八电极旋转电场式电导传感器持气率测量方法

文档序号:8921127阅读:697来源:国知局
八电极旋转电场式电导传感器持气率测量方法
【专利说明】八电极旋转电场式电导传感器持气率测量方法 所属技术领域
[0001] 本发明属于流体测量技术领域,涉及一种电导传感器。
【背景技术】
[0002] 两相流现象广泛存在于石油工程、化学工程、冶金工程、核工程、航空与航天工程 等传统工业和新兴工业领域中。气液两相流是指气相与液相不相容物质的混合流动体系。 由于气液两相流中各成份之间存在着密度、粘度等物理性质上的差异,在流量、压力、重力 及管路形状等诸多因素的影响下,导致气液两相流流动参数测量十分困难。截面持气率是 气液两相流工业应用系统中一个重要的流动参数,它的精确测量对于生产过程计量、控制 和运行可靠性都具有重要意义。
[0003] 两相流持气率测量技术主要包括超声法,光学法,射线法,电容法,电导法等。由 于电导传感器具有原理清晰、结构简单、响应稳定等诸多优点,已广泛地应用于多相流 参数测量中,在传感器研发早期,多采用平板电极测量液膜厚度,为了避免传感器对流 型的扰动,嵌入垂直上升管道内壁的环形电极传感器应运而生,例如环形电导传感器、 对壁式环状电导传感器。而对壁式环状电导传感器采用单方向激励接收,在电场分布 方向性方面具有局限性,易受流型影响。为了解决这一问题,M.Merilo等人在"Void fractionmeasurementwitharotatingelectricfieldconductancegauge"(Journal ofHeatTransfer,1997,Vol99,P330)提出旋转电场式电导测量法,通过将三相交流电分别 施加在管壁周围排列的三对电极上以合成产生旋转测量电场,在一定程度上消除了流动介 质分布不均匀导致的测量误差。尽管如此,先前三对电极合成产生的旋转测量电场是否为 最佳测量方式未能从理论分析及实验验证角度给出论证。

【发明内容】

[0004] 针对上述问题,本发明的目的是提供一种测量较为准确且简单可行的两相流持气 率测量方法,本发明的技术方案如下:
[0005] -种八电极旋转电场式电导传感器持气率测量方法,所采用的传感器包括均匀分 布在管道内壁同一截面上的四对电极,每对电极位置相对布置;设四对电极依次为A,B,C 和D,A与B相邻,B与C相邻,C与D相邻,D与A相邻。采用如下的方法进行持气率测量:
[0006] (1)分别对四对电极施加初始相位不同的正弦信号进行激励,相邻电极间的相位 差均为45°,从而能够在截面上合成产生旋转的测量电场;
[0007] (2)当气液两相流体流经传感器时,采集传感器输出信号;
[0008] (3)定义混合流体的归一化电导率^为混合相的电导率〇 与全水的电导率〇w 的比值,八电极旋转电场式电导传感器的归一化电导定义为四对电极归一化电导的平均值 计算归一化电导值,计算旋转电场电导传感器归一化电导G;
[0009] (4)利用旋转电场电导传感器归一化电导《计算持气率。
[0010] 作为优选实施方式,电导传感器持气率测量方法,其特征在于,电极张角0为 22. 5°。电极轴向高度H为0.004m,电极径向厚度T为0.001m。
[0011] 本发明提出的八电极旋转电场式电导传感器持气率测量方法,分别向四对电极上 施加相位相差45度的正弦激励信号以合成产生旋转电场,并对截面测量电场进行了灵敏 度理论分析计算,确定了八电极最优几何结构参数,以达到最佳的截面持气率测量效果。具 有以下优点:
[0012] (1)本发明涉及的旋转电场式电导传感器具有结构形式简单、响应速度快,稳定性 高,便于安装测量等优点。
[0013] (2)本发明的持气率测量法,对中低流速气液两相流持气率测量皆可使用,而且计 算简单,准确度较高。
[0014] (3)本发明的持气率测量法可适用于垂直气液两相流泡状流、段塞流及混状流下 的持气率测量。
【附图说明】
[0015] 图1是旋转电场式电导传感器几何参数示意图:(a)立体图;(b)截面图;(c)正视 图
[0016] 图2是旋转电场式电导传感器激励方式示意图。
[0017] 图3是旋转电场式电导传感器有限元剖分结构图。
[0018] 图4是气液两相流三种流型四对电极信号图,(a) (b) (c)分别为泡状流、段塞流、 混状流。
[0019] 图5是气液两相流实验测量数据归一化电导值与模拟装置标定的水相流量及气 相流量之间实验图版。
[0020] 图6气液两相流持气率测量效果图。
【具体实施方式】
[0021] 下面结合附图和实施例对本发明进行详细的描述。
[0022] 本发明的特点在于通过传感器的结构尺寸优化,在管道截面上产生较为均匀的测 量敏感场,本发明气液两相流旋转电场式电导传感器的结构及尺寸优化及测量方法包括以 下步骤:
[0023] (1)八电极对壁环型电导传感器结构如图1所示,由四对不锈钢电极组成。如图 2所示,分别对四对电极施加初始相位不同的正弦信号进行激励,A是0°,B是45°,C是 90°,D是135°,这样能够在截面上合成产生旋转的测量电场。
[0024] (2)本发明采用有限元方法对传感器结构尺寸进行优化,利用仿真软件ANSYS建 立旋转电场式电导传感器模型,如图3所示。建模时,设定垂直上升管道内径D= 0. 02m,垂 直上升管道长度L=0.2m,电极径向厚度T,电极轴向高度H,电极张角0,水相电阻率Sw =1000D.in,电极电阻率Ss= 1.7241e-8D.m。采用自由剖分方式进行网格划分,施加 载荷时采用正弦激励。仿真方法为:在ANSYS建模时,在模型中测量截面上放入一个直径 0. 5mm的小球,模拟气泡运动。小球处于不同位置时,激励电极的电压也跟随变化,因此可通 过激励电极变化的电压反映电导传感器的灵敏度。小球每变换一个坐标,可计算得到在该 坐标的灵敏度值。将小球的坐标遍历垂直上升管道截面所有位置,得到该对电极的灵敏度 分布。
[0025] 本发明采用检测场均匀性误差参数(SVP)和传感器相对灵敏度(Savg)作为优化目 标。传感
当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1