用于操作工地上地形变更机械的方法和装置的制作方法

文档序号:6093543阅读:261来源:国知局
专利名称:用于操作工地上地形变更机械的方法和装置的制作方法
技术领域
本发明涉及用于改变工地地形的机械的操作,更确切地说,涉及数字数据的实时产生和使用,这些数字数据的集合代表由机械使工地地形朝着所要求的状态改变。
本发明说明书中所使用的术语“地形变更机械”及其各种近似的术语指的是自我推进的移动机械,如履带式拖拉机、堆土筑路机、铺路机以及沥青敷设机,这些机械具有下述两个特点(1)由于在一底产上配备了一个原动机(例如一发动机),该原动机用来驱动车轮或支承底座的导轨所以可以在工地上移动或通过工地,(2)因底座上配备有设备(如刀、铲、斗、锯等)而能够改变工地地形。履带式拖拉机、堆土筑路机、铺路机和沥青敷设机之类的机械通常称为“推土机械或推土设备”,应该理解的是,这些机械是本发明涉及的地形变更机械的一个子范畴。
背景技术
尽管推土机械的发展已经相当成熟完善,但仍需花费相当多的时间及做仍然很琐碎的零碎工作,来大面积改变地形,或者改变工地的地形,如建筑工地、矿山、道路等。这种工作有时还包括必要的勘测,这项工作目前是采用视力光学仪器或其他静态点对点测量技术来获取工地上大量点坐标,随后构造三维工地模型而完成。根据勘测结果制定建筑计划或目标地形。随后,用具有不同颜色的标桩仔细地在工地上打上标记,从而给出有形的记号,使履带式拖拉机之类的地形变更机械的操作人员可以知道该如何操作机械,将工地从原来的状态改变成所要求的状态。只有最熟练和最有经验的操作人员能够在改变大面积地形中获得较高的效率,其困难的原因部分在于没有大标尺,以及工地施工进行过程中的详细资料。
因此,包含改变大面积工地地形的大多数工程项目是既费时又费力的,需要技术熟练人员以及众多职员来指挥推土机械等机械的操作。
另外,为了知道原始地形已被改变成所要求的地形到了何种程度,当勘测人员检验当天的工程进度并手工更新工地标桩和标记以及工地模型时,经常要中断操作。在这些间断的检验工作之间,机械操作人员和工地主任没有一种真正精确的方法来测量其实时进度。发明内容本发明提供了对一种长期未解决的问题,即精确有效地操作使工地地形改变成所要求状态的机械的解决方法。本专题发明实现的地形变更无需在工地上打上提醒操作人员的有形标记,只有在诸如给机械加油之类的情况下才需要中断操作,并且可使员工人数减小到最少。
一般说来,这是通过提供数字数据存储、取出及处理设备来完成的,该设备自身承载在移动机械上,或远离该机械但通过(例如)一无线电连接的方式与该机械相连接,用来在任意给定的时刻,存储、实际产生并修改一个存在的工地的数字三维模型,以及建筑师所希望的工地数字模型。
本专题发明还包含一种机械,通过该机械,移动机械的或者在某种情况下该机器装载的触土工具的三维空间的精确位置可以实时精确确定;即,它改变了工地的地形,从而当机械在工地上行驶或通过时,能够一点一点地实时改变数字三维模型。正如后文中所描述的那样,本发明的较佳实施例包含相差GPS(全局定位系统)接收机系统(phase differential global positioning system receiver system),该系统能够精确地在三维空间内将一物体定位至厘米数量级的精度。
本专题发明还包含这样一种装置,该装置用来将所要求的数字三维工地模型与连续变更的实际数字三维工地模型相比较,以及用来产生代表使实际模型符合所要求的模型而使工地上或者通过该工地的大量坐标中每一坐标所需变化程度的信号。这些信号在一种情况下,可以提供接通或关断机械的实时显示,实时提醒操作人员注意该机器的实际进度,以及在传递信息的参考系(frame of reference)内至少是整个工地的相当一部分。在后文描述的另一种实施例中,描述了代表所要求的三维模型和实际三维模型之间差异的信号,它们并被应用于机器自身或其一部分或二者的实时自动控制之中。
在一种较佳形式中,当机械通过工地时,至少一部分定位机构或系统是装在机器自身上的。如果该机器包含一单独的触土器械,则该定位系统可以安装在该器械上。如果该器械自身可以相对于机器底座或载体移动,例如液压式推土铲、斗或刮土机,则该器械可以配备确定相对于工地地面上升高度的装置。
本发明的另一发明点在于提供了一种指挥移动式地形变更机械操作的方法,该方法包含下述步骤在数字数据存储及检索装置中产生并存储代表所要求的工地地形的第一三维工地地形模型以及代表工地实际工地地形的第二三维工地地形模型;随后,产生实时代表移动式地形变更机械或其承载的器械通过并改变工地时在三维空间中的瞬时位置的数字信号;用这些数字信号更新第二模型;确定第一模型与已更新的第二模型之间的差异,并按照该差异指挥机械的运行,使已更新的第二模型与第一模型一致。
在一种实施例中,指挥机械运行的步骤是通过向机械操作者提供实时告知移动式机械相对于工地的瞬时位置、使工地与第一三维模型一致所需的变更以及实现第一模型的实际进度的显示来实施的。
在另一种实施例中,指挥机械运行的步骤是以一种自动或半自动方式,通过实际操作电动液压式传动机构来控制机械和/或其装载的地形变更器械的位置、高度以及运动方向来实施的。
在一种较佳形式中,当机械通过工地时,至少一部分定位装置是装载在该机械上。如果该机械包括一单独触土器械,则定位系统可以安装在该器械上。如果该器械可以相对于机械底座或载体移动,该器械可以配备确定该器械相对于工地表面上升高度的装置。
如后文较清楚地说明的那样,可以以各种不同的方式来实现本发明的装置和方法,例如,数字数据存储及检索装置以及更新和区分装置可以由机械承载或装载在机械上,作为整体机械系统的一部分。这些装置还可以位于远离工地的地方,或者靠近以便于将可视显示信号或自动控制信号传送到该机械,并在机械运行期间从该机械接收更新位置和工地信息。
正如后文中详细描述的那样,地形变更机械可以是诸如履带式拖拉机、推土机、铺路机或沥青敷设机这些地面移动设备。视所使用的定位系统之性能而定,该机械还可以能够进行地下或地面操作,如露天矿内的移动式机械或地面之下的采矿操作。
在该较佳形式中,本发明方法和装置是通过应用三维位置信息来实现的,此三维位置信息是从采用相差GBS接收机系统的全球定位卫星得到的。这种GPS接收机采用来自全球定位卫星的信号以及来自已知位置坐标的本地参考接收机的差分信号,产生厘米精度的位置坐标。因此,实施本发明装置的较佳形式包含一GPS接收机,该GPS接收机具有GPS接收能力和本地信号接收能力,并且,如果测地勘测处没有本地参考信号,则一临时勘测差分接收机/发射机提供具有校正信号的本地数据处理装置。也可以是,原位置数据可以从参考接收机传送到本地数据处理机,供比较,以及用来与安装在机械上的接收机的信息进行校正。
按照本发明的另一发明特征,本发明的装置用来精确产生和控制显示,这种显示可以用作改变工地(如建筑工地、矿山和道路)地形的操作,从而对采用移动式机械进行的工作进程在逐步增长的基础上作出准确显示,其中的显示单位区域可以或可以不与GPS接收机和数字接收机系统的抽样速率对应。正如后文中所描述的那样,工地或其实际可显示的部分可以再分成这样大小的单位区域的连续矩阵,在这样大小的单位区域内,移动式机械可以以大于GPS接收机和数据处理设备的抽样速率的速率通过这些单位区域。提供了一些算法,它们考虑到土地变更工具或器械的物理参考和尺寸以及对实际机械和它的通过路径的关系。按照以后叙述的数字处理设备中具备的算法规则,显示的单位区域被填上、着色、按照从GPS接收机或其他定位系统和数字处理设备得到的进度信息进行修改或变更。
