大口径平面光学元件面形的子孔径拼接检测技术及装置的制作方法

文档序号:11651365阅读:363来源:国知局
大口径平面光学元件面形的子孔径拼接检测技术及装置的制造方法

本发明涉及一种相位测量偏折术(pmd,phasemeasuringdeflectometry)进行光学元件面形检测的技术领域,特别是一种基于子孔径拼接技术(sub-aperturestitching)实现大口径平面光学元件面形精密检测的相位测量偏折术。



背景技术:

干涉测量技术作为一种可行并常用的非接触,高精度的表面检测技术已有一个世纪的历史。其被广泛应用的原因主要有:(1)测量中高度相位映射关系简单直接,(2)由于测量的对象由波长进行度量,使得它有很高的测量精度。但其测量大口径元件面形时,对环境要求非常苛刻,通常需要在控制的实验室环境才能进行准确检测,对元件在线状态和相应变化过程的精密检测非常困难,在测量自由曲面时通常需要补偿镜或者cgh,使得干涉测量术非常不灵活并且价格昂贵。因此,科研工作者对不同的方法进行了研究。一种可行的思路是测量光束进入反射面之后的光束偏折,从而得出反射面的面形。基于这种偏折术原理的方法有傅科刀口边缘检测法以及夏克-哈特曼传感器。最近提出的可以实现高分辨率全场测量的方法为相位测量偏折术(phasemeasuringdeflectometry),该方法是基于光栅反射法的原理,而使用相移条纹对二值光栅替换(internationalsocietyforopticsandphotonics,2004:366-376.),具有非常高的灵敏度和比拟于干涉方法的精度,而且可用于工作环境,动态范围大,能实现在线光学元件面形的精密检测。与该方法相类似,但有不同的命名的方法有:美国亚利桑那光学中心提出的scots,该方法将偏折术与哈特曼测量方法进行了比较,提出了scots的本质为逆哈特曼光学测试方法(softwareconfigurableopticaltestsystem)(appl.opt.2010,49(23),4404-4412.);其他命名有结构光反射、条纹反射;或者直接命名为偏折术。

偏折术易于实现,并且成本低廉。它的发展也得益于现有技术的进步,比如,计算机控制显示器来产生条纹的技术,摄像机标定技术等,但现在它多用于具有曲率中心的球面或非球面元件面形检测,以及小口径平面元件面形检测。

使用相位测量偏折术对大口径平面光学元件进行测量时,存在三个方面的问题。(1)被测件的大尺寸要求投影条纹的显示器尺寸足够大,此时显示器的平整度难以保证,并且本身的重力会导致显示器变形。

(2)通常选用标准参考平面镜镜来扣除系统误差,然而被测平面元件如果和参考平面存在复位误差时,二者的系统误差不再恒定。(3)如果待测元件的前后表面都有条纹反射,这时会出现前后表面反射条纹的混叠。这三个方面的问题都会严重影响测试精度。

针对以上3个方面的问题,提出使用多相机采集方法和子孔径拼接相位测量偏折术测量大口径平面光学元件面形,避免了大尺寸显示器的使用。借助参考面辅助调整方法,使得被测平面元件和参考元件精确复位,从而扣除系统误差,同时使用谱估计算法分离后表面反射干扰来提高测试精度。



技术实现要素:

本发明要解决的技术问题是提供一种子孔径拼接相位测量偏折术实现大口径平面光学元件面形检测的方法及装置。针对传统相位测量偏折术中需要大尺寸显示器、复位精度难以保证,采集到的条纹易受到后表面干扰等缺点,通过引入多相机采集,参考坐标面辅助调整和谱估计算法分离前后表面干扰有效的克服了原有技术的缺点。本方法很好的融合了相位测量偏折术,子孔径拼接技术,谱估计算法等原有技术的优势。具有结构简单,抗环境振动能力强,测量动态范围大,测试精度高等特点。

本发明要解决上述技术问题采用的技术方案是:使用相位测量偏折术测量光学元件时,其中基本器件包括针孔摄像机,待测平面光学元件和显示器。在显示器上显示正弦编码的条纹图,经过被测面反射后被针孔相机采集,正弦条纹被反射镜的面形调制而发生变形。根据条纹的变形量便可得知被测面的面形。

