一种基于闪烁法测量区域蒸散总水量的方法与流程

文档序号:26001320发布日期:2021-07-23 21:18阅读:135来源:国知局
一种基于闪烁法测量区域蒸散总水量的方法与流程
本发明涉及区域水资源的测量技术,尤其是涉及一种基于闪烁法测量区域蒸散总水量的方法。
背景技术
:传统的地表蒸散量观测方法多是单点观测,只能提供特定位置的观测数据。由于下垫面的不均一,观测受降水、土壤、水文以及不同植被等参数变化影响严重。传统的观测方法只能通过空间插值的方法由点尺度外推为面尺度。由于下垫表面的复杂性使得该方法在进行空间尺度扩展时会产生较大误差。需要密集布点分布观测,这种情况下,价格太高,位置不同数据处理相对困难。因此大范围的观测平均值很有必要。而且得到区域蒸散量数据之后,可以和卫星数据进行订正,得到更大尺度的整体蒸散数据。技术实现要素:为了解决现有技术中无法有效的对区域蒸散总水量整体计算评估的问题,本发明提供一种基于闪烁法测量区域蒸散总水量的方法。本发明采取的技术方案是:一种基于闪烁法测量区域蒸散总水量的方法,其特征在于,所述方法是通过大口径闪烁仪的路径积分效应测得区域大气的波文比、空气密度、空气比热容、大气折射率结构参数、平均感热通量,再通过下垫面热平衡方程计算得到整体区域的平均潜热通量,最后得出区域蒸散总水量。具体步骤如下:第一步:计算被测量区域大气的波文比、空气密度、空气比热容;①、波文比β:波文比β为相对湿度对闪烁影响因素的校正因数,根据气象观测数据推导计算得出,如下公式所示:式(1)中,γ为干湿球常数,γ=a0×p,a0为常数,通常取0.665×10-3,p为大气压力,单位:pa;δt为不同观测层间的空气温度差,单位:k;δe为不同观测层间的实际水汽压差,单位:pa;δt和δe分别有以下关系式:δt=t1-t2------------(2)δe=e1-e2------------(3)式(2)中,t1为上层空气温度,t2为下层空气温度;式(3)中,e1为上层水汽压,e2为下层水汽压;上层水汽压e1通过上层空气相对湿度rh1、上层饱和水汽压ea1和上层空气温度t1进行换算,换算公式如下:e1=ea1×rh1×0.01-----------(4)t1=t1-273.15-----------------------(6)式(4)中,e1为上层实际水汽压,单位:pa;rh1为上层空气相对湿度,单位:%;ea1为上层饱和水汽压,单位:pa;式(5)中,t1为上层空气温度,单位:℃;a1和a2为常数,a1=6.11、a2=17.27;式(6)中,t1为上层空气温度,单位:k;下层水汽压e2通过下层空气相对湿度rh2、下层饱和水汽压ea2和下层空气温度t2进行换算,换算公式如下:e2=ea2×rh2×0.01-----------(7)t2=t2-273.15-----------------------(9)式(7)中,e2为下层实际水汽压,单位:pa;rh2为下层空气相对湿度,单位:%;ea2为下层饱和水汽压,单位:pa;式(8)中,t2为下层空气温度,单位:℃;a1和a2为常数,a1=6.11、a2=17.27;式(9)中,t2为下层空气温度,单位:k。②、空气密度ρ:空气密度ρ的计算公式如下:式(10)中,ρ为空气密度,单位:kg/m3;rh1为上层空气相对湿度,单位:%;ea1为上层对应的饱和水汽压,单位:pa;t1为上层空气温度,单位:k,p为大气压力,单位:pa;a和b为常数,a=3.48、b=0.378。③、空气比热容cp:空气比热容cp,单位j/(kg·k),计算公式如下:cp=c-dt1-------------(11)式(11)中,t1为上层空气温度,单位:k;c和d为常数,c=14.439、d=0.9504×10-3。第二步:计算温度结构参数通过大口径闪烁仪测量得到的大气折射率结构参数及相关的上层空气温度t1、大气压力p以及波文比β,计算温度结构参数单位:k2m-2/3,计算公式如下:式(12)中,β为波文比;t1为上层空气温度,单位:k;p为大气压力,单位:pa;p0为常数,p0=-0.78×10-6。