采用低场核磁共振测量泥页岩中液态滞留烃含量的方法与流程

文档序号:14909528发布日期:2018-07-10 23:00阅读:179来源:国知局
本发明属于油气勘探与开发
技术领域
,涉及一种采用低场核磁共振测量泥页岩中液态滞留烃含量的方法。
背景技术
:泥页岩具有极低的基质孔隙度和渗透率,页岩油(液态滞留烃)产自于自身并以吸附、游离及溶解形式富集于泥页岩层系中,可称为原地滞留油气。受沉积环境、矿物组成及其中有机质的丰度、类型、成熟度及排烃效率的影响,不同泥页岩中滞留烃含量有明显的差别,泥页岩滞留烃含量评价是页岩油气商业开采的经济价值评估重要指标之一。目前遍认为直接反映泥页岩滞留烃含量大小的测试方法首推氯仿沥青“A”含量和热解烃量(S1+S2),郎东升(1996)曾用热解烃量建立了不同地质样品的含油级别,同时认为热解所测得的数据,并不能直接反映地层中液态烃的真实含量,所测得的结果只不过是地层中液烃类含量的一部分,由于热解是开放体系下完成,相当一部分轻烃在热解分析过程中损失,S2中的可溶重质残留烃不可忽视(DanJarvie,2012)。张林晔(2012)等利用恢复系数法对牛庄洼陷沙三下亚段页岩滞留烃量进行了估算,并对氯仿沥青“A”法和热解法进行了对比,认为热解S1需要进行轻烃校正和确定S2中的可溶重质烃,氯仿沥青“A”抽提不完全充分,也需要进行轻烃和重质残留烃校正。所以,就目前的方法来看,无论是热解法还是抽提法,都会涉及到样品粉碎前处理,在样品前处理粉碎过程中均会有轻质烃散失问题,并且热解法中S2中的可溶重质残留烃有效测量问题,导致测量结果不准确。为此,需要探索一种新方法在测定泥页岩滞留烃含量时避免这两方面的干扰,实现快速、有效、准确的测量泥页岩滞留烃含量的方法。技术实现要素:本发明所要解决的技术问题就在于克服现有化学方法技术的缺陷,采用物理方法测量手段,提供一种采用低场核磁共振进行泥页岩滞留烃含量测量的方法,它通过建立滞留烃含量(滞留烃与水的体积比)与核磁共振1H核信号的标度关系,实现对泥页岩滞留烃相对含量的测定。该方法是一种可即时的,不破坏岩石结构的新型测定泥页岩滞留烃含量的新方法。为此,本发明提供了一种采用低场核磁共振测量泥页岩中液态滞留烃含量的方法,其包括:步骤B,分别以烃含量为自变量,以横向弛豫时间积分面积为因变量建立待测区块的标线方程;步骤C,测定待测区块中饱和锰待测样品脱水脱烃处理前/后的横向弛豫时间积分面积差;步骤D,基于待测区块中饱和锰待测样品脱水脱烃处理前/后的横向弛豫时间积分面积差,利用待测区块的标线方程计算该待测样品中的液态滞留烃含量;其中,所述待测样品为泥页岩样品。根据本发明方法,步骤B包括:步骤S1,将待测区块产出的页岩油分散于蒸馏水中,制成标准样品;步骤S2,在不同回波时间和等待时间下,测定不同烃含量的标准样品的横向弛豫谱;步骤S3,分别以烃含量为横坐标,以横向弛豫时间积分面积为纵坐标建立直角坐标系,并在该坐标系中拟合标准样品的烃含量与标准样品的横向弛豫时间积分面积,得到待测区块的标线方程。在本发明的一些实施例中,所述标准样品的横向弛豫时间为10-100ms。在本发明的另一些实施例中,所述标准样品的烃含量为0-20%(v/v)。根据本发明方法,所述步骤C包括:步骤L1,将待测样品浸泡于氯化锰溶液中,使待测样品充分饱和,制得饱和锰待测样品;步骤L2,在多组时间和等待时间下,对饱和锰待测样品进行低场核磁共振测量,获得饱和锰待测样品的横向弛豫时间谱,并计算饱和锰待测样品的横向弛豫时间谱的积分面积;步骤L3,对经过低场核磁共振测量后的饱和锰待测样品进行脱水脱烃处理,并进行干燥冷却后,获得脱水脱烃待测样品;步骤L4,在于步骤L2相同的多组时间和等待时间下,对脱水脱烃待测样品进行低场核磁共振测量,获得脱水脱烃待测样品的横向弛豫时间谱,并计算脱水脱烃待测样品的横向弛豫时间谱的积分面积;步骤L5,计算脱水脱烃待测样品的横向弛豫时间谱的积分面积与饱和锰待测样品的横向弛豫时间谱的积分面积的差值;其中,所述待测样品为泥页岩样品。上述方法中,在步骤L1中,氯化锰溶液的质量分数为50%。