传统的偏折术使用相移算法得出显示器像素点坐标(xs,ys),然而,当后表面也有反射时,前后表面的条纹将会叠加,得到叠加条纹,这时采用传统的相移计算方法会带来比较大的测量误差。一种方法是对待测光学元件做黑化或粗糙化处理,以避免后表面反射对条纹相位提取的干扰,但这导致了测量过程繁琐,甚至光学表面的损坏,所以本发明使用了谱估计算法来代替传统的相移算法计算(xs,ys)。在用显示器投影正弦条纹后,把待测光学元件后表面反射的信号看作干扰项,由ccd探测到的光强信号可看成是有用信号和干扰信号之和。那么,pmd计算斜率需要的显示器投影点的归一化位置信息可以看作是两个周期信号的频率,后表面反射引起的干扰信号的算法分离问题实质上就是两个周期信号的分离问题。

具体实现过程为:拍摄一系列周期等间隔变化的条纹;提取单像素点的一组光强值,作为待分析的(包含两个周期分量的)信号;计算功率谱密度(psd),分析其中的频谱成分,最后乘以屏幕宽度(高度)即可得到显示器投影点坐标。然后采用非线性无约束最优化算法中的直接搜索法,对谱估计法计算出的显示器投影点坐标进行优化,最终得到显示器像素坐标。

使用以上方法可以解决后表面反射干扰的问题,然而,相位测量偏折术对系统标定误差非常敏感。通常采用比待测元件面形精度更高的参考元件来扣除系统误差,为了使参考元件和被测元件达到很好的复位精度,本发明引入一个高精度调整待测元件的方法实现准确复位。它是基于利用标定得到的(xm,ym)坐标,再通过数学方法建立一个位于显示器平面上的理想坐标面(xs_ideal,ys_ideal)。使用谱估计算法得出的显示器面上求出的坐标和理想坐标面内的坐标比较,反复多次对光学元件位置姿态进行调整,使得二者的差尽可能小,以达到理想的复位精度。

使用多相机采集系统完成子孔径数据测量,然后将子孔径上的斜率使用拼接算法完成数

据拼接,从而实现大口径平面光学元件面形的检测。

本发明与现有技术相比其显著的优点是:

(1)与普通干涉仪相比,本发明是一种非干涉测量方式;能有效抑制环境扰动,测量的动态范围大,抗振动能力好,结构简单成本低廉,并且有望成为一种实现在线检测的方法。

(2)与哈特曼子孔径拼接方法相比,哈特曼的分辨率受到微透镜阵列大小和个数的影响,而本发明的分比率只取决于相机的分辨率。并且在相邻子孔径上重叠数据点较多,可减小重叠区域内数据点少而由拼接引入的误差。

(3)与传统的相位测量偏折术相比,本发明有三个方面的优势:不需要对平面光学元件后面镀膜或者涂黑,而使用多频条纹投影的方法实现前后表面的信号分离,使测量过程变得简单;使用简单的调整方法使参考镜和被测镜精确复位,从而避免使用一些昂贵的调整设备;使用多相机采集搭建子孔径拼接系统,而不使用平移台等设备实现数据拼接,从而提高测量精度。

附图说明

图1是基于相位测量偏折术测量平面光学元件测量原理示意图。

图2是多相机相位测量偏折术采集系统结构示意图。

图3是被测面子孔径分布情况示意图。

图4是设计的大口径光学元件子孔径拼接装置图。

具体实施方式

下面结合附图通过实例对本发明进行详细说明。有必要在此指出的是,以下实施例只用于本发明做进一步的说明,不能理解为对本发明保护范围的限制,该领域技术熟练人员根据上述本发明内容对本发明做出一些非本质的改进和调整,仍属于本发明的保护范围。

