅度减少为小于原来的1/5。例如,幅度取决于 exp(-2Pi*z/lamda),lamda是磁周期,即,lamda/2是齿的宽度或两个齿之间的间隙的宽度。如果z = lamda/2增加到z = 1.5*lamda/2,则幅度因此将改变为原来的exp(-Pi)/exp(-Pi*1.5) = 4.8倍。

在磁阻传感器元件即例如GMR传感器元件190的情况下,可能发生相应磁体布置关于衬底或芯片的平面中的磁场分量过载个体GMR传感器元件190。在这种情况下,可能发生所涉及的(多个)磁场传感器元件190将不提供任何测量信号,或几乎不可用的测量信号。

因此,甚至如果例如有齿的轮210对称地定位到磁场传感器布置120的芯片,即如果例如有齿的轮210的齿中心或间隙中心直接在也在图2中绘制的(xx = 0)位置,则可能发生磁体的磁通线发散,根据其不可接受地大的Bx分量将作用在图2中示出的两个(磁阻)磁场传感器元件190上。如已经结合图1a和1b解释的,(x=0)位置在这里由对称线195定义,对称线195结合图2与精确地位于图2中示出的两个磁阻传感器元件190之间的位置相关。

在这种情况下,两个磁阻传感器元件190被驱动成饱和,并且能够不再放出任何(可用)信号。在其中采用磁场传感器100的实施例的一些应用中,所使用的磁性体或背偏置磁体110的共同剩磁在正好在1特斯拉(T)以上的范围中。作为发电机对象210的典型有齿的轮包括近似3 mm宽的齿和间隙,间隙的深度也对应于大约3 mm。当然,相应有齿的轮或其他发电机对象的其他标示尺寸可以在使用的其他示例中出现。而且,磁场传感器100的相应实施例不限于这些值。应当指出的是,在本发明的上下文中,可以例如使用大的磁体或使用大的剩磁或使用小的退磁因子实现xMR元件处的大的磁场。

取决于特定应用,磁阻传感器元件190典型地布置在磁体或磁性体110之前的大约1 mm的范围内,并且有齿的轮其自身布置在磁阻传感器元件190之前的大约1到4 mm,使得磁气隙也在该范围内。在一些应用中并且因此在磁场传感器100的一些实施例中,磁体或磁性体110具有x方向上的5 mm以及y方向上的6 mm的横截面,芯片处的磁阻传感器元件190间隔开大约2.5 mm。在这种情况下,可能发生两个磁场元件190的右手的一个上的磁场强度的Bx分量范围从大约95到117 mT,不同值根据(磁)气隙产生。因此,在对称布局的情况下,范围从-95到-117 mT的Bx分量作用在左手的传感器元件190上。取决于磁场传感器元件190的特定实施方式,特别是在GMR磁场传感器元件的情况下,这种传感器元件经常具有高达+/- 15 mT的线性驱动范围。如果这种GMR传感器元件190由磁体高度过驱动,则它将不再以有用的方式起作用,并且将不再能够提供有用的测量信号。

利用其他GMR传感器元件190,可能发生它们在大约10 mT的磁通量密度下已经变得饱和。因此,如果在GMR传感器元件190的位置处存在大于100 mT的磁场分量或磁通量密度分量,则后者将被驱动为饱和,使得如可以由发电机对象210引起的小的重叠交变磁场不再可检测。因此在这种情况下可能有用的是,将以上描述的磁通量密度减少为原来的1/15。

如果例如仅仅由齿在GMR传感器元件的大约10 mT的饱和场强度下引起12 mT和14 mT之间的调制,则相应的GMR传感器元件在许多情况下可能不再提供可用的输出信号,使得传感器总体可能不再能够检测发电机对象210的旋转。

如以上已经解释的,以上数字指示特别服务图示并且不要以限制意义来理解。磁场传感器100的实施例可以被采用在非常宽范围的磁体或磁性体100内以及在非常宽范围的不同磁场传感器元件190内。而且,在相应应用场景的情况下,可以将实施例与很多不同发电机对象210组合,以便形成速度传感器例如或其他基于磁的传感器。

图3a和3b示出磁场传感器100的两个另外的实施例。更具体地说,两个实施例分别连同发电机对象210来描绘,有可能发电机对象210是齿条或有齿的轮,例如其在图3a和3b中被描绘成没有任何弯曲以便简化表示。

图3a和3b中描绘的磁场传感器100的实施例因此各自包括磁性体110,其关于图3a和3b中示出的横截面平面再次包括具有凹部130的非凸横截面,凹部130被配置成在图3a和3b中示出的实施例中是圆形的。当然,在该上下文中可以指出的是,指定的圆形或椭圆形也可以被应用到相应的几何图形即圆形或椭圆形的相应扇区或部分。

在图3a和3b中描绘的磁场传感器100的实施例中,磁性体110或两个背偏置磁体110再次具有非均匀磁化,如在两个附图中由箭头170描绘的。取决于实施例的特定实施方式,在这里,除了芯片或衬底180和(磁阻)磁场传感器元件190即例如GMR磁场传感器元件以外,磁场传感器布置120也可以可能地包括也被称为封装的外壳。

在图3a和3b描绘的实施例中,磁体或磁性体110被配置为环的一部分并且实质上是径向磁化的,如由箭头170指示的。更具体地说,磁性体110在这里具有环形的形状,但在磁场传感器100的其它实施例中,它也可以具有其他的形状,诸如扁平或直立的椭圆的形状。如图1b的上下文中已经解释的,它可能满足磁性体110的需要,以包括内凹部,使得可以执行以上描述的磁性体110的磁化。基本上,因此可以原则上提供所需任何外界限曲线。如之前解释的,在磁场传感器100的一些实施例中,内凹部可能是圆形、椭圆形或多边形的。换言之,在磁场传感器的不同实施例中,磁性体可以具有与横截面平面相关的非凸的横截面或非凸的横截面区域。

因此,图3a示出其中磁性体110在180°内延伸并配置为环带的实施例。相比之下,在图3b描绘的实施例中,描绘为环带的磁性体110延伸在小于180°内。取决于特定实施方式,磁性体110也可以在超过180°内延伸。

可以使传感器IC(IC = 集成电路)或磁场传感器布置120运动或转移既“到磁体内”又到凹部130的区域,如图3a中描绘的。在相对小的磁体110的情况下或者甚至在有限的设计空间的情况下,磁体110也可以被放置在传感器IC的背面上,其中取决于磁场传感器100的实施例的特定实施方式,IC 120的前侧和底侧可以在许多情况下关于所描述的固定同样地被很好地使用。