在本发明的一些实施例中,在步骤L1中,所述浸泡的时间为100-150小时。上述方法中,在步骤L3中,在抽真空条件下以烘干的方式对饱和锰待测样品进行脱水脱烃处理。在本发明的一些实施例中,所述烘干的温度为150-300℃,优选所述烘干的温度为250-300℃。在本发明的另一些实施例中,所述烘干的时间为2-3小时。本发明提供了一种采用低场核磁共振进行泥页岩滞留烃含量测量的方法,所述方法利用任意形状的泥页岩样品进行饱和足够浓度的氯化锰溶液后进行低场核磁共振测量,获得泥页岩样中的核磁T2谱,再将样品进行脱水脱烃处理后再次测量T2谱信号,将T2谱信号幅度积分差值△S带入利用本发明方法建立的烃类含量与信号的标定关系(即标线方程)中计算出单位体积泥页岩中烃类体积,结果为单位体积泥页岩中含烃类体积大小,用百分数表示,视为泥页岩滞留烃含量。有效避免了样品因粉碎前处理造成的轻烃散失问题以及溶剂极性不够导致重质烃类抽提不完全问题,可用于泥页岩中滞留烃含量的精确测定,是一种有效、快速、准确的测定方法。本发明方法克服了现有技术的不足,满足了当前页岩油气勘探开发的现实需求,可广泛应用于泥页岩含油性定量评价、资源潜力评价和战略选区等研究,具有很好的推广应用价值。附图说明下面将结合附图来说明本发明。图1示出本发明中某待测区块的烃含量定标曲线。具体实施方式为使本发明容易理解,下面将详细说明本发明。如前所述,就目前的方法来看,无论是热解法还是抽提法,都会涉及到样品粉碎前处理,在样品前处理粉碎过程中均会有轻质烃散失问题,并且热解法中S2中的可溶重质残留烃有效测量问题,导致测量结果不准确。鉴于此,为寻求一种在测定泥页岩滞留烃含量时能够避免上述两方面的干扰,实现快速、有效、准确的测量泥页岩滞留烃含量的方法,本发明人对于泥页岩中液态滞留烃含量的测量方法进行了大量的研究。本发明人研究发现,可以低场核磁共振法,通过建立滞留烃含量(v%)与核磁共振1H核信号的标度关系,实现对泥页岩滞留烃含量的相对测定。采用该方法可以实现即时测量,且不破坏岩石结构。本发明正是基于上述发现做出的。因此,本发明所涉及的一种采用低场核磁共振测量泥页岩中液态滞留烃含量的方法包括:步骤B,分别以烃含量为自变量,以横向弛豫时间积分面积为因变量建立待测区块的标线方程;步骤C,测定待测区块中饱和锰待测样品脱水脱烃处理前/后的横向弛豫时间积分面积差;步骤D,将待测区块中饱和锰待测样品脱水脱烃处理前/后的横向弛豫时间积分面积差带入待测区块的标线方程,计算该待测样品中的液态滞留烃含量;其中,所述待测样品为泥页岩样品。根据本发明方法,步骤B包括:步骤S1,将待测区块产出的页岩油分散于蒸馏水中,制成标准样品;步骤S2,在不同回波时间和等待时间下,测定不同烃含量(v%)的标准样品的横向弛豫谱;步骤S3,分别以烃含量(v%)为横坐标,以横向弛豫时间积分面积为纵坐标建立直角坐标系,并在该坐标系中拟合标准样品的烃含量(v%)与标准样品的横向弛豫时间积分面积,得到待测区块的标线方程。在本发明的一些实施例中,所述标准样品的横向弛豫时间为10-100ms。在本发明的另一些实施例中,所述标准样品的烃含量为0-20v%。根据本发明方法,所述步骤C包括:步骤L1,将待测样品浸泡于氯化锰溶液中,使待测样品充分饱和,制得饱和锰待测样品;步骤L2,在多组时间和等待时间下,对饱和锰待测样品进行低场核磁共振测量,获得饱和锰待测样品的横向弛豫时间谱,并计算饱和锰待测样品的横向弛豫时间谱的积分面积S1;步骤L3,对经过低场核磁共振测量后的饱和锰待测样品进行脱水脱烃处理,并进行干燥冷却后,获得脱水脱烃待测样品;步骤L4,在于步骤L2相同的多组时间和等待时间下,对脱水脱烃待测样品进行低场核磁共振测量,获得脱水脱烃待测样品的横向弛豫时间谱,并计算脱水脱烃待测样品的横向弛豫时间谱的积分面积S2;步骤L5,计算脱水脱烃待测样品的横向弛豫时间谱的积分面积与饱和锰待测样品的横向弛豫时间谱的积分面积的差值ΔS;其中,所述待测样品为泥页岩样品。上述方法中,在步骤L1中,氯化锰溶液的质量分数为50%。在本发明的一些实施例中,在步骤L1中,所述浸泡的时间为100-150小时。