分析类金刚石膜对飞行器液压伺服作动器密封性能的方法与流程

文档序号:12267274阅读:375来源:国知局
分析类金刚石膜对飞行器液压伺服作动器密封性能的方法与流程

本发明属于材料技术领域,具体涉及一种分析类金刚石膜对飞行器液压伺服作动器密封性能的方法。



背景技术:

液压伺服作动器是飞行器的控制中枢,其密封性能直接影响飞行器飞行姿态的灵敏度和准确性。活塞杆是作动器的驱动部件,在高温高压工况下,密封不好会引起漏油,磨粒进入密封圈与活塞杆之间,还会引发磨粒磨损,使作动器的工作效率降低。

飞行器工作时长期经受这种磨损容易引发漏油影响飞控系统工作效率,甚至危及到正常工作。研究结果表明,活塞杆表面性能直接影响作动器的密封性能。目前,针对活塞杆表面常用的解决方法有:(1)优化部件机构。优化设计和提高加工精度可降低运动副之间的摩擦,但无法消除因苛刻工况引起的磨损;(2)材料热处理。这种方法目前技术成熟,但不能满足部件公差和服役要求。探索一种适用于活塞杆表面改性的微米量级薄膜成为解决伺服作动器密封性能的关键。

密封圈和活塞杆摩擦副之间的磨损是导致液压伺服作动器密封失效的主要原因。研究结果表明,活塞杆表面材料的硬度和摩擦系数是影响活塞杆表面摩擦学性能的两个重要参数:(1)作动器工作期间,各部件运动期间承受很高的油压和冲击力,最高达10GPa。只有活塞杆表面硬度大于对应的最大工作压力,才能保证密封结构的可靠性;(2)密封结构摩擦副表面的摩擦系数小于0.2时,表面处于润滑状态下,可以有效防止磨损的发生,延长活塞杆的使用寿命。类金刚石碳膜硬度高和耐磨性能好;但纯的类金刚石膜和金属基体间结合力差,工作时容易脱落,形成碎屑影响机械运作。

伺服作动器密封失效分析:

作动器的主要作用是将飞行器控制系统的点指令信号,通过电液信号转化成具有一定功率和规律的液压信号,控制液飞行器的运行速度和姿势。作动筒,又叫做液压油缸或者液压筒,主要由筒体和运动活塞两个部分组成,活塞通过作动筒施力驱动作动器运行;活塞杆和密封结构处的密封圈互相摩擦,把信号反馈到信号反馈装置;通过感受活塞杆的位移或速度变化,转换成相应的电信号,形成伺服器回路。

如图9所示,作动器通过推动油液的流动来克服载荷的压力,油液的流动速度和流量决定活塞杆与筒体的往复运动速度和频率,将信号传送到信号反馈器,控制液压系统的运行。作动器工作时,筒体右端固定不动,当左边的进油口进油,筒体左边的油液压力升高;油压达到额定值后,液压油推动活塞向右运动,和活塞相连的活塞杆带动向右运动。进油口不断地进油,筒体连续把油液送到筒体内部,活塞做连续往复运动。

活塞杆的平均线速度为4.5~5.0m/s,应力峰值为300~400MPa,工作环境温度约为80~160℃。在筒体内部做往复运动期间,活塞杆往往不但要承受交互变化的拉力和压力,还要承受来自反馈装置的冲击载荷。作动器启动时,信号反馈装置给活塞杆发出信号,活塞杆做往复运动;在活塞杆做往复运动突然变向的瞬间,固体污染物和活塞杆互相摩擦,活塞杆表面承受的接触力变大,最高可达到10GPa,极易造成磨损。

污染颗粒的硬度与系统磨损有着密切的关系,如果颗粒的硬度等于或小于表面的硬度,表面的磨损量小;当颗粒硬度大于金属表面硬度时,对金属表面产生磨损。当活塞杆表面硬度远高于颗粒硬度时,磨损量可以忽略不计。

作动器工作时,活塞杆与密封圈高速往复运动,活塞杆伸出端容易发生磨粒磨损。可以通过提高活塞杆表面耐磨性降低密封装置的故障率。密封圈的截面直径为2.6mm,密封圈固定的沟槽宽度为3.5mm;安装作动器时,密封圈与活塞杆的初始配合间隙为0.6mm。在活塞杆表面制备含类金刚石膜,有望在不影响活塞杆初始配合间隙的条件下,增强活塞杆表面的耐磨性,改善作动器摩擦副的抗磨损性能。