在本发明的一种实施例中,相对于位置读数之间工地的机械实时路径是由差分算法确定的,该算法规则确定了机械地形变更部分的有效宽度(该有效宽度小于或等于其实际宽度),并更新该有效宽度所通过的工地模型的每一部分。在一种较佳形式中,机械通过工地的瞬时位置被跟踪作为工地模型上的一系列坐标点。如果跟踪坐标点的速率与机械通过工地单位区域和网格单元的速率不同步,那么差分运算规则就通过坐标点之间机械的地形变更部分确定通过的单位区域。如果地形变更部分是一个连续宽度,例如是一个推土铲或刮土机单元,那么该推土铲的有效参数最好被设置成小于其实际参数,从而确保只有由推土铲实际工作的那些工地部分被填满、着色、修改或变更,或标记成反应工地的变更以及实际工地模型和所要求的工地模型之间的目前差异。
正如后文中叙述得更加清楚的那样,可以以各种方式来进行初始工地勘测,从而构成第一个三维地形工地模型。在一种实施例中或本发明的应用中,第一模型可以用标准现代工地勘测方法来产生,随后,按照所使用的特定数字化和数据处理系统的实际和数据处理要求,将上述现代勘测得到的数据数据化。另外,实际工地地形模型可以通过使地形变更机械通过工地或者使用适合这些条件的特别机械和/或车辆来产生。例如,一平整、相当精细的地形工地可以由一轻型卡车通过,而一不太精细或较粗糙的工地会需要一特殊车辆,或者甚至是一台接收机、步行通过该工地的某一人所携带的数字化和/或存储设备。另一种方法中,一特别困难的工地可以通过航空、采用立体摄影或全息摄影设备来勘测。在又一种方法中,地下的地质勘测可以通过制作构筑地下工地模型中不同位置和不同深度处大量的岩芯样品来进行。附图概述

图1示意描述的是本发明的机械位置和控制方法的简图;图2示意描述的是可以用来接收并处理GPS信号,实施本发明的装置简图;图3是采用GPS定位的图2所示系统实施例的详细示意图;图4是按照本发明描述的大地轮廓实施例的工地、地形变更机械以及位置及控制系统的示意图;图4A描述的是图4所示安装了定位系统的机械的另一种结构;图5A—5B是用于本发明的典型数字化工地模型的图形;图6A—6D是表示用于如图4所示大地轮廓操作(earth con-touring operation)的、按照本发明产生的实时操作员显示;图7A—7D是按照本发明的动态工地数据库的流程图;以及图8是包含一闭环自动机械控制系统的本发明系统的示意图。本发明的最佳实施方式图1示意描述了本发明的方法。采用一种带有一外标号的已知三维定位系统,例如3—D激光器、GPS、GPS/激光器组合或雷达,当机械在工地上移动时,在方框100中确定机械或器械的位置坐标。这些坐标以一系列不连续点的形式瞬时提供给102处的差分算法规则。该差分算法规则实时计算机械位置和路径。在方框104处,实际以及所要求的工地地形的数字化模型被装载或存储到一可进入的数字存储及检索设备,如一本地数字计算机。差分算法规则102检索、计算和更新来自104的工地模型,并在106处产生实际工地模型和所要求的工地模型之间差异的动态工地数据库,当从方框100处接收新的位置信息时,实时更新实际工地模型。随后,在显示步骤108,将该动态更新的工地模型提供给操作员,以一种人们可以阅读的形式,给出实时位置、方向和工地地形/地势更新值。采用从该显示得到的信息,操作员可以在109处有效地监测以及实施对机械的人工控制。
另外或者另一方面,动态更新信息可以在110处提供给自动机械控制系统,例如由履带拖拉机股份有限公司(Caterpillar Inc.)开发的电气液压控制系统,也可以用来操作各种泵、阀、液压缸、电机/控制机构以及其他地形变更机械中使用的控制。电气液压控制可以有助于操作人员的工作,例如在操作人员进行的操作超过了机械负载的情况下,使机器功减小到最小,并限制手工控制。另外,从动态数据库得到的工地更新数据可被用来完整地提供给自动机械/器械控制。
从前文的描述中可以清楚的知道,采用本发明方法,可以通过以前未勘测地带上的机械来产生实际工地地形/地势。简单地使机械以一种规定的方式通过某一工地,可以确定在104处装载的相对于所要求的建筑师的工地模型的工地地形。在机械已经通过整个工地,从而精确确定了其实际地形以后,可以随后在机械使实际地形与所要求的工地模型一致时,在106处实时监测并更新实际工地模型。
参见图2,图中以方框图的形式示出了实施本发明的接收并处理GPS信号所使用的装置,该装置包含带有一本地参考天线和一卫星天线的一GPS接收机装置;一采用一种差分算法规则并用来接收来自120的位置信号的数字处理机124;一由处理器124存取并更新的数字存储及检索设备126,以及在128处,接收来自处理机124的信号的操作员显示和/或自动机械控制器。
GPS接收机系统120包括一从全球定位卫星接收信号的卫星天线以及一本地参考天线。该GPS接收系统120采用来自卫星天线的位置信号和来自本地参考天线的差分校正信号,产生运动物体厘米精度的三维位置坐标。另外,从该参考天线得到的原数据可以由该系统处理,以确定差分校正。
如果GPS接收机120的坐标取样速率允许,该位置信息在实时的基础上,被提供至数字处理器124。数字存储设备126存储所要求的工地地形的第一工地模型(例如按照建筑师的计划),以及实际工地地形的第二数字化工地模型(例如一开始勘测的那样)。当数字处理机124从GPS接收机120处接收新的位置信息时,可以由该数字处理机实时地存取并更新与实际工地地形对应的工地模型。
数字处理机124还产生代表连续更新的实际工地模型与建筑师的计划之间差异的信号。这些信号在128处被提供给操作员显示器和/或自动机械控制器,在工地上指挥该机械的操作,使更新的实际工地模型与建筑师计划一致。例如,操作员显示器128提供了一个或多个表示实际连续更新的工地模型和所要求的工地模型之间差异的可视显示,从而指导操作员在进行必要的地形变更操作时,操纵机器。
图3中,采用用于位置参考信号的运动GPS(kinematic GPS),更详细地描述了图2所示的系统。一基地参考模块40和一位置模块50一起确定相对于工地的地形变更机械的三维坐标,而一更新/控制模块60将该位置信息转换成可被用作精确监测并控制该机械的工地实时显示。
基地参考模块40包括一固定GPS接收机16;一接收来自接收机16的输入的计算机42;暂时或永久存储在计算机42内的参考接收机GPS软件44;一标准计算机监测屏46;以及一与计算机相连,并能传送数字数据流的数字收发型无线电装置48。在描述的实施例中,基地参考接收机16是一种高精度的运动GPS接收机;计算机42例如是一种具有一硬盘、8兆字节RAM、二串行通信端、一打印机端、一外部监测器端以及一外部键盘端的486DX计算机;监测屏46是一种无源矩阵彩色LCD;无线电装置48是一种市售数字数据收发机。
位置模块50包含一匹配运动GPS接收机18、一接收来自接收机18的输入的匹配计算机52、永久或暂时存储在计算机52内的运动GPS软件54,一标准计算机监测屏56,以及一接收位于基地参考模块40内的无线电装置48的信号的匹配收发型数字无线电装置58。在描述的实施例中,位置模块50位于地形变更机械上,从而随之在工地上移动。
在描述的实施例中同样装载在机械上的更新/控制模块60包括接收来自位置模块50的输入的另一计算机62;数字式存储或装载在计算机存储器内的一个或多个数字化工地模型64;一同样存储或装载在计算机62存储器内的动态数据库更新模块66;以及一与计算机相连的彩色操作员显示屏22。取代或者除了操作员显示器22以外,自动机械控制器70可以与计算机相连,接收以熟知形式自激或半自激方式操作机械的信号。