上述方法中,在步骤L3中,在抽真空条件下以烘干的方式对饱和锰待测样品进行脱水脱烃处理,直至抽真空系统的真空度≤10-6Pa。在本发明的一些实施例中,所述烘干的温度为150-300℃,优选所述烘干的温度为250-300℃,进一步优选所述烘干的温度为250℃。在本发明的另一些实施例中,所述烘干的时间为2-3小时。本发明中所述用语“滞留烃含量”是指单位体积泥页岩中含烃类体积大小,用百分数表示,视为泥页岩滞留烃含量,可以表示为“v%”或“%(v/v)”。本发明中所述用语“标准样品的烃含量”是指单位体积蒸馏水所分散的烃的含量,亦称为“标准样品的烃浓度”,是一定量的页岩油充分分散于蒸馏水中制成的页岩油分散液中的页岩油与蒸馏水的体积比,用百分数表示,可以表示为“v%”或“%(v/v)”。本发明中所述“水”一词,在没有特别指定或说明的情况下,是指蒸馏水。根据本发明的一些具体实施方式,本发明所涉及的一种采用低场核磁共振测量泥页岩中液态滞留烃含量的方法包括:1)制作标准样品:将适量体积待测泥页岩地区(即待测区块)产出的页岩油充分溶解于适量体积蒸馏水中保证页岩油溶液横向弛豫时间(T2)处于10-100ms之间;取一定体积百分比间隔的页岩油溶液至标准样品瓶内,制成标准样品;2)测量标准样品的横向弛豫谱(T2谱):将标准样品置于多组不同回波时间和等待时间下的核磁共振仪器样品槽内,测量标准样品的横向弛豫谱(T2谱);3)建立标线方程:分别以烃含量为横坐标,以横向弛豫时间积分面积为纵坐标建立直角坐标系,并在该坐标系中拟合标准样品的烃含量(v%)与标准样品的横向弛豫时间T2积分面积(核磁信号量,无量纲),得到待测区块的标线方程,以及对应于该标线方程的待测区块的烃含量(v%)定标曲线;4)饱和氯化锰待测样品(饱和锰待测样品)的制备:钻取设定大小的泥页岩待测样品,测量待测样品的质量;然后将其浸泡于质量分数为50%的氯化锰溶液中100-150小时,使泥页岩待测样品充分饱和氯化锰溶液,制得饱和锰待测样品;5)饱和锰待测样品进行测量:设置饱和锰待测样品的多组回波时间和等待时间,将饱和锰待测样品去除表面水分后,置于同一核磁共振测试仪器的样品槽内,对除去表面水分的饱和锰待测样品进行低场核磁共振测量,获得饱和锰待测样品的T2谱,计算T2谱的积分面积S1;6)饱和锰待测样品的脱水脱烃处理:将测量后的饱和锰待测样品放置带有抽真空功能的烘箱内,设置烘烤温度为250℃,同时抽真空烘烤2-3小时,直至抽真空系统的压力近似0为止,样品自然干燥冷却,制得脱水脱烃待测样品;7)对脱水脱烃待测样品进行测量:设置脱水脱烃待测样品的多组回波时间和等待时间,将脱水脱烃待测样品置于同一核磁共振测试仪器的样品槽内,对脱水脱烃待测样品进行低场核磁共振测量,获得脱水脱烃待测样品的T2谱,计算T2谱的积分面积S2;8)计算两次测量T2谱的积分面积差值△S;9)泥页岩待测样品液态滞留烃含量计算:将所述待测样品的T2谱积分面积差△S代入上述标线方程,计算泥页岩待测样品中液态滞留烃含量(v%)。实施例为使本发明更加容易理解,下面将结合附图和实施例来来进一步详细说明本发明,这些实施例仅起说明性作用,并不局限于本发明的应用范围,下列实施例中未提及的具体实验方法,通常按照常规实验方法进行。待测样品:W127(某一区块井的黑色页岩);BTZ6(某另一区块的黑色油页岩)。实验仪器:纽迈电子科技有限公司生产的MicroMR12-025V025V025V,共振频率:11.793MHzMHz,采用新谱仪,磁体温度控制在31.99-32.01℃,探头线圈直径25mm;合恒DZF-6020型干燥箱。样品处理方法及实验参数:(1)样品制备:饱和锰样:用质量分数为50%浓度的氯化锰溶液浸泡6天。(2)样品脱水脱烃:烘烤温度250℃,2.5小时,真空度<10-6Pa。(3)实验参数:CPMG序列参数:TW=4s,RG1=10,DRG1=3W,SW=666.667Khz,NECH=12000,TE=0.109ms,NS=64。