技术实现要素:

为了澄清类金刚石膜Ag-DLC对飞行器液压伺服作动器密封性能影响的机理,本发明采用多离子束沉积系统技术制备了六种含银量不同的类金刚石膜Ag-DLC。以Ag-DLC为研究对象,考察了金刚石膜对飞行器液压伺服作动器密封性能影响的机理,系统阐述了碳价键及内应力的变化对薄膜力学性能的影响,力学性能包括硬度和摩擦磨损性能。

本发明解决其技术问题所采用的技术方案是:

一种分析类金刚石膜对飞行器液压伺服作动器密封性能的方法,所述方法采用多功能离子束沉积系统制备若干含银量不同的类金刚石膜,采用X射线衍射仪、能量色散谱仪、拉曼光谱、纳米压痕仪、三维白光干涉表面轮廓仪、高速往复式摩擦磨损实验机,分析各种类金刚石膜样品的微观结构和力学性能变化,探究类金刚石膜对飞行器液压伺服作动器密封性能的影响机理。

具体内容包括,随类金刚石膜含银量的不同,考察含银量变化引起的sp2-C键、sp3-C键含量及内应力的变化对类金刚石膜的硬度、摩擦磨损性能的影响,揭示类金刚石膜对飞行器液压伺服作动器密封性能的影响机理。

其中,采用X射线衍射仪分析类金刚石膜晶体结构变化,采用能量色散谱仪检测类金刚石膜中的元素含量,采用拉曼光谱检测类金刚石膜的价键结构,采用纳米压痕仪测试类金刚石膜硬度,采用三维白光干涉表面轮廓仪测量硅基片的厚度和类金刚石膜的厚度,采用高速往复式摩擦磨损实验机检测结果反映类金刚石膜与磨粒间的摩擦学性能。

其中,为探究类金刚石膜的宏观力学性能,采用三维白光干涉表面轮廓仪测量硅基片的厚度和类金刚石膜的厚度,代入Stoney公式计算出类金刚石膜的内应力值:

式中,tf是基体的厚度,ts是类金刚石膜的厚度,Es是基体的杨氏模量,νs为基片的泊松比,L为基片长度。

所述的方法包括以下步骤:

(1)类金刚石膜制备;

(2)观察与参数测量:采用X射线衍射仪分析类金刚石膜晶体结构变化;采用能量色散谱仪检测类金刚石膜中的元素含量;采用拉曼光谱检测类金刚石膜的价键结构;采用纳米压痕仪测试类金刚石膜硬度;采用三维白光干涉表面轮廓仪测量硅基片的厚度和类金刚石膜的厚度,代入Stoney公式计算出类金刚石膜的内应力值;采用高速往复式摩擦磨损实验机检测结果反映类金刚石膜与磨粒间的摩擦学性能;

(3)分析类金刚石膜的力学性能,包括硬度和摩擦磨损性能;

(4)探究类金刚石膜对飞行器液压伺服作动器密封性能的影响机理。

其中,步骤(1)中包括以下步骤:

(1)选用440A不锈钢作为基材,将基材放入可溶解基材表面有机污染物的丙酮溶液中超声波清洗,超声波震荡可在溶液内基材的表面形成瞬时空气气泡,气泡产生时伴随的高冲击力可将基体表面污染物打碎,之后脱离基体,溶于丙酮溶液,不会对基体造成二次污染;

(2)使用氮气等易挥发且不易与基材发生化学反应的气体喷吹基材表面直至干燥,防止环境污染物重新附着在潮湿的基材表面,之后放入真空多离子束沉积系统中待沉积;

(3)启动真空多离子束沉积系统的真空泵抽本底真空至1.8×10-4Pa,之后启动高能量离子源Ar+轰击片材表面10min,高能量离子源Ar+的电压和离子束电流为5keV/20mA,将腔体内的空气粒子抽除,防止其与稍后以离子轰击的方式清洗基材表面的Ar+发生碰撞,削减Ar+能量,使污染物清洗不彻底。高能量离子源Ar+轰击片材表面10min,经XRD数据检测可得,在轰击时间为10min时,基材表面已不含氧化物等固体污染物;

(4)由于类金刚石膜与不锈钢的晶格常数及热膨胀系数存在较大差异,在受热膨胀的时,二者之间的结合力将急剧减弱,甚至发生薄膜脱落,因此为了增强薄膜与基体结合力,启动溅射银靶离子源,溅射银靶离子源的电压和离子束电流为1200eV/35mA,为了保证较好的结合性,在基材上沉积一层0.2μm的Ag间隔层,之后关闭溅射银靶离子源;

