一种基于三轴转台的惯性空间陀螺标定试验方法与流程

文档序号:12110372阅读:583来源:国知局
一种基于三轴转台的惯性空间陀螺标定试验方法与流程

本发明属于航天器控制系统仿真技术领域,涉及一种航天器惯性姿态敏感器测量模型误差标定技术的地面试验方法。



背景技术:

随着航天器控制技术的发展,航天器对控制分系统提出了较高的姿态机动要求,如典型的点对点姿态机动并稳定指标为20秒机动25度并稳定,同时还要求卫星具有动中成像能力,在动中成像过程中,卫星具有一定的姿态角速度并随时间连续变化。

由于卫星姿态机动,以及动中成像过程中主要采用陀螺进行姿态确定。为了降低航天器姿态快速机动到位后的姿态确定误差从而缩短稳定时间,以及提高动中成像中的姿态确定精度,对陀螺的测量模型提出了较高的要求,因此卫星平台提出了陀螺标定的需求,并设计了相应的陀螺标定算法。其中陀螺测量模型中需要标定的主要误差源包括陀螺的常值漂移、陀螺安装偏差和陀螺刻度因子误差。根据陀螺标定算法的需求,为了在地面验证陀螺标定算法的正确性和有效性,同时也为了测试陀螺的相关性能指标,需要在试验中实现陀螺测量的角速度为相对于惯性空间的某一恒定值。由于陀螺用于敏感惯性角速度,在地面进行陀螺标定试验时,陀螺的测量输出将受地球自转的影响,对标定精度造成影响。在传统的静态测试中,为了排除地球自转的影响,常利用地球自转角速度分布在真北和地表法线即天两个方向的特点将陀螺组件某测量轴置于大地水平坐标系正东或正西方向,该方法由于不能满足陀螺标定的姿态转动要求而无法使用。



技术实现要素:

本发明解决的技术问题是:克服现有技术方法的不足,为满足地面试验中实现陀螺组件标定所需的恒定惯性空间角速度,利用三轴转台提供陀螺组件姿态转动的同时根据三轴转台三个旋转轴的实时转角输出计算地球自转角速度的补偿量,消除了地球自转对陀螺测量输出的影响;同时,根据三轴转台的三个旋转轴附带转动特性定义了其三个旋转轴的转动顺序规则以及与大地水平坐标系重合的三轴转台零位本体坐标系和参考惯性坐标系,为试验中根据三轴转台三个旋转轴的转角输出确定惯性系姿态提供了基准,使得地面可以在惯性空间对陀螺进行标定试验。

本发明的技术解决方案是:一种基于三轴转台的惯性空间陀螺标定试验方法,步骤如下:

(1)惯性空间陀螺标定试验使用的三轴转台具有三个不同方向的旋转轴,如图2所示,由外向内分别记作外环轴(方位轴)、中环轴(俯仰轴)和内环轴(横滚轴)。试验时需将三轴转台安装于减振地基上,将待测陀螺组件安装于三轴转台内环轴托盘,并调整三轴转台基座的调平螺栓,利用水平仪校正三轴转台的外环轴方向,使外环轴与大地水平面法线方向平行,指向如图3所示的“天”的方向;

(2)校正完三轴转台的外环轴后,分别自由旋转三轴转台的外环轴、中环轴和内环轴,完成三轴转台的寻零。之后,利用水平仪通过旋转调整三轴转台的中环轴,使三轴转台的内环轴与大地水平面平行。三轴转台的外环轴与中环轴的正交性和中环轴与内环轴的正交性由三轴转台自身的安装保证,经过此步,实现三轴转台的外环轴、中环轴和内环轴相互正交,即三轴转台的外环轴与中环轴的正交,中环轴与内环轴的正交,内环轴与外环轴的正交;

(3)实现三轴转台的外环轴、中环轴和内环轴相互正交后,利用经纬仪(或全站仪)和安装于三轴转台内环轴托盘的陀螺组件基准镜对三轴转台外环轴的方位进行测量标定,根据测量标定结果,旋转调整三轴转台外环轴,使得三轴转台中环轴指向真北方向。由于旋转三轴转台外环轴带动整体的中环轴和内环轴转动,之前得到的三个旋转轴相互正交关系不会改变,经过此步,实现三轴转台外环轴、中环轴和内环轴分别与大地水平坐标系的天、真北和正东方向一致;