然而,在应用的许多情况下,可能可取的是,使GMR传感器元件190运动得尽可能靠近有齿的轮或发电机对象210,使得可以可能地在这种情况下可取的是,将磁体110固设在不包含部件(例如,磁场传感器元件190)的芯片120的该侧上。因此,在这种情况下,可能可取的是将磁场传感器布置120固设到磁性体110,使得其与图3a和3b的表示相比以在此的关系旋转180°,即,以正好相反的方式固设它到图3a和3b中描绘的磁性体。磁场传感器元件190因此可以被定位成使得它们相对于衬底180和发电机对象210旋转180°。

取决于特定的实施方式,典型的尺寸因此可以在图3a和3b中示出的实施例的情况下包括相对于磁性体110的形状的大约9 mm的外部直径和大约5 mm的内部直径。取决于实施例的特定实施方式,剩余磁化的强度再次可以高于大约500 mT或高于大约1 mT。

在一些实施例中,两个传感器元件190之间的间距大约是发电机对象210的齿或齿间隙的大小。在一些实施例中或在一些应用情况下,这对于图3a和3b中示出的两个外传感器元件之间的距离可以例如是2.5 mm。取决于特定的实施方式,中央传感器元件可以被采用例如用于检测方向,有可能将中央传感器元件布置在左手和右手的传感器元件之间的中心。然而,在一些应用领域中,传感器元件190之间的其他距离是有用的。也可以使用其他的距离,例如1.7 mm。

在许多情况下,芯片180的表面以范围从大约0.5 mm到大约2 mm的距离被布置在磁体110之前,大约0.7 mm的距离经常表示有用的折衷,因为在一方面,磁体110应当被定位成尽可能靠近芯片180,并且因此靠近磁体轮210,以及在另一方面,安装部件的厚度(封装底部、引线框架厚度、管芯附着厚度和硅厚度)经常在大约0.7 mm的范围中。芯片180与发电机对象210的距离(也被称为气隙)可以总计为数十毫米作为最小值,但作为最大值在一些应用领域中应当不超过大约四个齿或四个齿间隙的宽度的间距,因为在更大的气隙的情况下,磁场信号幅度将指数地减少。

图4示出如在如在图3a的上下文在那里讨论的实施例中描述的磁性体110的情况下产生的磁场线的磁场强度曲线的数值模拟的结果。如已经引起例如图4中示出的磁场曲线的计算磁场在许多情况下一点儿也不复杂,并且基本上归结为求解四个麦克斯韦微分方程。确实存在针对特殊情况的简化形式,其可能地可以以封闭形式求解,但特别用于计算磁场、磁通量密度以及在本申请的上下文中讨论的其他曲线和特性,可以例如基于使用有限元方法的二维或三维模拟来执行的数值模拟一般是不可缺少的。可以例如基于以下方程执行相应的模拟和计算:

同时考虑到相应的边界条件,B是磁感应或磁通量密度作为矢量的量,μ0指定真空的磁导率,red M指定(矢量)磁化的旋转,degreeAr指定位置坐标关于起点A的梯度,并且r是起点和源点之间的距离。跨整个空间,即不仅在磁性体110的材料内而且跨其表面执行积分,该表面由方程(2)中的“积分边界”V指示。

除了磁性体110以外,图4也示意性描绘了图3a和3b中示出的发电机对象210。除了大量的场线230以外,对于一些区域,0.2 T到0.5 T的最大值之间的相应磁通量密度被另外描绘在图4中。在这里,在图4中的表示的内部分的箭头240标记如由图例的区域中的箭头250描绘的磁场强度的减少。

图4因此表示形式为在180°内延伸的环带并且在径向方向上被磁化的磁性体的横截面,如已经结合图3a描述的。作为发电机对象210的有齿的轮在这里被对称地定位到磁体110。在这个位置,在磁场传感器元件190(不被示出在图4中)的位置处的磁通密度的Bx分量应当理想地尽可能靠近零,但至少在GMR传感器元件的线性控制范围内,即例如在近似-15 mT和+15 mT之间。

关于磁性体110,数值模拟的结果(被示出在图4中)基于磁性体110剩磁1 T,剩磁在幅值方面均匀地跨整个磁性体110延伸。然而,由于其径向性质而不均匀的磁化的方向由此免除。

另外,图4具有在磁体的端面之间(在线260的区域中)绘制的水平线260,磁场强度Bx已经根据下面的图5中表示的曲线的上下文中的x坐标来评估。

图5描绘针对图4中表示的线260再现以特斯拉(T)为单位的磁通量密度Bx的总共七条曲线270-1到270-11。曲线270在这里以升序对应于其在参考标记的上下文中的连字号后面指示到y位置(y= -0.5 mm、-0.4 mm、-0,3 mm、-0.2 mm、-0.1 mm、0 mm、+0.1 mm、+0.2 mm、+0.3 mm、+0.4 mm、+0.5 mm)的数字。

曲线270示出由于布置的对称性,磁通量密度Bx的x分量对x坐标x对于y= 0的情况几乎消失(曲线270-6),并且因此将表示针对GMR传感器元件的基本上理想的位置。如果例如磁场传感器元件190被定位成使得它们以1.25 mm的距离对称地分布在x = 0周围,即在x位置(x = +/- 1.25 mm),则范围从y=-0.1 mm到y = +0.1 mm的y位置相当适合于确保在幅值方面小于20 mT的磁场强度的x分量(< 20 mT),如针对y位置的y = 0.1 mm、0 mm、+0.1 mm的曲线270-5、270-6、270-7示出的那样。曲线270实质上包括关于点(x,Bx) = (0m, 0T)的镜像对称。与具有连续地均匀磁化的简单立方磁体相比,磁通量密度Bx的x分量的减少可能因此通过采用磁场传感器100的实施例来实现,有时有可能减少总计为与一个数量级那么高的量。

图6a和6b示出磁场传感器100的另外的实施例,其类似于图3a和3b的实施例但与图3a和3b的实施例,而不同在于磁性体110以方位角的方式被磁化,如由箭头170指示的。具有磁场传感器100的实施例的这种可能性,如例如在图6a中描绘的,磁性体110可以包括在180°内延伸的环形横截面。同样地,如在图6b中描绘的,其可以包括在小于180°内延伸的横截面。在图6b中示出的实施例的磁体110因此可以被视为“在径向方向上切断”,磁性体110的其他形状当然也是可能的。例如,其中端面例如在x方向或y方向上被切断的磁性体110也是可设想的。以上在图1a、1b、3a和3b的上下文中已经解释的,磁性体的外部形状在该上下文是欠决定性的。因此,对以上提及的方向倾斜的其他方向作为磁性体110的“截面方向”也是可能的。