第三步:计算平均感热通量h平均感热通量h计算公式如下:式(13)中,h为平均感热通量,单位:w/m2;b是经验常数,b=0.48;ρ为空气密度,单位:kg/m3;cp为空气比热容,单位:j/kg/k;zlas为设备安装高度,单位:m;d为大口径闪烁仪安装位置相对地面的零值位移,单位:m;g为重力加速度,单位:m/s2;t1为上层空气温度,单位:k。第四步:计算平均潜热通量lve平均潜热通量lve计算公式如下:lve=q*-h+gs------------(14)式(14)中,lve为平均潜热通量,单位:w/m2;q*为净辐射,单位:w/m2;h为平均感热通量,单位:w/m2;gs为土壤热通量,单位:w/m2。第五步:数据质量控制对计算出的平均潜热通量进行数据剔除和平滑、去噪。第六步:计算区域蒸散总水量et区域蒸散总水量et的计算公式如下:式(15)中,et为m分钟内区域蒸散总水量,单位:kg/m2;lv为蒸散潜热,即蒸散1kg水所需的能量,单位:j/kg;至此由et得出整片区域的蒸散总水量。一个地区的水资源中,蒸散量是十分重要的指标之一,反映当地水资源的收支平衡。关系到生产、生活的方方面面。从而就要对蒸散量进行测量和计算。下垫表面是大气的底边界,研究大气层大气必须讨论不同下垫表面对大气层的影响。除去动量通量传输外,下垫表面对大气边界层的另两个强制因素是称之为感热通量和潜热通量通量。感热通量表示大气热传导的热量大小,潜热通量是指大气中水汽产生相变所需要的热量。也就是水汽蒸散所需要的热量。闪烁法测量的大气湍流是基于大气光学性质起影响作用的大气密度起伏引起的大气折射率起伏所对应的光学湍流。由于大气密度起伏主要由温度起伏决定,一般大气光学湍流由大气温度场的起伏特性决定。通过大气结构参数可以反演得到区域平均感热通量。本发明所产生的有益效果是:本方法可用于对观测区域蒸散总水量值的计算。这种通过大口径闪烁仪的路径积分效应测量地表热通量,很好地解决了通量观测中单点观测设备由于下垫面不均一带来的区域总水量不能正确统计问题,可以和卫星数据进行订正,得到更大尺度的整体蒸散数据。附图说明图1为本发明实施过程的流程图;图2为本发明根据自动气象站的观测数据和大口径闪烁仪的观测数据计算得到温度结构参数的数值曲线图;图3为本发明实测一天的净辐射、土壤热通量、平均感热通量和平均潜热通量的测量时间序列及实测计算数据图;图4是本发明实施例计算出一天时间的蒸散总水量趋势图。具体实施方式以下结合附图和实施例对本发明作进一步说明。实施例-如图1所示:实测值:t1为上层空气温度22.4℃,t2为下层空气温度22℃;t1为上层空气温度295.55k,t2为下层空气温度295.15k;rh1为上层空气相对湿度62%,rh2为上层空气相对湿度65%;p为大气压力101200pa;为大气折射率结构参数1.34×10-1;zlas为设备安装高度(20m);d为零值位移(2m);g为重力加速度(9.8m/s2);q*为净辐射(318w/m2);gs为土壤热通量(0w/m2)。第一步,使用自动气象站的数据计算波文比,空气密度、空气比热容。①波文比:δt为不同观测层间的空气温度差(k),由公式(2)可得:δt=t1-t2=295.55-295.15=0.4k;ea1为上层饱和水汽压(pa),由公式(5)可得:式中,a1和a2为常数,a1=6.11、a2=17.27;e1为上层水汽压(pa),由公式(4)可得:e1=ea1×rh1×0.01=2262.001×62×0.01=1402.44pa;ea2为下层饱和水汽压(pa),由公式(8)可得:e2为下层水汽压(pa),由公式(7)可得:e2=ea2×rh2×0.011=2213.596×65×0.01=1438.838pa;δe为不同观测层间的实际水汽压差(pa),由公式(3)可得:δe=e1-e2=1402.44-1438.838=-36.3973pa;β为波文比,由公式(1)可得:式中,γ为干湿球常数。