尽管这里更新/控制模块60是安装在移动式机械上,但是其中的某一些部分或全部可以位于远处。例如,计算机62、工地模型64以及动态数据库66可以通过无线电数据链路连接到位置模块50以及操作员显示器22或机械控制接口70上。位置及工地关断信息随后可自该机械传送出来或被传送至该机械,用作显示,或由操作员或管理人员接通或关断机械时使用。
基地参考站40固定在相对于工地的某一已知三维坐标的点处。基地参考站40通过接收机16接收来自某一GPS卫星星座的位置信息,采用参考GPS软件44以一种熟悉的方式产生一瞬时差错量或校正因子。该校正因子在移动式机械上通过无线电链路48,58从基地站40传送到位置站50。另外,原位置数据可以通过无线电链路48,58从基站40传送到位置站50,并由计算机52处理。
安装在机械上的接收机18接收来自卫星星座的位置信息,而运动GPS软件54将来自接收机18的信号以及从基地参考40的校正因子合并在一起,在几厘米范围之内精确地确定接收机18以及相对于基地参考40和工地的机械的位置。该位置信息呈三维形式,按照GPS系统的抽样速率可以在逐点的基础上得到。
至于更新/控制模块60,一旦工地的数字化计划或模型已被装入了计算机62内,动态数据库66产生代表实际工地地形和所要求的工地地形之间差异的信号,并将该差异以图形方式显示在操作员显示屏22上。例如,在屏幕22上,实际工地模型和所要求的工地模型的轮廓和/或平面图形被合在一起,并标出其表面升高的差异。采用从位置模块50接收到的位置信息,该数据库66相应于工地上机械的实际位置和方向,还在显示器22上产生叠加在实际工地模型上的机械图像。
因为机械在工地上移动时,位置模块50的抽样速率产生位置坐标点之间的时间/距离延迟,本发明的动态数据库66使用一种差分算法规则实时地确定并更新机械的路径。
用机械相对于工地的准确位置,工地的数字化显示以及机械的工程进度,使操作员可以在工地上操纵机械,进行各种地形变更操作,而无需依赖于工地表面放置的有形标记。并且,当操作员使机械在工地上移动时,动态数据库66继续读取并计算从模块50输入的位置信息,动态地更新机械相对于工地的位置、机械在工地上的路径以及由机械的路径所形成的实际工地地形中的任何变化。这一更新的信息被用来产生工地的图像显示,并可以用来实时描绘机械的操作,使实际更新的工地地形与所要求的工地模型一致。工业实用性图4中示出了一个位于建筑工地12上的图形变更机械10。在图4所描述的实施例中,机械10是一个在工地上进行推土操作和仿形操作的履带式拖拉机。但是,随着后文中将变得清楚起来的是,本发明的原理和应用实际上可用于任何能够在工地上移动或通过某一工地并以某种方式改变工地地形的移动式器械或机械。
机械10以一种熟知的方法配备了如图中标号24所示的液压式或电气液压地器械控制器。在图4所示的拖拉机仿形实施例中,这些控制器除了其它许多事情以外,还使推进杆26、倾斜汽缸28、以及升降起重汽缸30工作,从而使推土铲以三维方向进行所需要的挖、装及运送操作。
机械10配备的定位系统能够以一较高的精确度确定机械和/或其工地改变器械32的位置,在图4所示的实施例中,相差GPS接收机18位于机械上相对于履带触土部分的固定的且为已知的坐标处。安装在机械上的接收机18如图3所示,通过无线电链路48、58,接收来自某一GPS星座14的位置信号以及来自基地参考16的差错/校正信号。安装在机械上的接收机18采用卫星信号和从基地参考16得到的差错/校正信号,来精确确定其在三维空间中的位置。另外,原位置数据可以从基地参考16中传送出来,并以熟知的方式由安装在机械上的接收机系统进行处理,从而获得同样的结果。有关运动GPS以及适合用于本发明的系统方面的信息可参见美国专利4,812,991(1989年3月14日)以及美国专利4,963,889(1990年10月16日),这两个专利的专利权人均为Hatch。采用运动GPS或其他来自某一外部参考的合适三维位置信号,可以使得当机械10在工地12上运动时,可以在几厘米的范围内在逐点的基础上精确确定接受器18和机器10的位置。采用所描述的本定位系统,目前坐标点的抽样速率近似为每秒一点。
基准接收机16的坐标可以以任何一种熟知的方式加以确定,如GPS定位或传统的勘测方法。本国和其他国家采取的做法是将GPS参照点置于如机场之类的固定的国家的勘测点处。如果工地12是位于国家勘测点和本地GPS接收机的范围内(当前近似为20英里),那么本地接收机可被用作一基准参照点。也可以使用一种安装有三角架的GPS的便携式接收机(如16),以及一再发射传输机。便携式接收机16在勘测时置于或靠近前面讨论的工地12附近。
图4中还示意描述了在拖拉机上有一台机载式数字计算机20,该计算机20包括一动态数据库以及一彩色图形操作员显示器22。计算机20与接收机18相连,以连续接收机械位置信息。尽管不必将计算机20、动态数据库以及操作员显示器放置于拖拉机10上,这在目前是一种较佳实施例并使描述简化。
参见图5A一5B,工地12以前已被勘测过,用以提供一详细地形蓝图(未图示),这蓝图在原始工地地形平面图上叠加了建筑师的最终工地图形。工地地形地貌蓝图的产生(如用光学勘测和其他技术进行的填土、矿山和建筑工地)是一种人们所熟知的技术;在一工地网格上绘出参照点,随后连起来或填满,在一蓝图上产生工地轮廓。参照点的数目越多,地图的详细程度越高。
现有的系统和软件可以用来产生数字化的二维或三维工地地形图。例如,建筑师的蓝图可被转换成图5A中36处所示原始工地地形或地貌的三维数字化模型,以及图5B中38处所示的要求工地模型的三维数字化模型。工地轮廓可以以熟知的方式用具有均匀网格单元37的一参考网格叠加。一些该数字化工地平面图可以被叠加在一起,从各种角度以二维或三维方式观看(如轮廓或平面),并用颜色标出需要进行加工(例如通过推土、加土或简单地保留原样)的区域。现有的软件还可以估计需要进行机械处理或移走的土量,进行成本估算以及识别地上或地下的各种工地的特征和障碍物。
但是在勘测工地12时,无论机械操作员和其管理员是用蓝图或数字化工地图进行工作,以前的做法是用给机械操作员的标记指令来实际标出各种工地轮廓或参照点,采用用作参照点的标记桩和标记,操作员必须通过肉眼和感觉估计那里需要挖去多少、填进多少、运载多少,来改变原始地形或地貌,完成最终工地地形。这一过程中,每隔一段固定时间手工检查操作员的进度,以静态的步进方式协调仿形操作,直至完成最终轮廓。这种人工周期性的更新和检验即费力又费时,其结果还不理想。
另外,当需要修改蓝图或数字化工地模型而标出工程日期及进度时,必须再次进行工地的静态勘测,以一种非实时方式,手工作出蓝图或数字化工地模型的非现场修正。
为了消除现有技术静态勘测及更新方法的缺陷,本发明将精确三维定位以及数字化工地测绘与动态更新的数据库以及操作员显示结合在一起,从而实时地对工地12和机械10进行监测和控制。动态工地数据库判定实际工地模型地形和所要求的工地模型地形之间的差异,从位置接收机18接收机械10相对于工地12的运动GPS位置信息,在显示屏22上向操作员显示工地模型和当前机械位置,并以精确到厘米的精度实时地更新实际工地模型地形、机械位置和显示。因而操作员可以在工地上实时地获取前所未有的移土操作的情况,并且因此可以实际上不中断地完成工作,无需检验或再勘测工地。
图6A—6D示出了供图4所示地形仿形应用的、在屏幕22上向机械操作员作出的几个显示。图6A—6D所示的实施例给出了用安装在拖拉机上的推土铲进行地形仿形操作的操作员显示,对于本领域技术人员是十分明显的是,本发明可以用于任何类型的推土或地形变更操作和机械的相应显示。