(5)同时启动溅射银靶离子源和溅射碳靶离子源,在两种靶材溅射出的银原子与碳原子的交互作用下,在基材上沉积含有银元素及碳元素的薄膜,即得到类金刚石膜Ag-DLC,溅射碳靶离子源的电压和离子束电流为1300eV/80mA,溅射银靶离子源的电压固定为800eV,溅射银靶离子源的离子束电流为20mA,由试验数据可知,相比较溅射银靶离子源的离子束电流为10mA和30mA制备出来的Ag-DLC薄膜,该条件下制备出来的Ag-DLC薄膜摩擦系数和磨损率均为最低水平,摩擦学性能最好。

本发明的优点是:本发明通过将制作的样品进行多维度的观察、测量和计算,从微观角度分析研究了诠释了类金刚石膜对飞行器液压伺服作动器密封性能的影响机理,填补了理论和实践空白。同时通过本发明中陈述的制备类金刚石膜的方法制备得到的Ag-DLC膜,能够显著提高了活塞杆表面硬度,最高可达24GPa,远高于基体表面硬度(5GPa);Ag-DLC膜摩擦系数在0.05到0.12间波动,起到良好的润滑效果;Ag-DLC膜与对磨球表面形成的含Ag转移层是薄膜低摩擦系数的主要原因,含银量10.5%的Ag-DLC膜表现出最优的摩擦学性能。在作动器工作期间,在镀膜件接触面产生的转移层起到固体润滑作用,膜层中的银元素有助于改善薄膜韧性,石墨化和闪温可降低膜层表面的摩擦系数据。

附图说明

图1为Ag-DLC薄膜的结构示意图;

图2为真空多离子束沉积系统示意图;

图3为五种Ag含量不同Ag-DLC薄膜的XRD谱图;

图4为六种含银量不同的Ag-DLC膜的硬度(a)和内应力(b);

图5为六种含银量Ag-DLC膜的(a)摩擦系数和(b)磨损率;

图6为a:C-Ag10.5%膜摩擦实验期间的磨痕形貌照片,(a)表示摩擦15min,(b)表示摩擦30min,(c)表示摩擦45min,(d)表示摩擦45min;

图7为a:C-Ag10.5%膜的拉曼谱图比较;

图8为Ag-DLC膜改善作动器密封性能作用机理的示意图;

图9为作动器的工作原理图,图中符号说明:1、筒体;2、活塞;3、活塞杆;4、端盖;5、密封圈;6、进出管道;7、信号接收装置。

具体实施方式

下面将结合附图对本发明作进一步的说明:

1、类金刚石膜制备:

基材选用作动器活塞杆材料440A不锈钢,将440A不锈钢基材做成的30个10×10cm的片材,将基材放在丙酮溶液中超声波清洗20分钟,用氮气吹干,放到真空室中待沉积。

抽本底真空到1.8×10-4Pa后,用5keV/20mA的高能量离子源Ar+轰击片材表面10min;启动溅射银靶离子源,电压和离子束电流为1200eV/35mA,在基材上沉积一层厚约0.2μm的Ag间隔层。之后启动溅射碳靶离子源,在基材上沉积一层厚为1μm的Ag-DLC薄膜;溅射碳靶的离子源电压和离子束电流恒定为1300eV/80mA;溅射银靶离子源电压固定为800eV,离子束电流分别设置为0、10、20、30、40、50mA。

通过调整溅射银靶离子源的离子束电流,得到6种含银量不同的Ag-DLC膜,分别将它们命名为A0~A5。表1列出六种a:C-Agx%试样中的银原子百分含量。由表1可知,Ag-DLC膜中的Ag含量随着银靶离子束电流增加而增加。

表1六种a:C-Agx%试样中银原子百分含量

2、观察与参数测量

利用EDS(Energy Dispersive Spectrometer,能量色散谱仪)检测薄膜中的元素含量;用XRD分析薄膜纳米银粒径;用拉曼光谱检测薄膜的价键结构;用纳米压痕仪测试薄膜硬度。采用三维白光干涉表面轮廓仪测量硅基片的厚度和薄膜的厚度,代入Stoney公式,计算出薄膜的内应力值。利用高速往复式摩擦磨损实验机检测结果反映薄膜与磨粒间的摩擦学性能;实验期间,镀膜试片固定,将ф6mm的440A钢球放到试片上,在5N的载荷作用下让钢球在试片表面做往复运动;在油润滑状态下进行,振幅30mm,往复频率600次/min,时间15到45min;用光学显微镜观测磨痕形貌。