实施例1:(1)制作标准样品:将适量体积待测泥页岩地区(即待测样品W127对应的待测区块)产出的页岩油充分溶解于适量体积蒸馏水中保证页岩油溶液横向弛豫时间(T2)处于10-100ms之间;取一定体积百分比间隔的页岩油溶液至标准样品瓶内,制成标准样品;(2)测量标准样品的横向弛豫谱(T2谱):将标准样品置于多组不同回波时间和等待时间下的核磁共振仪器样品槽内,测量标准样品的横向弛豫谱(T2谱),并计算横向弛豫谱(T2谱)的积分面积(核磁信号量,无量纲),结果见表1;表1序号水体积(mL)油体积(mL)体积比(%)核磁信号量(无量纲)1100.050.525292100.11.041703100.33.0141504100.66.0249655101.212.0499506102.020.083180(3)建立标线方程:分别以烃含量(v%)为横坐标,以横向弛豫时间积分面积(核磁信号量,无量纲)为纵坐标建立直角坐标系,并在该坐标系中拟合标准样品的烃含量(v%)与标准样品的横向弛豫时间T2积分面积(核磁信号量,无量纲),得到待测区块的标线方程,以及对应于该标线方程的待测区块的烃含量(v%)定标曲线,如图1所示;(4)饱和氯化锰待测样品(饱和锰待测样品)的制备:钻取设定大小的泥页岩待测样品W127,测量待测样品W127的质量;然后将其浸泡于质量分数为50%的氯化锰溶液中6天(144小时),使泥页岩待测样品W127充分饱和氯化锰溶液,制得饱和锰待测样品W127;(5)饱和锰待测样品W127进行测量:设置饱和锰待测样品W127的多组回波时间和等待时间,将饱和锰待测样品W127去除表面水分后,置于同一核磁共振测试仪器的样品槽内,对除去表面水分的饱和锰待测样品W127进行低场核磁共振测量,获得饱和锰待测样品W127的T2谱,计算T2谱的积分面积S1;(6)饱和锰待测样品W127的脱水脱烃处理:将测量后的除去表面水分的饱和锰待测样品放置带有抽真空功能的烘箱内,设置烘烤温度为250℃,同时抽真空烘烤2-3小时,直至抽真空系统的压力近似0为止,样品自然干燥冷却,制得脱水脱烃待测样品W127;(7)对脱水脱烃待测样品W127进行测量:设置脱水脱烃待测样品W127的多组回波时间和等待时间,将脱水脱烃待测样品W127置于同一核磁共振测试仪器的样品槽内,对脱水脱烃待测样品W127进行低场核磁共振测量,获得脱水脱烃待测样品W127的T2谱,计算T2谱的积分面积S2;(8)计算两次测量T2谱的积分面积差值△S;(9)泥页岩待测样品W127液态滞留烃含量计算:将待测样品W127的T2谱积分面积差△S代入上述标线方程,计算泥页岩待测样品W127中液态滞留烃含量(v%),结果见表2。实施例2:采用与实施例1类似的方法检测泥页岩待测样品BTZ6中液态滞留烃含量(v%)(烃含量定标曲线未示出),结果见表2。对比例1:采用常规氯仿沥青“A”测试上述待测样品W127的滞留烃含量(测试单位为中石化无锡实验地质研究所),结果见表2。对比例2:采用常规氯仿沥青“A”测试上述待测样品BTZ6的滞留烃含量(测试单位为中石化无锡实验地质研究所),结果见表2。表2页岩滞留烃含量测试结果从上述实施例和对比例可以看出,当待测区块井的黑色页岩中烃含量较高时,本发明方法测得的结果略大于常规氯仿沥青“A”测试法测得的结果;而当待测区块井的黑色页岩中烃含量较低时,本发明方法测得的结果明显大于常规氯仿沥青“A”测试法测得的结果;故本测定方法可行且更为可信。应当注意的是,以上所述的实施例仅用于解释本发明,并不构成对本发明的任何限制。通过参照典型实施例对本发明进行了描述,但应当理解为其中所用的词语为描述性和解释性词汇,而不是限定性词汇。可以按规定在本发明权利要求的范围内对本发明作出修改,以及在不背离本发明的范围和精神内对本发明进行修订。尽管其中描述的本发明涉及特定的方法、材料和实施例,但是并不意味着本发明限于其中公开的特定例,相反,本发明可扩展至其他所有具有相同功能的方法和应用。当前第1页1 2 3 
当前第1页1 2 3 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1