图6A和6B所示的第一种实施例中,显示屏22上的操作员显示在平面窗70中有一个作为主要部分的三维数字化工地模型,显示出相对于实际地形的所要求的最终工地12的轮廓或平面(或其一部分)。在实际的显示屏70上,实际工地地形与要求的工地模型之间的差异已更加清楚,因为图中用颜色或类似的可视标记显示了哪些区域的土必须移走,哪些区域中必须加进土,哪些区域已经与最终工地模型一致。
图6B中,除了工地平面窗70显示的是一个二维平面图,以及机械相对于工地来说处于另一不同的位置以外,操作员显示屏22与图6A中的情况相同。窗70中显示的工地上不同的阴影或划有斜线的区域代表实际工地图形和要求工地地形之间不同的差异。
操作员显示屏22在其顶部包含一水平坐标窗或显示72,绘出操作员相对于基准参照点16的三维位置。粗细分辨率的边侧标度74、75表示从目标轮廓上升的升高或Z-轴偏差,给出拖拉机推土铲32在该地点应该铲进或填入多少的指示。右侧的粗指示74给出目标高度之上和之下以1.0英尺递增的标度升高;显示左侧的细分辨率边侧75给出0.1英尺的增量,当操作员处于目标轮廓一英尺之内或低于此值时,给出一种方便的参照点。采用显示软件中的“Zoom”或“autoscaling”性能,当操作员接近目标地形时,标度74、75的增量可以变到更小。
本发明的系统和方法中所使用的显示增量和测量单位可以由使用者选择而取公制(米、厘米等)或非公制。
在显示屏22的底部的外观窗76中,向机械操作员给出了另一种参考值。外观窗76给出了机械走过的路径中以及机械直接的后面实际工地地形76a和要求的地形76b之间的高度差。外观显示76左侧上的高度标尺78可以给出另一显示,给出某一给定点处应铲入多深或者应加进多少土,而外观显示76底部处的水平标尺79指示拖拉机/推土铲前方的距离,在该处,操作员将遇到某个实际和所需地形之间的差异。采用这种方式,操作员可以同时监测前面的地形以及在完成目标地形的过程中最当前路径的精度,并相应调整其操作。
工地12上拖拉机的位置在屏幕22上显示为叠加在平面窗70、外观窗76以及恰当边侧标尺74、75上的拖拉机推土铲图像82。在工地平面窗70中,图像82处给出一方向向前伸出的指示符84,用来标出拖拉机通过的方向上某一固定距离上的地形。在外观窗76中,拖拉机图像82前示出的地形与方向指示符84所覆盖的那部分工地12对应。图6A和6B中,当窗70、74、75中的图像82响应于相对于工地的机械当前位置移动时,外观窗76中图像82在工地地形轮廓76a、76b相应于机械运动而通过它时,保持位于中央位置。
采用通过显示屏22而提供给操作员的详细位置、方向和目标轮廓信息,可以在移土操作中维持厘米精度的控制。同时,操作员在实现所要求的地形过程中,可以获得整个工地的完全、最新、实时显示、工程进度和成功。一天结束时,数据库中的数字化工地模型已完全更新,并可以简单地存储起来,供操作员第二天从停止的地方开始检索或取下作进一步分析。
图6C和6D给出了一种略有不同的操作员显示,该显示中给出工地轮廓的示意平面窗88,具有左右铲边高度标度89a、89b的推土铲前端外形窗89,有助于沿推土铲旋转,进行某一角度的挖土或在一有一定角度的地形上挖土,该显示中还有带大标尺的外观窗76,并采用了一种不同的拖拉机/推土铲图像82。除了为取得拖拉机操作的不同透视角度而使侧边外观显示76旋转了90°角以外,图6D的显示与图6C中的情况相同。图6C和6D主要用来描述本发明原理对于不同地形变更应用场合下的灵活性和实用性。
在描述的拖拉机仿形应用实施例中,安装在机械上的位置接收机18被固定在拖拉机10的驾驶室上,与拖拉机履带的触地部分底部有一固定的已知距离。因为履带实际上与工地地形保持接触,所以接收机18的标定考虑到了这一高度差;实际上,当安装在驾驶室上的接收机18与该机器工作的工地地形一样高时,可以由该系统观察到。
因为距离机械触土机架或踏板一固定距离的单个位置接收机18是一种有效且坚固的安装机构,所以在某些应用场合下,最好采用定位接收机的不同安装机构。例如,视接收机18的抽样速率和机器方向变化的速率而定,相应于工地平面的拖拉机当前方向在显示屏22上如图6A中由图像82以及方向指示符84所示的那样,可以偏离一个很小的时间滞后向量。因为只有一个安装在拖拉机10上的位置接收机18,而该机械围绕这单一的接收机旋转,所以无法确定单一点的机械方向。这一问题可以通过在该机械上距第一位置接收机放置一个第二位置接收机作为方向参照点来解决。
另外,当推土铲进行推土运作时,图4中的推土铲32和向后安装的GPS接收机18之间的距离在分辨铲的位置时产生了一个很小的实时延迟。在大多数情况下,这一延迟是可以忽略不计的,这是因为这一GPS位置紧靠在推土铲32之后,且与刚刚进行的工地地形变更适配。但是,在更大的机械上,最好如图4假想线所示的推土铲上直接安装一个或多个位置接收机18a。在这种结构中,因为推土铲相对于机械和工地表面上下运动,这也就要求提供一种测量推土铲底和工地表面之间距离的装置。
例如,一种合适的装置是一种如图4的19处示意所示安装在推土铲上的声学接近检测器(a sonic proximity detector),该检测器的连接用来将代表地表面上推土铲32的高度的信号提供给计算机20和动态数据库。这些和其他的声学接近检测器可在市场上买到。该动态数据库用来自声学接近检测器19的信号来补偿安装在推土铲上的GPS接收机至地面相对位置的偏差,并可以校正推土铲磨损,以及由于拖拉机倒挡时引起的推土铲上举。
在机械10上安装位置接收机设备的另一个考虑是该机械是否还带有一个进行地形变更操作而独立运动的工具;一个较好的例子是一个带有可控移动式推土铲32的拖拉机10。为了提高监测精度并控制工具32的地形变更操作,位置接收机18的较佳安装结构在许多情况下可以直接安装在工具32上。在一种机械仿形应用中,图4A所示的安装在推土铲上的双接收机结构不仅将接收机18直接置于进行工地变更的点上,而且当机械改变方向时,二接收机18还提供机械的方向参照点以及如图6C和6D中89处所示用于左/右推土铲角度测量的位置信息。
图7A示意描述了机械作仿形运作时,动态数据库66的运算步骤。该系统从计算机的操作系统开始,在300处启劝。显示屏的图形在302处开始。初始工地数据库(一种数字化的工地图)是从程序目录中的某一文件中读取的,并且工地图、实际及目标地形是在步骤304处画到显示屏上的。来自显示屏22的边侧等级指示符(side bargrade indicator)是在步骤306处建立起来的,模块40、50、60中的各种顺序的通信程序(图3)是在步骤308处建立起来的。在步骤310处,系统检查用户暂停该系统的请求,例如一天结束时,或就餐时间时或换班时间时。可以用任何已知的用户接口装置在步骤310处进入用户要求中止的请求,例如,与计算机62相通的计算机键盘或类似的计算机输入装置。
随后,在步骤312,从图3中的位置模块50和控制/更新模块之间的串联端连接读取机械的三维位置。在步骤314处,机械的GPS位置被转换成数字化工地图的坐标系统,这些坐标在步骤316处被显示在显示屏22上的窗口72中。
在步骤318处,以图示和轮廓显示的方式确定机械路径,并且该路径被实时更新,指示机械进行操作的工地图网格部分。在机械仿形实施施中,使机械路径的宽度与机械通过工地时的地形变更工具(拖拉机推土铲32)相等。必须精确判定推土铲32通过的网格方格,从而提供实时更新的操作员位置,并在动态工地图上工作。数字化工地图上网格单元的大小是固定的,并且尽管数个网格单元的宽度可以均匀地与机械(即拖拉机推土铲)的宽度匹配,但是当机械通过时,推土铲不会总是覆盖某一特定的网格单元。既使如果机械/工具宽度正好是网格单元宽度的倍数,但是机械沿网格单元排列方向移动从而在其路径完全覆盖每一网格单元的机会也是较少的。