除了如在图6a和6b中由箭头170描绘的磁化M以外,在附图中示出的磁场传感器100的实施例几乎没有不同,或者在另外的分量的方面根本没有不同于图3a和3b中示出的实施例。出于此原因,应当参考其相应描述,特别是关于另外的分量参考其相应描述。

如在图6a和6b中描绘的磁性体110的磁化因此关于x分量Mx(x)和分量My(x)服从以下的对称条件:

Mx(x) = Mx(-x)

My(x) = -My(-x) (3) 。

这意味着,在这种情况下,磁化的x分量关于对称线195(x=0)具有偶对称关系,而磁化的y分量在这种情况下满足关于x的奇对称关系。在这种情况下,在磁场传感器100的一些实施例中也可以陈述两个磁化分量Mx和My中的一个满足关于x的奇对称关系,而另一个满足关于x坐标的偶对称关系。

图7示出基于磁性体110的数值模拟的结果的表示,该磁性体110包括大于180°的延伸并且在方位角方向上被磁化,磁化的量值被设置为跨磁性体110的体积恒定。换言之,图7中示出大的模拟结果基于包括磁性体110的磁场传感器的实施例,该磁性体110在方位角方向上以恒定幅值被磁化,使得磁化再次由于其的改变方向是非均匀的。在这里,图7再次以对应于沿着范围从0.5 T到0.2 T的减少的磁通量密度的方向(如也由箭头250指示的)的表示的内部分示出多个场线230以及箭头240。另外,在图7中再次绘制不同线260,其与在图8和9中再现的曲线270相关。换言之,在以下的图8和9的上下文内,关于针对磁场传感器元件190的潜在位置的不同线260的适合性被检查。

图8示出针对不同y坐标的根据x坐标的磁通量密度Bx的x分量的曲线270-1到270-8。更具体地说,曲线270-1在这里对应于y=-0.80 mm的y坐标,y坐标在每种情况下随着相应曲线的数字增加减少0.1 mm,曲线在参考标记的上下文中在连字号之后被再现。因此,曲线270-2对应于y = -0.9 mm的y坐标,并且,例如曲线270-8对应于y = -1.50 mm的y坐标。在这里,图8初始地在从x = -2 mm到x = +2 mm的范围中的粗尺度上示出相应曲线270,而图9表示从大约x = 1.0 mm到x = 1.85 mm的表示范围的放大。

因此,图8初始地示出几乎独立于在每种情况下选择的y参数,在从大约x = 1.3 mm和x = 1.4 mm之间的范围中,所有曲线270具有范围从大约+/-(20 mT–40 mT)的磁通量密度Bx的x分量。在离磁体或磁性体110较小距离处,即对于更高的y值,曲线270在x = +/- 1.4 mm附近的范围中延伸通过Bx = 0线,使得这可以例如表示针对磁阻传感器元件190即GMR传感器元件190的相当合适的位置。

因此,在图9中,图8中描绘的曲线的范围以放大的方式被表示在x = 1.4 mm附近的范围中。例如,图9示出特别地对应于y参数(y = -0.9 mm、-1.0 mm和–1.1 mm)的曲线270-2、270-3和270-4在x = 1.4 mm附近的范围中与“Bx=0”线相交,如在图9中由详细图示出的。

在将在图10a和10b的上下文中描述磁场传感器100的另外的实施例之前,将给出方法的简短概述,用该方法可以实现在前述附图中讨论的非均匀磁化。在包括如例如在图1a、1b、3a和3b中示出的径向或准径向磁化的磁性体110的情况下,适当地成形和由铁制成的配对物例如可以被插入到相应的磁性体的凹部180中,配对物无缝地邻接磁性体110的适当地成形的表面。而且,适当地成形的铁部分可以从外部被放置到外表面中,使得另一磁性体110从外部和内部被相应的铁部分覆盖。随后,两个铁部分可以通过夹具互连,该夹具可以具有所期望的几乎任何形状。绕组可以缠绕在夹具周围,绕组具有应用于其的电流,以便生成磁化。

在具有方位角磁化的磁性体的情况下,圆形导体可以被放置在磁体内部即在磁性体110的凹部130中,并且圆形导体可以被紧密地、理想无缝地在外部固定到磁性体110。如果在内金属导体中流动的电流从图6a和图6b中绘制的绘图平面被发送出,相应地,以及如果在外导体中对应的电流被发送到绘图平面中,则磁体110内的相应磁化将以逆时针方式在方位角方向上对准。

图10a和10b示出磁场传感器300的另外的实施例,其不同于相应磁场传感器100的以上示出的实施例在于在这里示出的实施例包括第一磁性体310和第二磁性体320,第一磁性体310包括分别在图10a和10b中由箭头330特征化的第一磁化方向。同样地,第二磁性体320具有分别在图10a和10b中由箭头340标绘的磁化方向。两个磁性体310、320的两个磁化方向彼此不同并且与彼此形成角度。

关于再次对应于x= 0的x坐标的对称线195,取决于磁场传感器300及其规范的相应实施例的特定实施方式,两个磁性体310、320的磁化方向(箭头330、340)各自与对称线195形成角度,该角度对于两个磁性体310、320在幅值方面是相同的或者与彼此不偏离典型地大于20°、10°、5°或2°。换言之,两个磁性体310、320在磁场传感器300的许多实施例中包括关于对称线195的对称磁化。

另外,在图10a和10b中描绘的磁场传感器300的实施例再次各自包括磁场传感器布置120,其具有衬底180和一个或多个磁场传感器元件190。如已经结合磁场传感器100的以上解释的实施例描述的,磁场传感器布置可以包括单个磁场传感器元件190或多个相应的磁场传感器元件190。在图10a和10b中示出的实施例中,磁场传感器布置120在每种情况下包括实质上对于对称线195对称布置的两个磁场传感器元件190,其例如借助于以上已经讨论的潜在的磁场传感器元件技术来制造。在这种情况下,磁场传感器元件也可以包括霍尔传感器元件、磁阻传感器元件或其他相应的磁场传感器元件。

在该上下文中应该指出的是,因为在磁场传感器100、300的实施例的实际实施方式的情况下的定位公差的以上描述的问题,所以各种分量的以上描述的对称属性可以关于对称线195偏离仅在预定义的公差极限内即例如在定位公差内,该定位公差在横向方向上或在垂直方向上取决于应用。换言之,如果对称线195与磁场传感器布置120的衬底180上的例如两个磁场传感器元件190的中心相关,则与其一起形成背偏置磁体的两个磁性体310、320可以可能地在预定义的定位公差内偏离于其相应位置。在许多情况下,相应的定位公差是应用特定的,并且确实受例如所使用的磁场传感器元件190的技术的影响。