γ=a0×p,a0为常数,通常取0.665×10-3;p为大气压力(pa)。②空气密度ρ:由公式(10)可得:式中ρ为空气密度(kg/m3),rh1为上层空气相对湿度(%),ea1为上层对应的饱和水汽压(pa),t1为上层空气温度(k),p为大气压力(pa),a和b为常数,a=3.48、b=0.378。③空气比热容cp:由公式(11)可得:cp=c-dt1=14.439-0.9504×10-3×295.55=14.158j/(kg·k)式中t1为上层空气温度(k),c和d为常数,c=14.439、d=0.9504×10-3。第二步,根据设备测量数据计算温度结构参数通过大口径闪烁仪测量得到的大气折射率结构参数及相关的上层空气温度(t1)、大气压力(p)以及第一步计算的波文比β,可以计算测量区域温度结构参数由公式(12)可得:上式中:β为波文比,t1为上层空气温度(k),p为气压(pa),p0为常数,p0=-0.78×10-6。第三步,计算平均感热通量h由公式(13)可得:式中b是经验常数:b=0.48,ρ为空气密度(kg/m3),cp为空气比热容(j/kg/k),zlas为设备安装高度(20m),d为零值位移(2m),g为重力加速度(9.8m/s2),t1为上层空气温度(k)。第四步,计算平均潜热通量lve由公式(14)可得:lve=q*-h+gs=318-1.288+0=316.7w/m2式中q*为净辐射(318w/m2),h为平均感热通量(1.288w/m2),lve为平均潜热通量(w/m2),gs为土壤热通量(w/m2)。第五步,数据质量控制主要工作是对计算出的平均潜热通量进行数据剔除和平滑、去噪。第六步,计算区域蒸散总水量et由公式(15)可得:此处m取值为60,也就是计算小时内的蒸散量。其中lv≈2.45×106j/kg,得到et区域蒸散总水量,数据见表1。表1列举出使用本方法计算得到的2020年9月11日6:00—17:00的平均潜热通量和蒸散总水量的数据。表1数据时间lve(w/m2)et(kg/m2)2020-9-11_6:0013.106180.0053492020-9-11_7:005148.9772.1016232020-9-11_8:0011993.194.895182020-9-11_9:0012825.865.2350442020-9-11_10:0014553.945.9403832020-9-11_11:0013244.275.4058232020-9-11_12:0012964.515.2916372020-9-11_13:0011489.84.6897162020-9-11_14:009508.1843.8808912020-9-11_15:008318.0613.3951272020-9-11_16:006680.7632.7268422020-9-11_17:00967.9410.395078从图2可以看出:2020年9月11日6:00—18:00温度结构参数(单位:k2m-2/3)变化曲线,其分别在6:00和18:00,即日出和日落时出现明显的下降。主要原因在于在日出时分附近,大气从稳定状态转变为不稳定状态;日落时分附近,大气从不稳定状态转变为稳定状态。图3是一天的净辐射(rn)(单位:w/m2)、土壤热通量(hfp)(单位:w/m2)、平均感热通量(h)(单位:w/m2)和平均潜热通量(lve)(单位:w/m2)测量时间序列实测计算数据。图4表示2020年9月11日6:00—17:00的蒸散总水量(单位:kg/m2)的趋势图可以看出,在本实施例中一天的中午时间蒸散水量是最大的。当前第1页12
当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1