为了克服这一问题,图7B—7C中步骤318的子程序对相对于工地图网格的机械(这里为一拖拉机推土铲32)操作部分的路径作出判定。在图7B的步骤319处,模块判定安装在机械上的接收机位置相对于工地是否沿横向或纵向(即在(X,Y,Z)坐标系中沿X方向或Y方向)发生了改变。如果是,则系统在步骤320处确定这是否是第一系统环路。如果本环路不是第一环路,则在步骤322处擦去前面环路中确定的和显示的机械路径,以便在本环路中更新。如果本环路是第一环路,则简单地跳过步骤322,就像本例中没有什么机械路径被擦去那样。
在步骤324处,开始绘制拖拉机图像。如果已经画好,则在步骤326处,从工地模型图中它的前一位置上擦去拖拉机图像。在步骤328处,系统对机械当前位置坐标是否处于机械在上一系统环路中占据的网格单元之外作出判定。
如果在步骤328机械的位置没有变化,例如如果推土机被搁置或空转在那儿,那么系统就跳到步骤336—344。
如果在步骤328处,机械相对于工地图网格的位置已经改变,系统就前进到步骤330,在那里从实际推土铲端内侧标明“有效”拖拉机推土铲端。在描述的实施例中,有效推土铲端是通过差分算法规则距实际端近似为网格单元宽度的二分之一来识别的。例如,如果实际推土机推土铲32为10.0英尺长,对应于2.0英尺×2.0英尺网格单元,则在步骤330处计算的推土铲端的有效位置为从每一实际端内侧起一英尺。如果有效(非实际)推土铲端接触或通过数字化工地模型上网格单元的任一部分,由于已经由机械进行了改变,则由差分算法来读取并计算那一网格单元,因为实际上推土铲至少通过了网格单元的一半。当然,推土铲端的偏离量可以视网格单元的大小以及确定推土铲是否已经通过某一网格单元所要求的误差范围而变化。例如,可以将有效工具参数设定成与实际工具参数相等,尽管在描述的实施例中最好取更小的有效参数。
可以理解,这一推土铲定位方法可以用于任何地形变更操作之中,在这种操作之中要求判定机械连续部分的路径或者通过工地模型的网格单元的它的工具的路径。
在步骤332中,系统判定自上一系统环路以来推土铲是否已经移动。如果推土铲已经移动,系统前进到步骤334,用将在下文结合图7D进行详细描述的方法实时判定工地图网格上推土铲的路径。如果在步骤332处推土铲自上一系统环路以来没有移动,则系统跳过步骤334。在步骤336处,系统用上面确定的机械路径信息计算机械图像位置以及方向。在步骤338处,这一信息被用来确定当前或实际工地地形以及所要求的工地地形轮廓。在步骤340处,这些轮廓被显示在操作员显示器22的外观窗76中。在步骤342处,系统接着在图形窗口70上绘制机械图像,并在步骤344处,重新绘制以前擦去的机械路径轨迹,以反应最近的机械运动以及机械路径中的工地变化。
再回到步骤318看子程序的步骤319,如果自上一测量以来机械位置中没有显著改变,则跳过机械位置、跟踪及更新步骤320—344,并且系统从图7A中步骤318的子程序跳到步骤346。
在图7A中的步骤346、348,更新显示屏上的粗细等级指示符,并且系统完成了其环路程序的运行,回到步骤310。
在步骤310处,操作员还可以如上所述选择停止该系统,例如在一天结束时或午餐时。如果操作员在步骤310处选择使系统停机,则系统进行到步骤350,在那里,当前数据库被存储在系统计算机中某一合适的数字存储装置(如一永久或可移动磁盘)的文件中,在步骤352处,中断差分模块的运行,在步骤354处,操作员返回到计算机操作系统。如果操作员不从该系统中退出,则它即返回到步骤312,在该步骤处,从与位置模块50和接收机18相连的串联端口处读取后续位置读数,并且反复系统环路。
图7C中更新机械路径和当前工地图的步骤334的子程序见图7D中的更详细描述。因为步骤330的算法规则弥补了机械或工具宽度与由该机械或工具完全通过的网格单元个数之间的不完全一致,所以GPS位置读数之间由机械/工具产生的距离和方向的变化会导致机械通过部分实时更新信息的损失。这在机械行驶速度相对于工地图的网格单元较高时特别严重。例如,如果网格单元是一平方米,并且定位系统的取样速率是每秒钟一个坐标取样,则以每小时18公里速度行驶的机械在位置抽样之间达约行驶5米或5个正方形网格。因此,对于由机械覆盖的5个正方形网格中至少中间的三个网格来说,不存在实时信息。
为了解决这一问题,在步骤334处采用一种“填入多边形”的算法规则来估算坐标抽样之间由机械通过的路径。图7D中,算法规则在步骤334a、在位置(X1,Y1)和(X2,Y2)以及坐标位置(X0,Y0)处,在由推土机推土铲有效端限定的工地图网格表面上定出一个矩形。在步骤334b、334c以及334f处,搜寻算法规则在矩形边界内,搜寻那些由二推土铲位置之间限定的多边形中那些网格单元,即由推土铲的有效端之间通过的那些网格单元。
在步骤334d和334e,这些最近通过的网格单元被着色、打上阴影、否则即被更新,从而告知操作员,他是处在那些网格单元的目标高度之上方还是下方,或者就在目标高度上。在步骤334d,网格单元的地面高度或Z轴坐标在坐标(x2,y2)处被更新。在步骤334e,高于目标高度的当前高度使得网格单元被着上颜色,如红色。与目标高度相等的当前高度使得网格单元被着上另一种颜色,如黄色。低于目标高度的当前高度使得网格单元被着上再一种颜色,如蓝色。在操作员显示屏22上,这些更新就像是机械/工具图像82后刚刚通过的一行行网格单元,被着了色,或者被可视地更新成指示推土或仿形是在目标轮廓之上还是之下;图6B中由图形窗口70的不同阴影区示出了一个例子。如果目标轮廓在那一区域内没被匹配,那么操作员可以在下一次通过时重做或校正它。由推土机图像通过的着色行将保留在操作员显示屏22上,直至在以后通过时被充分改变,以确保色彩变化或类似的可视更新,也就是直至实际工地上机械的高度坐标更加接近那些网格单元上所要求的工地模型的高度坐标。
当图7A—7D描述的实施例的系统和方法通过可视操作员显示屏用来提供实时机械位置和工地更新信息时,本领域的技术人员将会理解到,产生的代表机械位置和工地更新信息的信号可以用非可视方法来实施已知自动机械控制,例如电气液压机械和/或工具控制系统。
图8示意绘出了本发明系统的一个或多个机械或工具操作系统的闭合环路自动控制。如上所述,图8所示的实施例能够与补充的操作员显示屏一起或者没有补充操作员显示屏时使用,本例中为描述方便,仅示出自动机械控制器。在400处给出了一个含有本发明动态数据库的算法规则的合适的数据处理设备,如前述实施例中描述的一台计算机。动态数据库400从GPS接收机系统410接收3-D瞬时位置信息。所要求的数字化工地模型420以任何一种合适的方式被装载或存储在计算机400的数据库中,例如存储在一合适的磁盘存储器内。自动机械控制模块470含有电气液压机器控制器472,该控制器的连接用来操作,例如地形变更机械上的方向控制、工具和驱动系统474、476、478。自动机械控制器472能够接收来自计算机400中动态数据库的信号,这些信号代表实际工地模型430和所要求的工地模型420之间的差异,用来操作机械的方向控制、工具和驱动系统,使实际工地模型与所要求的工地模型一致。当自动机械控制器472操纵该机器的各个方向控制、工具和驱动系统时,机械的工地和当前位置和方向的改变是由400处的动态数据库来接收,读取和运算的,从而更新实际工地模型。实际工地更新信息是由数据库400接收的,其相应地使传送到机械控制器472的信号得到更新,用作机械的方向控制、工具和驱动系统的运行,当机械在工地上移动时,使实际工地模型与所要求的工地模型一致。