另外,发电机对象210再次被绘制在图10a和10b中,发电机对象210再次例如是齿条、磁体杆、钻杆、有齿的轮、钻轮或磁体轮。取决于特定应用,也可以采用其他发电机对象210,取决于特定实施方式,在许多情况下可能有用的是,配置相应发电机对象210使得其能够引起磁场的调制,例如周期或正弦调制,该磁场(尤其)在这种情况下通过经常配置为永久磁体的第一磁性体310以及背偏置磁体的或者背偏置磁体布置的第二磁性体320生成。

关于对称线195,在磁场传感器300的许多实施例中,第一磁性体310和第二磁性体320被配置或布置成对于其是对称的。除了关于磁场传感器元件190的中心位置执行对称线195的定义的以上提及的可能性以外,如果该磁场传感器元件190以对应数目和布局存在,则自然地也存在关于相对于衬底180的中心点或任何其他对应的线或标记定义对称线195的可能性。在考虑到例如制造公差引起的个体磁性体310、320的定位偏差或定位公差的同时,它们各自具有关于对称线195的对称安装位置。

如之前解释的,取决于对称线195的位置的特定定义,两个磁性体310、320和/或个体磁场传感器元件190的位置可以包括关于对称线195的对应安装公差或定位公差。换言之,两个磁性体310、320的重心可以与对称线195间隔开典型地小于对应定位公差的距离。

这同样适用不仅在x方向上,而且在与x方向垂直的y方向上,如在图10a和10b中绘制的。取决于所使用的生产技术,特别是关于磁场传感器布置120固设磁性体的技术,范围从几百µm到几毫米的定位误差因此不能出现在x方向和/或y方向以及z方向上,z方向未被示出在图10a和10b中。换言之,相应定位公差可以在高达几百µm的范围中即在高达大约1000 µm的范围中或在高达大约2 mm的范围中。

关于个体磁场传感器元件190分别相对于两个磁性体310、320的一个磁性体的定位,在相应磁场传感器300的许多实施例中,假如磁场传感器元件190和/或磁性体310、320被对称地布置,则磁场传感器元件190各自包括两个磁性体310、320中的一个的x坐标的范围内的x坐标。换言之,在磁场传感器300的这种实施例中,相关联的磁场传感器元件190定位在相应的磁性体310、320之上或之下。

相对于由个体磁性体310、320的磁化方向和对称线195或线350形成的角度,线350垂直于线195延伸并且也被绘制在图10a和10b中,在磁场传感器300的许多实施例中,两个磁性体310中的一个的磁化的角度与对称线195形成在幅值方面在10°和80°之间的角度。在磁场传感器300的许多实施例中,对称线195垂直于具有布置在其上的磁场传感器元件190的衬底180的主表面或表面延伸。因此,相应的磁化也关于线350形成在幅值方面范围从10°到80°的角度。另外,在两个磁性体310、320的对称设计的情况下,相应的磁化在每种情况下与彼此形成在幅值方面范围从20°到160°的角度。取决于特定的应用领域,应当在数值模拟的上下文中在本申请的另外过程中更详细解释的其他的角度范围也可以出现在磁场传感器300的实施例中。

在图10a和10b中描绘的磁场传感器300的实施例实质上关于两个磁性体310、320相对于彼此的布置而不同。虽然在图10a中示出的实施例中两个磁性体310、320紧密地彼此邻接,例如因为它们借助于胶合来固定,但是在图10b示出的实施例中,两个磁性体310、320彼此分离相应间隙。两个磁性体310、320之间的间隙可以例如填充有磁性或非磁性材料,其例如服务用于附着或服务磁场传感器300的实施例的总体架构。例如,塑料附着物可以部分或完全插入在两个磁性体310、320之间,将两个磁性体310、320胶合或以其他方式附着到该塑料附着物。可替换地或附加地,两个磁性体310、320也可以在磁场传感器布置120的总体安装的框架内被固定到彼此,使得包封材料至少部分地进入到两个磁性体310、320之间的间隙中。

如已经在磁场传感器100的图3a、3b中示出的实施例的上下文中阐述的,在磁场传感器300的实施例中,具有其衬底180和磁场传感器元件190的磁场传感器布置120也可以针对其部分包括封装。

当然,原则上,也有可能没有固体材料插入在两个磁性体310、320之间,如在图10b中示出的,但是相反两个磁性体310、320直接连接或胶合到磁场传感器布置120。在这种情况下,在两个磁性体310、320之间引入材料可以可能地被免除。

在图10a和10b中示出的磁场传感器300的实施例中,作为磁性体310、320的两个个体磁体被装配以形成新的磁体或背偏置磁体,使得再次在方程(1)中给出的对称条件适用于两个磁性体的总体布置的磁化分量。这也再次对应于关于两个磁性体310、320的总体布置的非均匀(大部分)磁化。更具体地说,这对应于非均匀磁化的大部分磁体,该磁体的体积的每一半分别由一个均匀磁化的磁性体或一个均匀区域构成。在图10a和10b中,在那里示出的磁场传感器的实施例中,第二立方体相应地与倾斜的磁化结合,作为可能是最简单的示例。

取决于特定实施方式,例如,两个磁性体310、320可以被配置为具有大约2 mm的宽度和大约5 mm的高度的两个块磁体,并且可以背对背结合到彼此。再次取决于特定实施方式,两个个体磁性体310、320在该上下文中被均匀磁化,大约Brem = 1 T的剩磁主要在由磁化或箭头330、340示出的相应方向上。在一些实施例中,磁化方向可以包括例如相对于对称线195,即垂直方向+/-50°的角度。

对应于图10a和10b的布置的磁场传感器300的一些实施例提供关于与包括磁阻传感器元件的磁场传感器布置的组合的非常好的结果。另外,它们可以经常以特别简单的方式来制造,因为作为均匀磁化的个体磁体的相应磁性体310、320可以以相当简单的方式来制造。

已经在图3a和3b中示出的磁场传感器300的实施例的上下文中情况正是如此,取决于特定实施方式,在这种情况下也可能有用的是,实施磁场传感器布置120使得其相对于线350是镜像的,从而结合完成的磁场传感器的磁场传感器元件190面向发电机对象210。