(4)实现三轴转台外环轴、中环轴和内环轴分别与大地水平坐标系的天、真北和正东方向一致后,定义由三轴转台的内环轴、中环轴和外环轴为坐标轴构成的坐标系为三轴转台本体坐标系,简记为z系,三轴转台的内环轴定义为X_z轴,中环轴定义为Y_z轴,外环轴定义为Z_z轴,z系与三轴转台固连,随三轴转台的三个旋转轴转动而转动。由于三轴转台的外环轴Z_z转动附带中环轴Y_z和内环轴X_z整体转动,中环轴Y_z转动仅附带内环轴X_z转动,而内环轴X_z转动相对独立,外环轴Z_z、中环轴Y_z和内环轴X_z的这种附带转动特性决定了三轴转台的三个旋转轴转动顺序应为Z_z-Y_z-X_z,即先驱动三轴转台外环轴Z_z转动,再驱动中环轴Y_z转动,最后驱动内环轴X_z转动。定义由正东、真北和天方向为坐标轴构成的坐标系为大地水平坐标系,简记为d系,正东方向定义为X_d轴,真北方向定义为Y_d轴,朝天方向定义为Z_d轴,d系与地球固连,随地球自转而转动。定义与大地水平坐标系d系重合的三轴转台本体坐标系z系为三轴转台零位本体坐标系,记为z_0系,z_0系与d系始终重合,将此时三轴转台的三个旋转轴转角为设置零位;

(5)以三轴转台零位本体坐标系z_0系为基准,测量标定安装于三轴转台内环轴托盘的陀螺组件相对于大地水平坐标系d系(z_0系与d系始终重合)的安装方位。将陀螺组件测量本体坐标系简记为g系,g系与z系固连,随z系转动而转动,从而得到g系相对于z_0系的姿态转换方向余弦阵,记为Cgz。以上准备就绪后,开始试验,试验开始时刻记为t0,将t0时刻的瞬时大地水平坐标系d系定义设置为参考惯性坐标系,简记为i系,i系对应于t0时刻,不随地球自转而变化;

(6)根据试验中三轴转台的三个旋转轴转角输出,计算三轴转台本体坐标系z系相对于三轴转台零位本体坐标系z_0系(大地水平坐标系d系)的姿态转换方向余弦阵;选取试验中的任一时刻,记为tn,tn时刻三轴转台内环轴、中环轴和外环轴的转角输出分别记为θz,ψz,则三轴转台本体坐标系z系相对于大地水平坐标系d系的姿态转换方向余弦阵Czd为:

其中,计算姿态转换方向余弦阵所用的转动顺序为三轴转台采用的转动顺序:Z_z-Y_z-X_z(即先外环轴、再中环轴、最后内环轴);

(7)根据步骤(6)得到的z系相对于d系的姿态转换方向余弦阵Czd,假设试验当地的地理纬度为δ,地球自转角速度记为ωe,则地球自转角速度在d系下的分量即d系相对于i系的角速度在d系的分量;于是,地球自转角速度在z系下的分量即d系相对于i系的角速度在z系的分量;

(8)根据步骤(7)得到的地球自转角速度在z系下的分量设陀螺标定算法要求实现相对于参考惯性坐标系i系某一恒定角速度在g系的分量为ωgi=[ωgi1 ωgi2 ωgi3]T,转换到z系的分量为表示Cgz的转置,即z系相对于i系的角速度在z系的分量;通过补偿地球自转角速度在z系下的分量实际要求z系相对于d系的角速度在z系的分量计算驱动三轴转台的内环轴、中环轴和外环轴的角度和角速度指令为:

其中,θzr和ψzr分别表示驱动三轴转台内环轴、中环轴和外环轴的角度指令,和分别表示驱动三轴转台内环轴、中环轴和外环轴的角速度指令,计算所用的旋转轴转动顺序为三轴转台的三个旋转轴转动顺序:Z_z-Y_z-X_z(即先外环轴、再中环轴、最后内环轴);ΔT表示三轴转台接收角度和角速度指令的控制周期,将姿态角指令θzr,ψzr和姿态角速度指令按控制周期ΔT发送给三轴转台控制;

(9)根据步骤(7)的地球自转角速度ωe以及在在d系下的分量定义地球自转角速度ωe单位方向矢量在d系的分量ve=[ve1 ve2 ve3]T=[0 cosδ sinδ]T,表示ve的转置;再根据试验时间tn,计算tn时刻d系相对于i系的姿态转换方向余弦阵Cdi为:

其中,θd=ωe·(tn-t0),表示从试验开始时刻t0到tn时刻地球绕着其自转轴转过的角度;I3×3表示3×3的单位阵,表示ve的反对称阵:

(10)根据步骤(6)得到的z系相对于d系的姿态转换方向余弦阵Czd和步骤(9)得到的d系相对于i系的姿态转换方向余弦阵Cdi,计算z系相对于i系的姿态转换方向余弦阵Czi为Czi=Czd·Cdi

(11)将步骤(10)得到的z系相对于i系的姿态转换方向余弦阵Czi,转换为姿态四元数qzi,即z系相对于i系的惯性姿态四元数qzi,将qzi和试验中采集到的陀螺角度增量信息一起输入陀螺标定算法,即得到对试验陀螺组件的标定结果。

本发明与现有技术相比的优点在于:现有使用转台进行陀螺地面测试和标定的试验,由于受地球自转角速度的影响,无法提供陀螺测量相对于惯性空间的任意恒定姿态角速度;同时,由于缺少一个合理的参考惯性坐标系,使得转台的转角输出无法与陀螺输出的角度增量信息准确对应联系。本发明方法为实现在地面描述惯性空间的姿态运动,首先根据三轴转台的三个旋转轴附带转动特性定义了其三个旋转轴的转动顺序规则以及与大地水平坐标系重合的三轴转台零位本体坐标系和参考惯性坐标系,试验中可以根据三轴转台的三个旋转轴转角输出确定三轴转台本体坐标系相对于参考惯性坐标系的姿态,从而可以与陀螺测量的相对于惯性系的角度增量准确对应联系;同时,利用三轴转台的三个旋转轴的转动补偿了地球自转角速度,在给定陀螺组件标定所需的恒定惯性空间角速度后,根据陀螺安装计算三轴转台本体坐标系的惯性角速度,并补偿地球自转角速度在三轴转台本体坐标系下的分量,计算得到三轴转台各控制时刻的三个旋转轴角度和角速度驱动指令。本发明方法可显著提高地面陀螺标定试验的精度,能够保证地面对陀螺组件进行有效的标定和试验结果验证,可为在轨卫星开展相关标定试验建立良好基础,并提高陀螺姿态确定精度。

附图说明

图1为本发明方法的流程框图;

图2为本发明方法中试验所采用的三轴转台示意图;

图3为本发明方法中所定义的坐标系示意图。

具体实施方式

航天器在姿态快速机和动中成像过程中主要采用陀螺进行姿态确定,为了降低航天器姿态快速机动到位后的姿态确定误差从而缩短稳定时间,以及提高动中成像中的姿态确定精度,需要更精确的陀螺测量模型,需要对陀螺测量模型的主要误差源包括常值漂移、安装偏差和刻度因子误差进行地面的和在轨的试验标定,地面的试验是验证陀螺性能指标和陀螺标定算法正确性和有效性的主要前期手段。

如图1所示,为本发明方法的流程图。

本发明中,试验开始前需要将三轴转台安装于试验室的减振地基上,将待测陀螺组件安装于三轴转台的内环轴托盘,并完成三轴转台的三个旋转轴(外环轴、中环轴和内环轴)与大地水平坐标系(由正东、真北和天方向为坐标轴构成)相对位置关系的标定。先通过调整三轴转台的三个旋转轴建立一个由三正交的旋转轴构成的三轴转台本体坐标系,然后设置三轴转台的三个旋转轴转角为零位时的三轴转台本体坐标系与大地水平坐标系重合。

接着,建立试验用参考惯性坐标系,定义试验用参考惯性坐标系与试验开始时刻的大地水平坐标系重合,方便描述地球自转过程。

之后,测量标定安装于三轴转台内环轴托盘的陀螺组件相对于大地水平坐标系(三轴转台零位本体坐标系与大地水平坐标系)的安装方位。由于陀螺安装方位误差为陀螺标定算法输出的待标定量,因此陀螺初始安装方位的精度要求不高。

陀螺标定算法要求在试验过程中,实现陀螺测量工作于7个不同的恒定惯性空间角速度下并持续一段时间,而这7个惯性角速度通常选取为一个零角速度和惯性空间3个正交方向的正负两个角速度。

由于在地面进行试验,陀螺敏感的角速度实际上包含两部分,一是地球自转角速度,另一是三轴转台的三个旋转轴转动产生的角速度。当给定某个惯性角速度时,需要先根据三轴转台的三个旋转轴转角输出计算地球自转角速度在三轴转台本体坐标系下的分量,扣除地球自转角速度后的惯性角速度分量将由三轴转台的三个旋转轴按要求的先外环轴、再中环轴、最后内环轴的转动顺序转动产生。当三轴转台按照所计算的驱动指令控制时,产生陀螺组件标定所需的恒定惯性角速度。