对于本领域技术人员很清楚的是,本发明的方法和系统可以容易地用于几乎任何通过某一工作场地进行的地形变更、机械作业或勘测运行,从而实时监测或实施工地地形的某些变化。描述的实施例有助于理解本发明的整个原理,并详细揭示了一种最佳应用,并且这些实施例是非限定性的。可以对本发明作出许多其它修改和应用,并且这些修改和应仍落在后文权利要求的范围内。
权利要求
1. 一种用来操纵移动式地形变更机械(10)运行的装置(40,50,60),其特征在于,它包含(a)数字数据存储和检索装置(126),用来存储代表所要求的工地地形的第一三维工地地形模型(104)和代表实际工地地形的第二三维工地地形模型(106);(b)产生数字信号的装置(120),所述数字信号实时代表当机械(10)通过工地(12)时,至少一部分机械(10)在三维空间中的瞬时位置;(c)接收所述信号和更新第二模型(430)的装置(124);(d)实时判定第一和第二模型(420,430)之间差异的装置;以及(e)按照所述差异操纵所述机械(10)运行的装置(128),用来使更新的第二模型(430)与所述第一模型(420)一致。
2. 如权利要求1所述的装置(40,50,60),其特征在于,所述产生三维位置信号的装置(120)包括一GPS接收机(16,18)。
3. 如权利要求1所述的装置(40,50,60),其特征在于,所述产生三维位置信号的装置装载在机械(10)上。
4. 如权利要求3所述的装置(40,50,60),其特征在于,所述机械(10)包含一相对于机械(10)可以移动的工具(32),用来改变工地地形,并且产生三维位置信号的装置(120)安装在工具(32)上。
5. 如权利要求4所述的装置(40,50,60),其特征在于,它还包括在机械上判定相对于工地(12)表面的工具(32)的高度的装置(18)。
6. 如权利要求1所述的装置(40,50,60),其特征在于,操纵机械(10)运行的装置(128)包括一操作员显示器(22)。
7. 如权利要求6所述的装置(40,50,60),其特征在于,所述操作员显示器(108)包括第一和第二工地模型(104,10)以及其间差异的一图形显示和一轮廓显示。
8. 如权利要求6所述的装置(40,50,60),其特征在于,所述操作员显示器(108)包括工地模型(104,106)和其之间的差异的一图形显示。
9. 如权利要求6所述的装置,其特征在于,所述操作员显示器包括所述工地模型(104,106)和其之间差异的一轮廓显示。
10. 如权利要求7所述的装置(40,50,60),其特征在于,所述操作员显示器包括一相对于所述工地模型(104,106)的移动式机构(10)的实时位置显示器。
11. 如权利要求8所述的装置(40,50,60),其特征在于,所述操作员显示器(108)包括移动式机械(10)处工地模型(104,106)之间差异的实时粗细指示器。
12. 如权利要求6所述的装置(40,50,60),其特征在于,所述操作员显示器(108)装载在移动式机械(10)上。
13. 如权利要求6所述的装置(40,50,60),其特征在于,所述操作员显示器离移动机械处有一段距离。
14. 如权利要求1所述的装置(40,50,60),其特征在于,所述接收位置信号和更新第二模型(430)的装置(124)以及判定第一和第二模型之间差异的装置(124)位于机械(10)上。
15. 如权利要求1所述的装置(40,50,60),其特征在于,所述接收位置信号和更新第二模型(430)的装置(124)以及判定第一和第二模型(420,430)之间差异的装置(124)离机械(10)有一段距离。
16. 如权利要求1所述的装置(40,50,60),其特征在于,所述操纵机械运行的装置(128)包括闭合环路的自动控制装置(470),用来驱动机械(10)上的一个或多个运行系统。
17. 如权利要求1所述的装置(40,50,60),其特征在于,所述机械(10)包含一工地仿形机械,所述第一工地模型(104)包含所要求的工地地形的静态三维模型,所述第一和第二模型(104,106)之间的差异包含实际工地地形和所要求的工地地形之间的高度差。
18. 如权利要求1所述的装置(40,50,60),其特征在于,它还包含一差分装置(124),用来实时判定相对于位置读数之间的工地(12)的机械(10)的路径。
19. 如权利要求18所述的装置(40,50,60),其特征在于,所述差分装置(124)包括判定所述机械(10)的地形变更部分有效宽度的装置,所述有效宽度小于或等于其实际宽度。
20. 如权利要求19所述的装置(40,50,60),其特征在于,所述差分装置(124)包括在位置读数之间判定由所述机械的地形变形部分(32)通过的工地(12)的面积的装置(62),以及更新由所述地形变更部分(32)的有效宽度改变的第二工地模型(106)的面积的装置(62)。
21. 一种操纵移动式地形变更机械(10)运行的方法,其特征在于,它包括下述步骤(a)在一数字数据存储检索装置(126)中,产生并存储代表所要求的工地地形的第一三维工地模型(104)以及代表实际工地地形的第二三维工地地形模型(106);(b)当机械(10)通过工地(12)时,在至少一部分机械(10)的三维空间中,产生代表实时瞬时位置的信号(120);(c)按照所述的三维位置信号更新第二模型(430);(d)判定所述第一工地模型和第二工地模型(420,430)之间的差异;以及(e)按照所述的差异,操纵所述机械(10)的运行,从而使更新的第二工地模型(430)与所述第一工地模型(420)一致。
22. 如权利要求21所述的装置,其特征在于,所述三维位置信号是由一GPS接收机(16,18)产生的。
23. 如权利要求21所述的方法,其特征在于,所述三维位置信号是由装载在机械(10)上的装置(18)产生的。
24. 如权利要求21所述的方法,其特征在于,所述机械(10)包括一相对于机械(10)可以移动的工具(32),并且所述三维位置信号是响应于装载在工具(32)上的装置的位置而产生的。
25. 如权利要求24所述的方法,其特征在于,它还包括这样的步骤向工具(32)提供判定相对于工地(12)表面的工具(32)高度的装置。
26. 如权利要求21所述的方法,其特征在于,所述按照第一和第二工地模型(104,106)之间的差异操纵机械(10)的运行的步骤包括提供所述第一和第二工地模型(104,106)之间差异的操作员显示(108)。
27. 如权利要求26所述的方法,其特征在于,它还包括以一图形显示(plan view)和一轮廓显示的方式,显示所述第一和第二工地模型(104,106)之间差异的步骤。
28. 如权利要求26所述的方法,其特征在于,它还包括以一图形显示的方式显示所述第一和第二工地模型(104,106)之间差异的步骤。
29. 如权利要求26所述的方法,其特征在于,它还包括以一轮廓显示的方式显示所述第一和第二工地模型(104,106)之间差异的步骤。
30. 如权利要求26所述的方法,其特征在于,它还包括实时显示相对于第一和第二工地模型(104,106)的机械(10)的位置的步骤。
31. 如权利要求26所述的方法,其特征在于,它还包括在机械(10)上提供操作员显示(108)的步骤。
32. 如权利要求26所述的装置(40,50,60),其特征在于,它还包含提供远离机械(10)的操作员显示(108)的步骤。