如在图10b中示意性描绘的,两个磁性体310、320也可以彼此间隔开非磁性的间隙。取决于特定的实施方式,这可能有助于安装,例如,由于相应的距离可以被配置为粘合表面。另外,也存在以下可能性:通过引入这种非磁性间隙影响两个磁性体310、320的相互作用,使得它们可以不重叠或影响彼此至如此大的程度。

因此,关于由两个磁性体310、320形成的背偏置磁体的磁场传感器300的一些实施例基于以下想法:当磁体的场线发散时,第二磁体可以被布置成接近该磁体,第二磁体抵消第一磁体的不期望的分量。

图11示出如在图10a中示意性示出的磁场传感器300的实施例的磁通量密度分布的数值模拟的结果。除了许多场线230以外,图11示出在两个磁性体310、320的区域中计算的并且范围从0.2到0.5 T的磁通量密度分布。如在图10a中已经示意性示出的,两个磁性体310、320具有带有Brem = 1 T的剩磁的磁化,这在图11中也由箭头330、340指明。由此产生的磁通量密度分布根据在图11中描绘的灰度分布被再现,最大磁通量密度主要在两个磁性体310、320的接触区域处,而磁通量密度清楚地小于主要在两个磁性体310、320外部的磁通量密度。

另外,图11描绘线260,关于线260图12a针对y = -1 mm的y坐标示出从x = -2 mm到x = +2 mm的范围中的磁通量密度Bx的x分量。在这里,在图11中示出的数值模拟基于各自具有均匀磁化的两个立方磁体或磁性体310、320,然而,均匀磁化与向下垂直延伸的y或By轴形成+/-35°的角度。因此,在两个磁性体310、320的两个磁化和水平线之间存在在幅值方面为55°的角度。

如以上简要地指示的,图12a针对y = -1 mm的y值示出根据x坐标的x分量Bx,其对应于图11中示出的线260。随后,图12b针对y = -1.5 mm的y值示出根据x坐标的磁通量密度的对应的x分量Bx,其然而未被绘制在图11中。

在y = -1 mm的y值的情况下,图12a针对两个磁性体310、320的磁化的各种角度示出从x = -2 mm到x = +2 mm的范围中的磁通量密度的x分量Bx。在这里,模拟基于两个磁性体310、320的磁化方向的以上解释的对称性,两个磁性体310、320的每一个在每种情况下与水平线在量值方面形成角度,该角度使用个体曲线270的参考标记被再现。曲线270-70基于两个磁性体310、320的磁化与水平线的70°的角度,使得对于该模拟或计算,两个磁性体的磁化与图10a的对称线195形成20°的角度。因此,曲线270-55对应于在垂直对称线195和水平线之间的35°的角度的图11中示出的情况,或者对应于磁化和水平线和55°的角度。

因此,图12b示出针对范围从40°到70°的角度的几个曲线270,该角度通过两个磁性体310、320的磁化和水平线形成。因此,在图12b中描绘的曲线270-40到270-70对应于磁性体310、320的磁化相对于图10a中示出的垂直对称线195的范围从20°(曲线270-70)到50°(曲线270-40)的角度。特别是在磁场传感器元件190离两个磁性体310、320的下边缘1.5 mm的垂直距离(y = -1.5 mm;磁体结束在y = 0 mm处)的图12b中示出的情况下,可以看到条件 < 20mT在y = -1.5 mm的情况下在x坐标的另外范围内被满足。因为这也可以在另外的x坐标的范围中针对图12a中示出的情况被满足,因此,特别地存在以下可能性:使用如例如在图10a或10b中示意性示出的磁场传感器300的实施例实施磁阻磁场传感器元件190,而不通过由磁性体310、320引起的磁场的相应的x分量驱动磁场传感器元件190为饱和。

换言之,使用磁场传感器300的实施例,可以在x和y坐标的相当宽的范围内创建磁通量密度的水平分量Bx(例如,x分量),该分量不引起磁阻传感器元件190的饱和。在GMR传感器元件的情况下,图12a和12b因此示出适用于许多GMR传感器元件的条件 < 20mT可以在x和y坐标的宽的范围内被满足。

另外,图12a和12b示出通过改变两个磁性体310、320的方向,可以使相应的范围转移,使得可以在磁场传感器元件190之间实现不同距离。因此,有可能提供具有磁场传感器元件190的不同相互距离的磁场传感器300的不同实施例。

总之,可以陈述通过使用包括(至少)两个磁性体310、320的磁场传感器300的对应实施例,磁性系统可以被建立,使得相应的磁场传感器元件190例如甚至在敏感磁阻传感器元件即GMR传感器元件的情况下不被驱动为饱和。

图13示出磁场传感器300的另一实施例,其不同于磁场传感器300的图10a和10b中示出的实施例实质上在于两个磁性体310、320关于其几何形状不再包括倾斜磁化,而是相反地关于正面垂直地磁化。在这种情况下,两个磁性体310、320不再相对于其侧面平行布置,正如在图10a和10b中的实施例中的情况。相反,为了实现两个磁性体310、320的两个不同磁化方向,它们现在针对它们的部分以相对于对称线195或与对称线195垂直的线350的相应角度布置。

因此,在这种情况下,第一磁性体310和第二磁性体320也分别包括不同的第一和第二磁化方向。因此,也在磁性体310、320的这种布置的情况下通过叠加两个(均匀磁化的)磁性体310、320的磁场实现非均匀的大部分磁化。

换言之,分别包括不同磁化方向的磁性体310、320的相应布置可以采用两个立方磁体或磁性体而不是使用两个斜的或倾斜磁化的磁性体310、320来找到,该两个立方磁体或磁性体在纵向方向上被磁化并且被实施和安装成,使得它们相对于y轴倾斜相应的角度,例如+/-35°。换言之,对于磁场传感器300的实施例而言,如由箭头330和340表示的两个磁性体310、320的两个不同磁化方向是否通过使用包括不同、倾斜的磁化的磁性体被创建是不相关的,或者是否采用包括相同磁化的磁性体是不相关的,其然而在磁场传感器300的相应实施例的上下文中以相应倾斜的方式或使用对应的安装方向被建立。

关于如在图13中描绘的实施例中的个体磁性体310、320的更具体安装位置,以上解释也将适用,当然,在这种情况下唯一不同是相应磁性体310、320现在相应地旋转。

实际上,关于个体磁性体310、320的具体形状存在非常大的自由度。原则上,可以使用任何形状可设想的相应的磁性体。例如,立方、圆柱形和其他磁性体(例如,逐渐变细的磁性体)是可行的。另外,当然,不仅可以在如在先前描述的实施例中隐式假设的两个磁性体310、320的上下文中使用均匀磁化的磁性体,而且使用可以自然地由非均匀磁化的磁性体做出。换言之,磁性体310、320也可以关于其磁化方向和其磁化强度被非均匀地实施。