2.1镀膜样品XRD分析

图3示出五种Ag含量不同Ag-DLC薄膜的XRD谱。由图3可知,衍射峰宽化现象是由于薄膜的非晶碳特性导致的;银含量低的类金刚石膜,如:试样A1和A2,只有非晶碳的漫反射峰,没有出现晶体的衍射峰。A3试样(a:C-Ag17.9%)的XRD谱图中开始出现Ag的(111)衍射峰;银Ag(111)晶面的衍射峰强度随着掺杂银含量增加呈现增强的趋势。

3、分析类金刚石膜的力学性能

3.1 Ag-DLC膜的硬度分析

图4示出六种含银量不同的Ag-DLC膜的硬度和内应力变化曲线。由图4(a)可知,Ag-DLC膜试片的硬度处于16.2-23.6GPa之间,只有银含量少的A1试片(a:C-Ag7.3%)硬度16.2GPa比未掺杂的A0(a:C-Ag0%)硬度18.5GPa有所降低。试片的硬度相对于原基材440A的硬度(约7GPa)得到大幅度提高,均高于最高工作压力(10GPa),这样高硬度的活塞杆表面可以避免因油压过大导致的漏油密封失效。另一方面,Ag-DLC膜的硬度也远大于油液颗粒硬度,因为颗粒主要是440A钢的磨屑;440A钢球的硬度比膜层硬度低,球的磨损率高于对应的镀膜表面。镀膜构件与油液颗粒摩擦时,能有效减少构件表面出现划痕的几率。

由图4(b)可知,随着含银量的增加,可以看到Ag的掺杂有效降低了薄膜的内应力。Ag-DLC膜样品中薄膜内应力的降低,有利于避免机构运动期间零部件表面薄膜的剥落。

3.2 Ag-DLC膜的摩擦磨损性能分析

液压伺服作动器的磨损失效主要来源于污染物对密封结构的破坏,通常发生在密封圈和活塞杆摩擦副之间。活塞杆的外表面有一层薄油膜,做往复运动时,外表面附着一些颗粒污染物;污染物与油膜接触,粘结在活塞杆表面的污染物会转移到密封圈并聚集;活塞杆表面与密封圈嵌入颗粒之间的磨粒磨损是密封失效的主要原因。

图5示出含银量不同的Ag-DLC膜往复滑动45min后的稳态摩擦系数及磨损率间的关系。由图5(a)可知,薄膜的稳态摩擦系数随着含银量的不同在0.05到0.12间波动;含银DLC膜的摩擦系数均低于未掺杂DLC(0.17),含银量为10.5%薄膜(A2)的摩擦系数最低,0.04。实验得到的Ag-DLC膜的摩擦系数均远低于0.2,能够起到润滑效果。由图5(b)可知,随着含银量的增加,磨损率先减小后增大,在10.5%含银量时达到最低(3.8×10-9mm3/N m)。银是一种软而韧的金属元素,在类金刚石膜中存在的纳米Ag粒子,嵌入到非晶碳网络基质中可以降低脆性,给碳基质中内应力集聚的提供缓冲空间,通过提高韧性来提高膜层的摩擦学性能。

图6示出a:C-Ag10.5%膜(A2)四个摩擦时间段形成的磨痕形貌。由图6a和b比较可知,随着往复滑动摩擦时间增加,a:C-Ag10.5%膜的磨痕和磨屑逐渐变多。在球和盘的磨痕边缘可以看到有磨屑聚集的现象,并伴有转移层形成。由图6-c可知,薄膜的磨损加剧,在磨痕上可以看到明细的犁沟现象;在边缘可以观察到磨料堆积,膜层发生破损,转移层变得明显。图6-d示出图6-c的对偶球磨痕形貌。对偶球的磨损率高于比与其对磨的Ag-DLC膜高。原因在于440A钢球的硬度远低于膜层硬度。

采集球和盘的磨屑进行的能谱分析结果显示,转移层中有铁、铬、碳和银元素,铁、铬元素来自440A钢基体,碳和银元素来自Ag-DLC膜。由此可知,转移层是Ag-DLC膜和440A钢基体对磨形成的。球与镀膜表面形成的含银转移膜是薄膜低摩擦系数的主要原因,a:C-Ag10.5%膜的摩擦学性能最好。

