基于滑窗原理的光纤分段水听系统的制作方法

文档序号:14940320发布日期:2018-07-13 20:30阅读:320来源:国知局

本发明涉及一种用于一些重要海域、港口等水下监测水听系统,主要用到的技术和原理有:光纤振动、瑞丽散射、有序统计类滑窗原理等。属光纤传感器、光电信号的转换、滑窗算法、水域安防、水听系统等技术领域。



背景技术:

目前,较为流行的光纤类水听系统可以按原理分为:强度型光纤水听器、干涉型光纤水听器、光纤光栅水听器。

强度型光纤水听器基于微弯损耗原理,根据光纤微弯损耗导致光纤中的传输模以辐射模的形式损耗,进而导致光功率变化原理制成。虽信号处理简单但性能易受到光源强度稳定性的影响,且传感器探头设计复杂,加工难度大。

干涉型光纤水听器的原理是由激光光源发出的光经光纤定向耦合器分为2路:一路构成光纤干涉仪的传感臂,接受声波调制;另路则构成参考臂,提供参考相位,2束波经后端反射膜反射后返回光纤定向耦合器,发生干涉,其光信号经光电探测器后转换为电信号,经处理就可拾取声波信息。有对光源要求低、偏振衰落最小化等优点,但其低频不敏感,进行多路复用时困难较大的缺点会导致其检测水下入侵等的局限性。

光纤光栅型水听器基于光纤布拉格光栅反射波长随外界应力变化而移动原理,由于可在1根光纤上刻写多个光纤光栅,易构成准分布式传感。当宽带光源输出光波经光纤布拉格光栅时,波长满足该条件的光波将被反射,其余则透射。其局限性在于信噪比比较差、精度不够。

本发明介绍一种新型的基于瑞丽散射的光纤水听系统,本系统只需单根光纤,不需要光纤回路,节省成本,系统简单,便于部署;对光源亦无特殊要求;光纤中瑞丽散射在各种散射中最为明显,规律性最强,便于准确分析入侵类型,准确确定入侵位置。本发明并着重介绍本系统中基于滑窗原理的信号检测技术。此技术避免了绝大多数噪音以及杂波对系统准确性的影响。



技术实现要素:

本发明涉及到的系统主要解决的实际问题是提出一个检测重要海域、港口等地的安防系统,防止非法入侵。

为解决上述实际问题,本发明提供的是一种基于瑞丽散射的光纤水听系统。其原理图如图1。其主要结构包括:光纤、激光器、掺饵光纤放大器(edfa)、用于光电信号转换的apd、用于电信号转换为数字信号的adc、用于数字信号处理的dsp、用于进一步处理识别信号以及展示报警的上位机。结构示意图如图2。

本发明主要解决的技术问题是提高基于瑞丽散射原理的光纤水听系统中数字信号的准确性,从而提高水听系统的易部署性以及监测的精确性。

为解决上述技术问题,本发明采用的技术方案是:提供一种基于滑窗算法的cfar检测器来进行信号检测,输入信号会一次经过一个算法系统,包括:匹配滤波器、平方检波器、滑窗处理、比较器。

其中,匹配滤波器输出端的信号瞬时功率与噪声平均功率的比值最大的线性滤波器。其滤波器的传递函数形式是信号频谱的共轭。因此匹配滤波器对信号做两种处理:(1)滤波器的相频特性与信号相频特性共轭,使得输出信号所有频率分量都在输出端同相叠加而形成峰值;(2)按照信号的幅频特性对输入波形进行加权,以便最有效地接收信号能量而抑制干扰的输出功率,即当信号与噪声同时进入滤波器时,它使信号成分在某一瞬间出现尖峰值,而噪声成分受到抑制。

信号经匹配滤波器处理后的信号进入到平方律检波器,平方律检波是一种非线性过程,该检波器是由特殊器件构成,检波器输出信号与输入信号的震荡包络的瞬时值的平方近似的成正比。

经平方律检波器处理过的信号再进行滑窗处理。滑窗处理机制在位置上分为前沿滑窗、当前点、后沿滑窗。由前沿滑窗和后沿滑窗按有序样本进行处理(即有序统计量类cfar检测器),得到一个滑窗参考值。

滑窗参考值与当前点值一起进入到比较器阶段,进行两个值的差值运算,结果作为振动值传到上位机进行进一步入侵类型、时间、位置等的精确判定。

将系统部署于重要的海域,若有潜艇等未经允许的航行器非法入侵时便可快速准确地做出报警。

附图说明

图1是光纤水听系统原理图;

图2是光纤水听系统结构示意图;

图3是cfar检测器方框图。

具体实施方式

假设接受信号杂波和噪声服从高斯分布,其包络为瑞利分布,经过平方律检波器后,参考单元采样xi(i=1,2,…,r)服从指数分布,其中pdf和cdf分别为

μ代表总的杂波加噪声功率水平,λ是信号与杂噪平均功率的比值;h0是不存在目标的假设,h1是目标存在的假设。在均匀杂波背景中xi(i=1,2,…,r)是统计独立且同分布的。

有序统计量类cfar检测器的特点是对参考单元样本由小到大排序处理,在均匀背景情况下来自于r个总体样本中地k个有序样本的pdf为

他的cdf为

其中f(x)和f(x)分别代表均匀背景中参考单元样本xi(i=1,2,…,r)的pdf和cdf。

cfar检测器的结构如图3所示,其中d是检测单元样本,xi(i=1,2,…,r)是参考单元样本,r是参考单元数。

cfar检测器首先对参考单元样本按大小作排序处理,有

然后取第k个排序样本x(k)作为检测器对杂波功率水平的评估z,即

那么,由式(3)可知均匀杂波背景中z的pdf为

z的mgf为

因此由式(7)和式(8)可得cfar检测器在均匀杂波背景中的检测概率和虚警概率分别为

z的统计平均为

所以,cfar检测器的平均判别门限adt为

在多目标环境中,若仅分析强干扰目标的影响,也就是假定干扰目标信号与杂波加噪声的功率比inr是无限的,这时干扰目标回波总是占据参考滑窗中排序样本的最高位置,这在某种意义上讲是最糟的情况的分析。对于有限的inr,检测损失将变小。这样可以通过用(r-il)代替检测概率方程中的r来评估cfar在多目标环境中的性能,即

在非均匀杂波背景中,参考单元样本不在服从iid假设,在杂波边缘环境中,杂波功率水平由一种水平急剧变化到另一种水平。这里仅考虑从低杂波功率水平到高功率水平的过渡区情况,也就是假设r(r=2n,n为前沿、后沿滑窗的长度)个参考单元

中有nc个单元服从分布

而其余2n-nc个单元服从分布

其中,γ是两种杂波功率强度之比。

这样,z的cdf为

对fz(z)求导可得z的pdf,当0≤nc≤n时在杂波边缘环境中cfar检测器的虚警概率为

用一个函数q来表达上式,即设

则(17)式可表示为

其中a已知,因此cfar检测器的虚警概率在0≤nc≤n时为

在n≤nc≤2n时,cfar检测器的虚警概率为

经过滑窗检测后,会将杂波与噪音考虑在内,综合得到一个滑窗参考值,每一点在计算振动值时,都会根据此点周围的环境而产生新的滑窗参考值,这样极大的加强了系统的预警准确性,将噪声和杂波对系统检测造成的虚警概率降到最低。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1