33. 如权利要求21所述的装置(40,50,60),其特征在于,所述更新第二模型(430)和判定所述第一和第二模型(420,430)之间差异的步骤是由机械上的装置(18)来实施的。
34. 如权利要求21所述的装置(40,50,60),其特征在于,所述更新第二模型(430)和判定所述第一和第二模型(420,430)之间差异的步骤是由远离机械的装置实施的。
35. 如权利要求21所述的方法,其特征在于,所述按照第一和第二工地模型(104,106)之间的差异操纵所述机械(10)的运行的步骤包括提供控制某一机械系统和工具运行的信号并使所述第二工地模型(106)与所述第一工地模型(104)一致的步骤。
36. 如权利要求21所述的方法,其特征在于,所述机械(10)是一种工地仿形机械,所述第一工地模型(104)包含所要求的工地地形的静态三维模型,所述第一和第二模型(420,430)之间的差异被判定为实际工地地形和所要求的工地地形之间的高度差。
37. 如权利要求21所述的方法,其特征在于,所述按照机械(10)的位置来更新所述第二模型(430)的步骤包括在位置读数之间实时判定相对于工地的机械(10)的路径的步骤。
38. 如权利要求21所述的方法,其特征在于,它还包括判定机械(10)的地形变更部分(32)的有效宽度的步骤,所述有效宽度小于或等于实际宽度。
39. 如权利要求38所述的方法,其特征在于,它还包括在位置读数之间判定机械(10)的地形改变部分(32)通过的工地面积、并更新所述地形变更部分(32)的有效宽度通过的第二工地模型(106)的面积的步骤。
40. 一种精确监测并控制工地地形以及在所述工地(12)上工作的机械的系统,其特征在于,它包含一在工地上行驶或通过所述工地并改变所述工地地形的移动式机械(10),所述机械上配备有定位装置(40,50),用来实时精确判定机械(10)相对于工地(12)移动时至少机械(10)的一部分的瞬时位置(100);与机械(10)上的定位装置(40,50)相连通的一数字数据存储设施(40);所要求的工地地形.的第一三维模型(104),以及实际工地模型的第二三维模型(106),所述第一和第二工地模型(104,106)存储在数字数据存储设施(40)中;与所述数字数据存储设施和定位装置(40,50)相连通的动态数据库(400),所述动态数据库(400)装置实时地监测相对于所述工地(12)的机械(10)的位置,并且当机械(10)通过所述工地(12)时,响应于所述机械(10)的被监测位置实时地更新第二工地模型(106),所述动态数据库(400)装置还产生代表所述第一和第二工地模型(104,106)之间差异的信号,用来操纵所述机械(10)的运行,使所述第二更新的工地模型(106)与所述第一工地模型(104)一致。
41. 如权利要求40所述的系统,其特征在于,它还包括操作员显示装置(108),用来使所述信号与所述动态数据库装置(400)相连通,并显示所述第一和第二工地模型(104,106)以及相对于所述工地(12)的机械(10)的位置之间的差异。
42. 如权利要求41所述的系统,其特征在于,所述操作员显示器(108)位于所述机器(10)上。
43. 如权利要求41所述的系统,其特征在于,所述操作员显示器(108)离所述机械(10)一段距离。
44. 如权利要求40所述的系统,其特征在于,所述动态数据库装置(400)位于所述机械(10)上。
45. 如权利要求40所述的系统,其特征在于,所述动态数据库装置(400)离所述机械(10)一段距离。
46. 如权利要求40所述的系统,其特征在于,它还包括在所述机械(10)上与所述动态数据库装置(400)相连通的自动控制装置,代表所述第一和第二工地模型(104,106)之间差异的信号使所述自动控制装置运行,从而使所述第二工地模型(106)与所述第一工地模型(104)一致。
47. 如权利要求40所述的系统,其特征在于,所述定位装置包含一GPS接收机(16,18)。
48. 如权利要求40所述的系统,其特征在于,所述定位装置安装在所述机械(10)上、相对所述机械(10)的某一部分与工地表面接触的已知位置上。
49. 如权利要求40所述的系统,其特征在于,所述机械(10)包含一可相对于所述机械(10)运动从而改变工地(12)的工具(32),所述定位装置安装成与所述工具(32)一起移动。
50. 如权利要求49所述的系统,其特征在于,所述工具(32)还配备有一判定工具(32)相对于工地表面高度的邻近检测装置(19)。
51. 如权利要求40所述的系统,其特征在于,所述机械(10)配备有定位装置(18),所述定位装置位于机械(10)上相隔一定距离的第一地点和第二地点处,所述第二地点处的定位装置给出相对于所述第一地点处的定位装置(18)的方向参照。
52. 如权利要求40所述的系统,其特征在于,所述动态数据库(400)包括在位置读数之间实时判定机械相对于所述工地的路径的差分装置(124)。
53. 如权利要求52所述的系统,其特征在于,所述机械(10)包括一连续宽度的地形变更部分(32),所述动态数据库装置(400)包括判定地形变更部分(32)的有效宽度的装置(124),所述有效宽度小于或等于其实际宽度。
54. 如权利要求53所述的系统,其特征在于,所述差分装置(124)包括一填充多边形算法规则,用来在所述位置读数之间判定机械(10)的地形变更部分(32)通过的路径。
55. 如权利要求54所述的系统,其特征在于,所述动态数据库(400)装置还包括更新由机械(10)的地形变更部分(32)通过的第二工地模型的面积的装置(62)。
56. 一种实时判定移动式地形变更机械(10)在工地上的路径的方法,其特征在于,它包含下述步骤提供一工地地形模型,所述工地地形被划分成由单位面积组成的一连续阵列;为所述移动式机械(10)装备装置(40,50),用来判定当所述机械(10)通过工地(12)时至少机械(10)的一部分在三维空间中的位置;当所述机械通过工地(12)时,跟踪所述机械(10)的位置,并表示成所述工地模型(104,106)上的一系列坐标点;判定机械(10)的工作部分(32)相对于所述工地模型(104,106)的单位面积的物理参数;以及如果跟踪坐标点的速率与所述机械(10)在所述工地(12)的单位面积上行驶的速率不同步,则在所述坐标点之间,实时判定包含机械(10)的运行部分(32)通过的许多单位面积的机械(10)的路径。
57. 如权利要求56所述的方法,其特征在于,所述机械(10)的工作部分(32)的参数被判定为小于或等于其实际参数的有效参数,并且工地(12)上被表述为工地模型(104,106)的机械(10)的路径是由工作部分(32)的有效参数的路径确定的。
58. 如权利要求57所述的方法,其特征在于,所述判定机械(10)的工作部分(32)的有效参数的步骤包括判定所述工作部分(32)的有效宽度的步骤,所述有效宽度小于其实际宽度。
59. 如权利要求58所述的方法,其特征在于,所述有效宽度是通过定位所述机械(10)的工作部分(32)的每一有效端离每一实际端有一段距离而确定的,这一段距离与所述工地模型(104,106)上一个单位面积的一段宽度相对应。
60. 如权利要求58所述的方法,其特征在于,所述机械(10)的工作部分包含一具有连续宽度的推土铲(32)。
61. 如权利要求58所述的方法,其特征在于,所述机械(10)的工作部分包含多个地形变更部分(32)。
62. 如权利要求57所述的方法,其特征在于,它还包含对所述工地模型(37)的每一单位面积的地形进行更新,并且其中的有效参数被判定为已经通过的步骤。