图7示出a:C-Ag10.5%膜的拉曼谱图比较,从上到下分别是沉积好的薄膜、5N载荷磨痕和磨屑的拉曼谱图。由图7可知,拉曼谱图中主要有两个明显的高斯峰:D峰和G峰,D峰与G峰的强度比(IG/ID)与微晶碳晶粒的分布有直接相关。D峰位置在1370cm-1左右,G峰位置在1570cm-1左右。三种谱图具有类似的结构,但IG/ID值有差异。薄膜的IG/ID值最低,磨屑的IG/ID的值(2.2)比磨痕的IG/ID值(2.0)高,这种变化是由sp3-C转变为sp2-C引起的。在两个表面的接触区域出现滑动摩擦引起的热量累积,可能导致sp3-C键的不稳定,部分sp3-C键向sp2-C键转化。

D峰的强度主要表征无序金刚石碳的分布情况,非晶碳原子的间隙可以容纳一部分银粒子,这些银粒子反过来可以改变微晶碳原子的分布。G峰的强度和sp2-C相有关,表征石墨碳的分布特点,加载磨痕处的G峰的位置向高波数方向迁移,说明磨损薄膜中的石墨含量升高,导致薄膜硬度降低。

4、探究类金刚石膜对飞行器液压伺服作动器密封性能的影响机理

作动器的密封失效包含三个阶段:阶段I,活塞杆做回程动作,活塞杆前部的刮灰板阻挡部分大尺寸的污染物混入,但尺寸小的颗粒容易进入系统内部或者随着液压油混入活塞杆摩擦副之间。阶段II,附着在活塞杆表面的固体颗粒在往复运动期间嵌入密封圈。密封圈由保持器和滚珠构成,保持器由塑料制成,质地软。油液固体颗粒主要是金属磨屑,比塑料的强度和硬度高,在内部高压力作用下,容易嵌入保持器。阶段III,在活塞杆往复运动期间,嵌进密封圈的固体污染物相当于磨粒,不断地与活塞杆相互对磨,油液颗粒在活塞杆表面产生磨粒磨损,持续的磨粒磨损作用在在活塞杆表面形成磨痕。这种磨损随工作时间加剧,导致漏油,作动器发生密封失效故障。

图8示出Ag-DLC膜改善作动器密封性能作用机理的示意图。由图8可知,上部左侧为活塞杆和密封圈摩擦副的截面图,上部右侧为摩擦副的侧视图;磨粒与活塞杆表面的接触区为关注区,下部左侧为接触区的显微图,右侧为转移层的显微图。

镶嵌在密封圈里的磨粒和活塞杆表面相互摩擦。磨粒在Ag-DLC膜试样表面来回摩擦时,对磨的双方相互接触,先使接触表面平整,膜层元素与对磨球表面的元素相互转移形成转移层(下部左侧图),形成了含有Ag、Cr、Fe以及sp3-C和sp2-C的转移层(下部右侧图);转移层在界面处形成,Ag和sp2-C起到了固体润滑的作用。适量的银(白色颗粒)嵌入非晶态碳网络基质中,降低内应力起到提高韧性的作用;银作为软韧相在摩擦过程中起到自润滑作用。相互接触的上表面和转移层中发生了石墨化,摩擦引发的闪温导致sp3-C向sp2-C转化(下部右侧图中的黄色sp3-C向蓝色sp2-C转变)。金属相互摩擦过程中,接触微区会出现闪温,就是瞬时温度升高。转移层的石墨化可以起到润滑磨损表面的效果,让镀有镀膜件获得低的摩擦系数和磨损率。

在作动器工作期间,在镀膜件接触面产生的转移层起到固体润滑作用,镀有Ag-DLC膜的活塞杆表面处于润滑状态。膜层中的银元素有助于提高工件的韧性,有利于避免薄膜从基层表面脱落;石墨化和闪温可降低膜层表面的摩擦系数,让镀膜件表面具有优异的摩擦学性能。

最后应说明的是:显然,上述实施例仅仅是为清楚地说明本发明所作的举例,而并非对实施方式的限定。对于所属领域的普通技术人员来说,在上述说明的基础上还可以做出其它不同形式的变化或变动。这里无需也无法对所有的实施方式予以穷举。而由此所引申出的显而易见的变化或变动仍处于本发明的保护范围之中。

当前第1页1 2 3 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1