本发明包括多个相机组成图像采集系统,其中一路相机相位测量偏折术原理如图1所示,其基本器件包括针孔摄像机1,平面光学元件2,显示器3。在商用显示器3上显示正弦编码的条纹图,经过被测面2反射后被针孔相机1采集,正弦条纹被反射镜的面形调制而发生变形。根据条纹的变形量便可得知被测面的面形。公式(1)给出在图中待测点的斜率值的计算方法。(xm,ym)是ccd像素对应的被测面上的坐标。(xs,ys)是显示器上被点亮像素的坐标,(xc,yc)是ccd相机针孔的位置坐标。dm2s和dm2c是被测面位置到对应显示器像素点和摄像机孔径的距离;zm2s和zm2c是被测面顶点到光源和摄像机孔径的z方向距离。

ccd针孔位置(xc,yc)可以直接测量得到,ccd像素对应被测面上点m的坐标(xm,ym)可以由机器视觉的方法标定得出。如果能够获得显示器像素点坐标(xs,ys)后,便可利用公式(1)计算得到被测表面2的斜率分布。使用southwell算法或者zernike多项式拟合的算法就可以得到被测面面形。

传统的偏折术使用相移算法得出显示器像素点坐标(xs,ys),然而,当后表面也有反射时,前后表面的条纹将会叠加,得到叠加条纹4,这时采用传统的相移计算方法会带来比较大的测量误差。一种方法是对待测光学元件2做黑化或粗糙化处理,以避免后表面反射对条纹相位提取的干扰,但这很繁琐。所以本发明使用谱估计算法来代替传统的相移算法计算(xs,ys)。

(1)谱估计方法计算(xs,ys)

在用显示器投影正弦条纹后,如果把待测光学元件后表面反射的信号看作干扰项,由ccd探测到的光强信号可表示为:

iobs(k)=isignal(k)+ijammer(k)(2)其中iobs表示ccd像素点探测到的总光强,isignal表示有用信号,ijammer表示干扰信号(thejammer),k表示相移步数。

若下标“1”代表有用信号,下标“2”代表干扰信号,结合条纹编码,以竖条纹为例,公式(2)又可进一步表示为

其中分别为有用信号和干扰信号的背景光强,m1,m2是相应的振幅调制,分别为前后表面反射对应的显示器投影点的x方向坐标,p为显示器上的条纹周期长度,是与相移步数k相关的附加相移量。

设ws是屏幕宽度,则归一化的x坐标为此时,代表显示器左边缘,代表显示器右边缘。

公式(3)可写作

ws/p是显示器上的条纹总数,用τ表示,视为归一化条纹空间频率。合并常数项,于是

其中,为叠加条纹的背景光强。采用n步相移法,进一步忽略相移项,则叠加信号可由下列式子简单表示

如果将τ(条纹空间频率)看作自变量,那么,pmd计算斜率需要的显示器投影点的归一化位置信息可以看作是两个周期信号的频率,ccd上任意像素探测到的光强信号i本质上就是两个叠加的周期信号,后表面反射引起的干扰信号的算法分离问题实质上就是两个周期信号的分离问题。

具体实现过程为:拍摄一系列周期等间隔变化的条纹;提取单像素点的一组光强值,作为待分析的(包含两个周期分量的)信号;计算功率谱密度(psd),分析其中的频谱成分,最后乘以屏幕宽度(高度)即可得到显示器投影点坐标。

谱估计无法达到理想的分离精度。更重要的是,公式(4)所涉及的相位求解问题实际上是一个非线性反演问题,而存在多个频率分量时,周期图法本身就是信号功率谱的一个有偏估值。于是,将平均周期图法的结果作为迭代起点,采用非线性无约束最优化算法中的直接搜索法,对谱估计法计算出的显示器投影点坐标进行优化,最终得到显示器像素坐标(xs,ys)。

使用以上方法可以解决后表面反射干扰的问题,然而,相位测量偏折术对系统标定误差非常敏感。通常采用比待测元件面形精度更高的参考元件来扣除系统误差,为了使参考元件和被测元件达到很好的复位精度,本发明引入一个对参考坐标面进行高精度调整的方法实现准确复位。

(2)参考面光线追迹调整方法实现准确复位

在测量系统中某z=zm的平面上,先利用标定技术得到该面内各点的(xm,ym)坐标。然后光线从针孔(xc,yc,zc)出射,经z=zm面上某点(xm,ym,zm)反射到达显示器表面,于是就可以在显示器面上得到该反射点对应的坐标,而z=zm的平面上所有反射点在显示器面上就得到了一个坐标面,定义为参考坐标面(xs_ideal,ys_ideal)。然后将参考元件放在调整装置上进行调整,拍摄条纹图再后将通过谱估计算法得到的参考元件形成的(xs,ys)分别减去相应参考坐标面坐标(xs_ideal,ys_ideal)令:

通过调节平晶的俯仰和倾斜,分别使dx和dy的rms接近零,且pv最小,就实现了精密调整,在这个前提下得到的(xs,ys)即为最终参与计算斜率的坐标。

然后,将被测元件放在测试平台上,采用上述同样的方式进行调整,实现被测元件的精密调整,得到相应的(xs,ys)即为该元件最终参与计算斜率的坐标,并恢复面形。

最后,用被测元件面形减去参考元件面形数据即d=dtest-dref,就能得到该子孔径内的面形数据。

通过以上的周期图法、显示器坐标计算和待测元件精确的调整处理方法,我们可以对口径不大的光学元件实现高精度的面形检测。但是测量大口径的光学元件时,这种方法不再适用。可以采用的方法有:<1>选用大尺寸的显示器作为投影光源。<2>平移pmd测试装置进行拼接测量。<3>平移被测光学元件实现全孔径测量。<4>采用多相机拍摄的方法进行子孔径拼接测量。

方法<1>选用大尺寸的显示器,可能会存在平整度的问题,并且显示器本身的重力会导致显示器面形误差,对系统标定造成不必要的麻烦。方法<2>通过移动测量设备进行子孔径拼接测量,但是这会对平移装置提出较高的要求,导轨的直线度和平移精度直接影响测试精度。方法<3>需要采用导轨调整待测元件的位置,显然,如果需要实现在线检测,待测元件更不能移动。所以本发明采用方法<4>,采用多相机采集,然后进行子孔径拼接的方法实现大口径平面光学元件的检测。

(3)多相机采集,采用子孔径拼接算法实现大口径平面光学元件检测。

多相机采集系统可以是两个或多余两个,数目不限,这里给出六个针孔摄像机(编号为5,6,7,8,9,10)、显示器11以及显示器调整装置构成的采集系统,示意图如图2(a)、(b)所示。图2(b)中的显示器水平调节机构12和旋转调节机构13使显示器中的像素在同一平面上,图2(c)中的摄像机针孔14经相机方位调节机构15、16和17实现元件被测面的正确选取。完成上述调节后,假设被测平面光学元件为长l,宽w。5,6,7,8,9,10相机分别测量覆盖的被测元件的子孔径情况如图3所示,图3中a5~a10分别是针孔相机5~10所测量的被测面上的范围,图中每个摄像机测量得到的子孔径长和宽分别为l1和w1。网格区是相邻子孔径间的重叠区域,斜条纹区是各子孔径的非重叠数据区。测量过程中,被测元件和多相机采集系统被放置在光学台上,图4是设计的大口径平面光学元件面形的子孔径拼接检测技术及装置示意图。为了测量准确,本发明将待测元件放置在调整装置18上,如图4所示,该图4中水平调节机构19、元件支撑板21、元件支撑板固定架24以及元件支撑板方位调节旋钮22和23能使被测元件20对准显示器11,处于测试状态。

假设两相邻子孔径a5和a6,其测得的面形分布分别为φ1和φ2。假设a5为基准面,则φ1和φ2在重叠区域满足下面关系:

φ2=φ1+p+txx+tyy,(8)

式中,p代表平移量,tx和ty分别代表x,y方向的倾斜系数,

对上式求x,y方向偏导,得

其中分别为a5在x,y方向上的导数。分别为a6在x,y方向上的导数。假设重叠区域共有n个采样点。式(9)的对应矩阵形式为

通过最小二乘数据处理方法,就可分别求出x,y方向上的倾斜系数tx和ty,通过式(9),可以求出g2x和g2y的校正结果。然后,将g2x和g2y的校正结果与g1x和g1y的进行拼接,这样我们就可以得到两相邻区域的拼接斜率数据。以此类推,通过以上类似的拼接处理,就可以得到所有子孔径上的斜率分布,进而得出被测大孔径平面光学元件的面形。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1