63. 一种实时判定工地上可移动式地形变更机械(10)的路径的装置(40,50,60),其特征在于,它包含被存储在数字存储设施(126)中并被划分成具有许多单位面积的一连续陈列的一工地地形模型(36);一移动式机械(10),所述机械(10)配备有用来判定当所述机械(10)通过工地(12)时至少机械(10)的一部分在三维空间中的瞬时位置的装置;与所述数字存储设施(126)以及位置确定装置(120)相连通的装置(124),用来当所述机械(10)通过所述工地(12)时跟踪所述机械(10)的瞬时位置,并表示为所述工地模型(104,106)上的一系列坐标点;确定所述机械(10)的工作部分(32)相对于所述工地模型(104,106)的单位面积(37)的物理参数的装置(470);以及装置(124),当跟踪所述坐标点的速率与所述机械(10)在所述工地(12)的许多单位面积(37)上行驶速率不同步时,所述装置(124)以所述坐标点之间机械(10)的工作部分(32)通过的许多单位面积(37)的形式,来实时判定机械(10)的路径。
64. 如权利要求63所述的装置(40,50,60),其特征在于,所述判定物理参数的装置(470)包括用来判定所述机械(10)的工作部分(32)的有效参数的装置,所述有效参数小于或等于其实际参数;判定在工地模型(104,106)上表示的机械(10)在工地(12)的路径的装置(124)包括用来判定工作部分(32)的有效参数的路径的装置(124)。
65. 如权利要求64所述的装置(40,50,60),其特征在于,所述机械(10)的工作部分(32)的有效参数包含所述工作部分(32)的有效宽度,该有效宽度小于它的实际宽度。
66. 如权利要求65所述的装置(40,50,60),其特征在于,所述有效宽度被限定为所述机械(10)的工作部分(32)的有效端之间,每一有效端离每一实际端有所述工地模型(37)上一个单位面积的一段宽度的距离。
67. 如权利要求65所述的装置(40,50,60),其特征在于,所述机械(10)的工作部分(32)包含具有连续宽度的一推土铲。
68. 如权利要求65所述的装置(40,50,60),其特征在于,所述机械(10)的工作部分(32)包含具有连续宽度的多个地形变更部分。
69. 如权利要求64所述的装置(40,50,60),其特征在于,它还包括对所述工地模型(37)的每一个有效宽度被确定为已经通过的单位面积的地形进行更新的装置。
70. 采用三维位置信号以及工地的数字化模型,在三维空间内对机械相对于工地的位置进行精确判定的方法,其特征在于,所述方法包含下述步骤(a)装备机械(10)使能接收位置信号;(b)在一数字数据存储设施(126)中产生并存储工地模型(37);(c)在所述工地(12)上操作所述机械(10),并且按照至少机械(10)的一部分相对于所述工地(12)的三维位置,同时同步实时更新存储设施(126)中的工地模型(37)。
71. 如权利要求70所述的方法,其特征在于,所述工地模型(37)是一个代表实际工地(12)地形的实际工地模型(37)。
72. 如权利要求71所述的方法,其特征在于,它还包含下述步骤在所述数字数据存储设施(126)中产生并存储所要求的一工地模型(37),并且当所述实际工地模型被更新时,实时判定实际工地模型和所要求的工地模型之间的差异。
73. 如权利要求72所述的方法,其特征在于,所述机械(10)用来形成工地(12)的轮廓,并且所述要求的工地模型(37)包含最终工地轮廓(36)的静态三维模型。
74. 如权利要求70所述的方法,其特征在于,它还包括实时对所述机械(10)的操作员显示和更新工地模型(37)的步骤。
75. 如权利要求74所述的方法,其特征在于,所述操作员显示装置(108)位于所述机械(10)上。
76. 如权利要求74所述的方法,其特征在于,所述操作员显示装置(108)离所述机械(10)一段距离。
77. 如权利要求75所述的方法,其特征在于,所述数字数据存储设施位于所述机械(10)上。
78. 如权利要求75所述的方法,其特征在于,所述数字数据存储设施(126)离机械(10)一段距离,所述装置(40,50,60)还包括将代表更新的工地模型(37)的信号从远离机械(10)的动态数据库装置(400)传送到位于机械(10)上的操作员显示装置(108),以及用来将所述机械(10)的位置传送到所述动态数据库(400)的装置。
79. 一种采用工地的数字化模型中的三维位置信号,用来精确判定相对于工地的三维空间中的机械(10)的位置的装置(40,50,60),其特征在于,它包含(a)一移动式机械(10),所述机械(10)配备有装置(124),当所述机械通过工地(12)时,所述装置(124)用来接收位置信号,并用来判定至少机械(10)的一部分在三维空间中的瞬时位置;(b)存储在数字数据存储设施(126)中的一工地地形模型;(c)与判定机械位置的装置(470)以及数字数据存储设施(126)相连通的动态数据库装置(400),所述动态数据库装置(400)包括按照至少机械(10)的一部分相对于工地(12)的三维位置,实时更新存储设施(126)中工地模型的装置(126)。
80. 如权利要求79所述的装置(40,50,60),其特征在于,所述工地模型是一个代表工地实际地形的实际工地模型。
81. 如权利要求80所述的装置(40,50,60),其特征在于,所要求的工地模型存储在数字存储设施(126)中,并且所述动态数据库装置(400)包括差分装置(124),用来当所述实际工地模型被更新时,实时判定实际工地模型和所要求的工地模型之间的差异。
82. 如权利要求81所述的装置(40,50,60),其特征在于,所述机械(10)是一种工地仿形机械,并且所要求的工地模型包含一最终工地轮廓的静态三维模型。
83. 如权利要求79所述的装置(40,50,60),其特征在于,所述装置包括实时将更新的工地模型显示给机械(10)的操作员的装置。
84. 如权利要求83所述的装置(40,50,60),其特征在于,所述操作员显示装置(108)位于所述机械(10)上。
85. 如权利要求83所述的装置(40,50,60),其特征在于,所述操作员显示装置(108)离所述机械(10)有一段距离。
86. 如权利要求84所述的装置(40,50,60),其特征在于,所述动态数据库装置(400)位于所述机械(10)上。
87. 如权利要求84所述的装置(40,50,60),其特征在于,所述动态数据库装置(400)离所述机械(10)有一段距离,所述装置还包括将代表更新的工地模型的信号从远离机械(10)的动态数据库装置(400)传递到位于机械(10)上的操作员显示装置(108)的装置,以及将所述机械(10)的位置传送到所述动态数据库(400)的装置。
全文摘要
一种操作地形变更机械而将地形改变成要求地形的方法和装置。要求地形的第一数字三维模型和实际地形的第二数字三维模型被存储在数字数据存储设施内。位置接收机确定机械相对工地在三维空间内的地点。动态数据库接收机械位置信息,确定第一、第二工地模型之差异,并产生代表该差异的信号,用来操纵该机械的运行,使实际工地地形与要求工地地形一致。
文档编号G01S19/48GK1117317SQ94191115
公开日1996年2月21日 申请日期1994年11月18日 优先权日1993年12月8日
发明者亚当·J·古德特, 丹尼尔·E·亨德森, 格雷戈里·R·哈罗德, 卡尔·W·埃莱曼哈根 申请人:履带拖拉机股份有限公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1