试验过程中,同时采集试验时间、三轴转台的三个旋转轴转角以及陀螺输出的角度增量信息进行计算。在计算时,需要将三轴转台三个旋转轴的转角输出转换为三轴转台本体坐标系相对于参考惯性坐标系的惯性姿态四元数。

最后,利用以上计算出的惯性姿态四元数,以及采集到的陀螺角度增量信息,作为陀螺标定算法的输入,可完成对陀螺测量模型的标定,陀螺标定算法输出的标定量主要包括陀螺常值漂移、陀螺安装误差和陀螺刻度因子误差。

具体的步骤如下:

(1)惯性空间陀螺标定试验使用的三轴转台具有三个不同方向的旋转轴,如图2所示,由外向内分别记作外环轴(方位轴)、中环轴(俯仰轴)和内环轴(横滚轴)。试验时需将三轴转台安装于减振地基上,将待测陀螺组件安装于三轴转台内环轴托盘,并调整三轴转台基座的调平螺栓,利用水平仪校正三轴转台的外环轴方向,使外环轴与大地水平面法线方向平行,指向如图3所示的“天”的方向;

(2)校正完三轴转台的外环轴后,分别自由旋转三轴转台的外环轴、中环轴和内环轴,完成三轴转台的寻零。之后,利用水平仪通过旋转调整三轴转台的中环轴,使三轴转台的内环轴与大地水平面平行。三轴转台的外环轴与中环轴的正交性和中环轴与内环轴的正交性由三轴转台自身的安装保证,经过此步,实现三轴转台的外环轴、中环轴和内环轴相互正交,即三轴转台的外环轴与中环轴的正交,中环轴与内环轴的正交,内环轴与外环轴的正交;

(3)实现三轴转台的外环轴、中环轴和内环轴相互正交后,利用经纬仪(或全站仪)和安装于三轴转台内环轴托盘的陀螺组件基准镜对三轴转台外环轴的方位进行测量标定,根据测量标定结果,旋转调整三轴转台外环轴,使得三轴转台中环轴指向真北方向。由于旋转三轴转台外环轴带动整体的中环轴和内环轴转动,之前得到的三个旋转轴相互正交关系不会改变,经过此步,实现三轴转台外环轴、中环轴和内环轴分别与大地水平坐标系的天、真北和正东方向一致;

(4)实现三轴转台外环轴、中环轴和内环轴分别与大地水平坐标系的天、真北和正东方向一致后,定义由三轴转台的内环轴、中环轴和外环轴为坐标轴构成的坐标系为三轴转台本体坐标系,简记为z系,三轴转台的内环轴定义为X_z轴,中环轴定义为Y_z轴,外环轴定义为Z_z轴,z系与三轴转台固连,随三轴转台的三个旋转轴转动而转动。由于三轴转台的外环轴Z_z转动附带中环轴Y_z和内环轴X_z整体转动,中环轴Y_z转动仅附带内环轴X_z转动,而内环轴X_z转动相对独立,外环轴Z_z、中环轴Y_z和内环轴X_z的这种附带转动特性决定了三轴转台的三个旋转轴转动顺序应为Z_z-Y_z-X_z,即先驱动三轴转台外环轴Z_z转动,再驱动中环轴Y_z转动,最后驱动内环轴X_z转动。定义由正东、真北和天方向为坐标轴构成的坐标系为大地水平坐标系,简记为d系,正东方向定义为X_d轴,真北方向定义为Y_d轴,朝天方向定义为Z_d轴,d系与地球固连,随地球自转而转动。定义与大地水平坐标系d系重合的三轴转台本体坐标系z系为三轴转台零位本体坐标系,记为z_0系,z_0系与d系始终重合,将此时三轴转台的三个旋转轴转角为设置零位;

(5)以三轴转台零位本体坐标系z_0系为基准,测量标定安装于三轴转台内环轴托盘的陀螺组件相对于大地水平坐标系d系(z_0系与d系始终重合)的安装方位。将陀螺组件测量本体坐标系简记为g系,g系与z系固连,随z系转动而转动,从而得到g系相对于z_0系的姿态转换方向余弦阵,记为Cgz。以上准备就绪后,开始试验,试验开始时刻记为t0,将t0时刻的瞬时大地水平坐标系d系定义设置为参考惯性坐标系,简记为i系,i系对应于t0时刻,不随地球自转而变化;

(6)根据试验中三轴转台的三个旋转轴转角输出,计算三轴转台本体坐标系z系相对于三轴转台零位本体坐标系z_0系(大地水平坐标系d系)的姿态转换方向余弦阵;选取试验中的任一时刻,记为tn,tn时刻三轴转台内环轴、中环轴和外环轴的转角输出分别记为θz,ψz,则三轴转台本体坐标系z系相对于大地水平坐标系d系的姿态转换方向余弦阵Czd为:

其中,计算姿态转换方向余弦阵所用的转动顺序为三轴转台采用的转动顺序:Z_z-Y_z-X_z(即先外环轴、再中环轴、最后内环轴);

(7)根据步骤(6)得到的z系相对于d系的姿态转换方向余弦阵Czd,假设试验当地的地理纬度为δ,地球自转角速度记为ωe,则地球自转角速度在d系下的分量即d系相对于i系的角速度在d系的分量;于是,地球自转角速度在z系下的分量即d系相对于i系的角速度在z系的分量;

(8)根据步骤(7)得到的地球自转角速度在z系下的分量设陀螺标定算法要求实现相对于参考惯性坐标系i系某一恒定角速度在g系的分量为ωgi=[ωgi1 ωgi2 ωgi3]T,转换到z系的分量为表示Cgz的转置,即z系相对于i系的角速度在z系的分量;通过补偿地球自转角速度在z系下的分量实际要求z系相对于d系的角速度在z系的分量计算驱动三轴转台的内环轴、中环轴和外环轴的角度和角速度指令为:

其中,θzr和ψzr分别表示驱动三轴转台内环轴、中环轴和外环轴的角度指令,和分别表示驱动三轴转台内环轴、中环轴和外环轴的角速度指令,计算所用的旋转轴转动顺序为三轴转台的三个旋转轴转动顺序:Z_z-Y_z-X_z(即先外环轴、再中环轴、最后内环轴);ΔT表示三轴转台接收角度和角速度指令的控制周期,将姿态角指令θzr,ψzr和姿态角速度指令按控制周期ΔT发送给三轴转台控制;

(9)根据步骤(7)的地球自转角速度ωe以及在在d系下的分量定义地球自转角速度ωe单位方向矢量在d系的分量ve=[ve1 ve2 ve3]T=[0 cosδ sinδ]T,表示ve的转置;再根据试验时间tn,计算tn时刻d系相对于i系的姿态转换方向余弦阵Cdi为:

其中,θd=ωe·(tn-t0),表示从试验开始时刻t0到tn时刻地球绕着其自转轴转过的角度;I3×3表示3×3的单位阵,表示ve的反对称阵:

(10)根据步骤(6)得到的z系相对于d系的姿态转换方向余弦阵Czd和步骤(9)得到的d系相对于i系的姿态转换方向余弦阵Cdi,计算z系相对于i系的姿态转换方向余弦阵Czi为Czi=Czd·Cdi

(11)将步骤(10)得到的z系相对于i系的姿态转换方向余弦阵Czi,转换为姿态四元数qzi,即z系相对于i系的惯性姿态四元数qzi,将qzi和试验中采集到的陀螺角度增量信息一起输入陀螺标定算法(陀螺标定算法可以参考专利《一种借助星敏器的IMU两位置对准方法》,申请号CN201510257874.X;也可以采用公知的陀螺标定算法),即得到对试验陀螺组件的标定结果。

总之,由于陀螺用于敏感惯性角速度,在地面进行陀螺标定试验时,陀螺的测量输出将受地球自转的影响,对标定精度造成影响,传统在静态测试下将陀螺组件某测量轴置于大地水平三坐标系正东或正西方向以排除地球自转影响的方法(地球自转角速度分布在真北和地表法线即天两个方向)由于不能满足陀螺标定算法所需的姿态转动要求而无法使用。而本发明方法能够在使用三轴转台提供陀螺组件姿态转动的同时根据三轴转台三个旋转轴的实时转角输出计算地球自转角速度的补偿量,从而消除了地球自转对陀螺测量输出的影响,保证了陀螺标定算法所需的惯性空间恒定角速度。同时,本发明方法根据三轴转台的三个旋转轴附带转动特性定义了其三个旋转轴的转动顺序规则和初始零位与大地水平坐标系重合的三轴转台本体坐标系和参考惯性坐标系,为试验中根据陀螺输出确定惯性系角度增量和根据三轴转台三个旋转轴的转角输出确定惯性系姿态提供了参考基准。本发明方法可显著提高地面陀螺标定试验的精度,能够保证地面对陀螺组件进行有效的标定和试验结果验证,可为在轨卫星开展相关标定试验建立良好基础,并提高陀螺姿态确定精度。

本发明说明书中未作详细描述的内容属本领域技术人员的公知技术。

当前第1页1 2 3 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1