磁场传感器100、300的实施例因此能够实现通过使用磁性体110或背偏置磁体的非均匀磁化减少磁通量密度的水平磁场分量或水平分量,后者包括至少两个磁性体310、320至这样的程度使得例如磁阻传感器(xMR传感器)不再被过载即被驱动为饱和。如以上已经解释的,磁场传感器100的实施例因此能够实现借助于所描述的非均匀磁化减少在本申请的上下文中也被临时地称为背偏置磁体的Bx场的通量密度分量至这种程度,使得传感器或传感器元件的相应过载将不出现。

形式为磁场传感器100、300的本发明的实施例实现所期望的场线曲线,因为尤其所得到的磁通量密度的相应分量被磁性体110、310、320的非均匀磁化限制。因此,也可以可能地在不实施具有及其细小的形状或凹部的磁性体的情况下产生磁场传感器100、300的实施例,或者也可以可能地在不使用高度可透过部分作为用于场线变形的磁透镜发展和建立磁场传感器100、300的相应的实施例。相应的磁场传感器100、300的实施例可以尤其用于磁阻速度传感器,同时采用形式为磁性体110、310、320的相应的背偏置磁体电路。磁场传感器的相应实施例的使用的示例在汽车业以及其他行业,诸如机械工程、工厂工程、飞机构造、造船和其中需要检测磁场的其他技术领域中找到。

图14A图示适合作为要结合如以上讨论的磁传感器120使用的背偏置磁体的非均匀磁体400的另一实施例的横截面视图。非均匀磁体400稍微类似于磁体110或磁性体310、320。然而,要指出的是,非均匀磁体400不包括基本上均匀磁化的两个不同磁性体,其结合在一起或在特定角度下接触,从而导致以上描述的非均匀磁化度。与此相反,非均匀磁体400可模制为单一构件,其还包括如由表示磁体400的横截面视图内的特定位置处的磁化的方向的箭头14-1、14-2、14-3指示的非均匀磁化。图14A的横截面视图被示出沿着x-z平面,这也是说在图的底部处指示磁化的Bx分量,而磁化的Bz分量被指示至图的左边。将领会的是,这种选择服务说明性目的并且磁体400可以代替地包括其他横截面内的非均匀磁化。图14A中图示的磁化被描绘成与如由点虚线表示的对称线14-0。

虽然图14A的非均匀磁化被图示为完全关于对称线14-0对称,但是将领会的是,对于非均匀磁体400的实际横截面而言,各种影响可以打破横截面内的磁化的对称性,使得该磁化不再完全对称。这种影响可以是限制磁体400的面、磁体400内的(磁性)杂质、和/或充分地靠近磁体的磁性物质但不限于其。对于本公开而言,磁化应被视为在横截面内对称的,即使仅90%、80%或50%的横截面区域实际上在横截面内展示关于对称线14-0的对称磁化。

针对本公开(磁化(如图14中图示的)),要理解的是,该对称线14-0可以指示磁体400的镜像对称磁化。未限制地,如在图14A的横截面中指出的对称线14-0可以指示磁体400的更高阶对称性,比如说三阶或更高阶的对称性。更高阶对称性的对象包括多于一个横截面平面,对象的一些属性(比如说,例如矿物的对象或晶体结构的磁化)关于该横截面平面是对称的或者在该横截面平面内是对称的。所以对于更高阶的对称线而言,可能存在所呈现的多于一个横截面,对称对象的属性关于该横截面是对称的或者在该横截面内是对称的,而多于一个横截面实际上在更高阶对称线处相交。

将进一步领会的是,如在图14A中显示的磁体400的对称线14-0可以实际上指示旋转或椭圆形对称轴。所以普通技术人员将容易领会到,背偏置磁体400也可以具有旋转对称性。因此,关于非均匀(背偏置)磁体诸如背偏置磁体400的任何公开可以被转移到旋转对称性的对象。磁体的旋转或椭圆形对称性可以取决于环境而受关注。将领会的是,椭圆形对称轴对应于旋转对称性,其中不仅一个半径而是第一和第二半径之间的旋转在基本上垂直于对称线14-0的横截面中被观看时产生总体椭圆形特性。

正如之前横截面内的更高阶对称性、旋转对称性或椭圆形对称性的磁化应仍被视为对于更高阶对称性、旋转对称性或椭圆形对称性是对称的,即使仅90%、80%或50%的横截面区域实际上展示关于对称线14-0的更高对称性的磁化。类似地,背偏置磁体的磁化应被视为更高阶的对称性、旋转对称性或椭圆形对称性,即使仅90%、80%或50%体积的磁体事实上展示关于对称线14-0的更高对称性的磁化。

将指出的是,在横截面视图的下部分(低于或零z值),磁体400的磁化几乎完全沿着z轴对准。然而,随着增加的z坐标,磁化是不断增加非均匀的。这也就是说,z坐标越高,z方向和磁化的取向之间的角度α就越大,如在针对增加的z坐标比较角度α时可以从图14A看到的。显然地,磁化沿着对称轴140-0平行对准。当平行于对称线14-0但不是在对称线上行走(其对于给定的x坐标在z方向上)时,角度α将基本上随着增加的z值而增加。这种特性可以被称为单调、更确切地来说单调地增加。

如果要沿着垂直于对称线14-0的路径行走,则可以体验角度α的非单调特性。这也就是说,当平行于对称线14-0行走时,角度α可以首先减少,直到对称线14-0被达到并且将在经过对称线之后再次增加。垂直走向对称线14-0在图14A中将对应于沿着横截面针对给定z值行走在x方向上。

同样地,当针对不在图14的下部分处磁体400的那些部分在水平方向(恒定的z坐标)走向远离对称线时,磁化的角度α增加。不断增加非均匀的磁化在针对箭头14-1、14-2和14-3比较角度α时被最佳看到。描述在沿着z方向(除了沿着对称线14-0以外)行走时的不断增加非均匀的磁化的可替换方式是视其不断增加发散。将领会的是,磁化的横截面分布服务仅仅用于说明性目的,并且不以任何方式限制本公开的教导。

本领域普通技术人员将领会的是,使用模制过程产生包括如图14A中图示的非均匀磁化的大部分磁体是可行的。根据这种模制过程的第一变体,并且稍微类似于关于径向磁化的磁体(分别在图3a、3b中)的产生的讨论,模制工具可以被配置成生成工具内部的空间变化的磁通量密度,同时可磁化的模制材料被注入到模制工具中和/或被熔化在模制工具内部。模制工具内部的空间变化的磁通量密度将投射到可磁化的模制材料上,并且一旦模制过程完成应存留,从而产生具有非均匀磁化的大部分磁体400作为单一构件。实际上,模制工具、可磁化的模制材料和工具内部的空间变化的磁通量密度可以被选择成一旦完成模制过程几乎实现磁体400内部的任何期望的空间变化的磁通量密度。

将领会的是,可以使用可替换的模制过程来产生包括如图14A中图示的非均匀磁化的大部分磁体。模制工具可以填充有标准可磁化或磁性模制材料,并且可以以要产生的非均匀磁体的期望形式硬化。可设想到,在要产生的非均匀磁体的硬化期间,没有外部磁场或均匀的外部磁场可以被应用。这将导致示出或多或少的消失磁化或均匀磁化的磁体。一旦可磁化模制材料硬化,非均匀的外部磁场可以以要产生的非均匀的磁体的形状被应用到硬化的模制材料。可以有利的是,在硬化的模制材料仍在模制工具中时,将非均匀磁场应用到硬化的模制材料。这种方法在非均匀磁体400离开模制工具时可能具有优势。可以用该方法增加模制工具内部的每单位所需的权衡时间。取决于环境,然而,可能受关注的是,以非均匀磁体的形状使硬化的模制材料运动到磁化设备中,该磁化设备提供充分大的非均匀磁场以非均匀磁体的形状投射到可磁化的硬化模制材料上;由此完成根据本公开的非均匀磁体400的制造。

图14B图示根据本公开的非均匀磁体400的示例性形状。可能方便的是,以砖型即立方形状或稍微锥形的砖型形状提供磁体400,如在图14B中显示的。这种形状可能受关注,以便用可模制的非均匀磁体400替换已知的背偏置磁体。背偏置磁体供应商将典型地过模制背偏置磁体400和传感器布置120(未示出),以便建立被销售到供应商的客户的模块,该模块现在包括从传感器元件到ECU的通信手段,其不关于本公开进行详细讨论。

没有限制地,由汽车供应商建立的传感器100(见图2)也可以具有如图14B中示出的砖型形状,而从传感器元件到ECU的通信手段未示出。传感器100也可以具有旋转对称或椭圆形对称的形状。旋转或椭圆形对称的传感器100可以可选地取决于环境采取截锥形状。普通技术人员将理解的是,传感器100的椭圆形形状可以具有以下优势:传感器100的在安装时的旋转仅通过在匹配椭圆形形状并且由此将传感器100布置在预期位置中的车辆内提供的某一外壳被容易地防止。

如果传感器100仍然具有旋转对称性,则可以提供传感器的面处的凹槽或凹口,以便提供如对于椭圆形形状可实现的传感器的布置。可能有优势的是,将凹槽或凹口布置成远离磁场传感器布置120,以便凹槽或凹口不影响靠近磁场传感器布置120(未示出)的磁场分布。

图14C图示针对传感器100的这种形状,传感器100包括远离感测元件190的凹槽101。这种凹口可以紧密配合在使用传感器的设备(诸如,车辆)中提供的传感器100的外壳内的突出物。作为对凹口的替代,截锥形的传感器100可以包括非平行的顶部和底部面(更一般地说,非平行的非圆周面),使得传感器100将仅紧密配合定义的圆周位置中的对应外壳。定位对应外壳内的旋转对称的传感器100的其他选项对本领域普通技术人员将是显而易见的,并且因此应在这里不进行任何进一步解释。

图14C公开实施传感器100的另一替代方案。在图2的实施方式中,传感器元件190被布置在形成磁场传感器布置120的传感器封装中。不像在图2中,图14C的传感器100不包括形成磁场传感器布置120的封装。将指出的是,一个包装/模制步骤可以通过在没有封装的情况下实施使用承载传感器元件190的裸片芯片195的传感器100来节约。传感器100的这种实施方式对于(汽车)供应商将是更合算的。作为一种权衡,需要关心的是,感测元件190和因此裸片芯片195关于背偏置磁体400空间正确地布置。虽然它们在传感器100的先前实施方式中正确对准是通过芯片制造商迎合的,但是正确对准现在将是留给供应商的任务。

虽然在图14C中的背偏置磁体400和裸片芯片195之间存在空间距离,但是将领会的是,背偏置磁体400的非均匀磁化可以被设计成使得裸片芯片195可以被直接放置到背偏置磁体400上。普通技术人员将领会的是,裸片芯片195典型地需要一些耦合构件,以便提供从裸片芯片195到其外部的电气通信。提供电气通信的这种手段可以以引线框架的形式,但不限于其。普通技术人员将领会用于提供电气通信的其他选项,其不限制本公开的教导并且因此不进行进一步详细描述。对于本公开的剩余部分,裸片芯片195应被解释为可选地包括耦合构件。在各种实施例中,背偏置磁体400的裸片芯片195设计促进裸片芯片195相对于背偏置磁体400的正确空间布置。

图14D图示实施包括背偏置磁体400的传感器100的另一替代方案。实际上,对于图14D的实施方式而言,非均匀磁体400也充当传感器100的外壳。通过适当地控制磁体400的非均匀磁化的空间分布和裸片芯片195相对于非均匀磁化的定位两者,可以节约覆盖感测元件190的封装和提供外壳的另外模制材料。在图14D中,磁化的空间分布基本上对于对称线14-0对称,对称线14-0示出关于角度α的不同程度的非均匀性14-1、14-2、14-3,如关于图14解释的。

将领会的是,非均匀磁体400当与磁场传感器布置120一起使用时具有优势,因为需要较少磁性材料,以便实现传感器元件190处的可比的非均匀磁通量密度。这是由于以下事实:磁体400(见图14A、C、D)可以被布置成更靠近磁场传感器布置120,其中比如说第一和第二传感器元件190-1、190-2(见图2、14C、14D)被放置用于作为磁体400的不具有凸形状的磁体布置。

作为磁体400的另一益处,传感器100和/或磁体400比包括非凸磁体(诸如例如,图1A的磁体150,图3A、3B、6A或6B的磁体110)的那些系统需要更少的空间。在空间约束的环境诸如汽车领域中的内燃机的发动机空间中,更小尺寸的背偏置传感器系统受关注。

要指出的是,在方向220上旋转的运动目标轮仅在图14C和14D中被示出用于说明性目的,并且不形成所描述的(背偏置)传感器100的部分。

本领域普通技术人员将领会的是,非均匀磁体400可以分别使用以下各项来形成:硬铁氧体材料或稀土材料作为可磁化模制材料,诸如铁氧体、铝-镍-钴(AlNiCo)、或钐钴(SmCo)或钕-铁-硼(NdFeB),以举一些非限制示例。

一般来说,硬铁氧体磁体比基于稀土的磁体便宜,这照此将减少磁体成本,然而硬铁氧体磁体具有更弱磁矩,因此,当与基于稀土的磁体相比时,针对相同尺寸的均匀磁体将产生更弱的均匀磁场。为了补偿该权衡,根据本公开的非均匀硬铁氧体磁体的使用有助于在硬铁氧体磁体的成本益处下增加其匹配稀土磁体的磁场强度的相应磁场。在过去,稀土磁体方便地用于以上描述的非凸磁体(见例如图1A的磁体150,图3A、3B、6A或6B的磁体110)。因此,采用硬铁氧体材料的非均匀磁体400自带优于由诸如钐钴(SmCo)或钕-铁-硼 (NdFeB)的稀土磁体材料制成的非凸磁体的另一优势。

图15示意性图示针对给定的y坐标的相对于磁体的对称线(x = 0)的Bx分量。在这方面,图15的图示稍微对应于如以上解释的图5中描绘的情况。变得明显的是,虽然针对均匀磁体的Bx分量(见实线15-3)具有关于x = 0 的奇对称性,但是针对非均匀磁体(比如说,如以上讨论的磁体400)的Bx分量在x坐标的大的范围内几乎消失,如可以从长虚线15-4看到的。短虚线15-1和15-2指示针对磁阻传感器诸如GMR感测元件的典型位置。

正如之前讨关于曲线270-6(见图5)讨论的,非均匀磁体400的Bx分量示出增加的线性范围,并且因此将表示针对GMR传感器元件的优选位置。磁场传感器元件190(即,图 2)可以在比针对均匀磁体(见图15的线15-3)更宽的x范围内被方便地定位成关于x = 0对称,如分别由位置线15-1、15-2指示的。在图15中,对于针对均匀和非均匀磁体的模拟磁场分量(见线15-3和15-4),具有传感器元件的传感器平面的距离在z方向上在磁体以上是0.7mm。如所指示的,传感器元件示出x方向上的2.5 mm的传感器节距或距离。

图16图示针对使用标准聚合物键合硬铁氧体模制材料的图14的非均匀磁体400的磁化的示例性模拟的3D绘图。这些模制材料典型地示出大约270-280 mT的剩磁磁场,以及180 kA/m的对应抗磁度。如可以清楚地看到,磁体400内的磁化的空间分布是不均匀的,如已经关于图14A示意性讨论的。图16的右边的标度上指示的颜色编码图示磁化的强度和方向。将领会的是,非均匀(背偏置)磁体400的磁化将在磁体400外部激起磁通量密度,不同于所谓的Halbach磁体布置,其表示具有限制在Halbach磁体内部的几乎所有磁通量密度的磁体配置。磁通量到磁体的内部的这种限制将用非Halbach磁体而可实现,如果磁体将是无限长、高和/或宽的话。还根据图16,本领域普通技术人员将容易领会的是,可以生成磁体400内的磁化的几乎任何期望的非均匀分布,如以上已经解释的。

图17图示从图16的模拟得到的进一步细节。显示的是,针对传感器元件分别在y和z方向上离以对称线(见图14的14-0)为中心的磁体400的表面的实际距离的由磁体400产生的磁场的以mT为单位的模拟Bx分量。假设的距离在z方向上是0.7mm并且在y方向上居中放置(y = 0mm)。

线17-1图示针对基本上均匀磁体的Bx分量,而线17-2、17-3和17-4示出针对不断增加非均匀磁体400的Bx分量。针对线17-2、17-3、17-4示出的不断增加非均匀性可以由与线14-0到14-1、14-2和14-3相关联的增加的角度α(见图14)表示。如针对图15已经讨论的,如在图17中针对线17-2、17-3、17-4示出的不断增加非均匀磁化如分别由虚线15-1、15-2指示的要放置在x方向上的磁阻传感器元件190(未示出)的线性范围。

因为针对由线17-4表示的最强非均匀性的Bx分量分别在传感器位置15-1、15-2处几乎消失,所以Bx分量的该非均匀性量将使传感器位置15-1和15-2为理想位置用于在x方向上放置传感器元件,如之前关于图5描述的。

本领域普通技术人员将领会的是,仅仅出于说明性目的,本公开描绘非均匀磁体的横截面诸如xy或xz平面内的磁体400的非均匀磁化(见,图1A、1B、3A、3B、4-14、14A、14D、15-17)。然而,公开的非均匀磁体绝不限于这种情况。磁体因此可以包括磁体的另外的横截面内的另外的非均匀磁化贡献,另外的横截面与在本公开的附图中描绘的那些垂直。

取决于条件,发明方法的实施例可以用硬件或软件实施。实施方式可以被执行在数字存储介质,特别是包括电子可读控制信号的磁盘、CD或DVD,其可以与可编程计算机系统协作,使得发明方法的实施例被执行。一般地,本发明的实施例因此也存在于软件程序产品、或计算机程序产品、或包括程序代码的程序产品,该程序代码被存储在机器可读载体上用于当软件程序产品运行在计算机或处理器上时执行发明方法的实施例。换言之,本申请的实施例因此可以被实现为计算机程序、或软件程序、或包括程序代码的程度,该程序代码用于当程序运行在处理器上时执行方法的实施例。处理器可以分别通过计算机、芯片卡(智能卡)、中央处理器(CPU=中央处理单元)、专用集成电路(ASIC)或任何其他集成电路形成。

计算机程序、软件程序或程序可以被采用例如在制造过程的上下文中即例如用于控制磁场传感器的相应实施例的制造。相应的程序因此可以被采用和使用在用于控制其的制造工厂的上下文中,但也在设计的上下文中以及在磁场传感器的布置相应的实施例的上下文中。如以上列表已经示出的,处理器不要仅以经典计算机处理的意义进行理解,而且以如例如发生在机械工具和其他生产相关的安装的上下文中的专用处理器的意义进行理解。

虽然已经根据几个实施例来描述本发明,但是存在落在本发明的范围内的修改、排列和等同物。也应当指出的是,存在实施本发明的方法和组成的许多可替换的方式。因此,所附权利要求书应被解释为落在本发明的真正的精神和范围内的所有这种修改、排列和等同物。

当前第1页1 2 3 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1