基于碳纳米管/聚乙烯吡咯烷酮的薄膜式湿敏传感器的制造方法

文档序号:9415734阅读:380来源:国知局
基于碳纳米管/聚乙烯吡咯烷酮的薄膜式湿敏传感器的制造方法
【技术领域】
[0001]本发明属于湿敏传感器领域,具体涉及基于碳纳米管/聚乙烯吡咯烷酮的薄膜式湿敏传感器。
【背景技术】
[0002]环境湿度对工业生产中产品的加工、存储及运输等诸多环节具有重大影响,因此环境湿度检测对保证产品质量起到至关重要的作用。此外,随着工业生产向精密化和自动化方向发展,对湿敏传感器的稳定性、灵敏度和响应恢复时间提出更高的要求。
[0003]目前,湿敏传感器的湿敏材料主要分为氧化物半导体型、导电高分子型和电解质型。其中,氧化物半导体型传感器在高温高湿环境下响应、恢复时间较短,但其易被污染,电极需要反复加热清洗;导电高分子型传感器灵敏度较高、响应较快,但是高分子材料存在老化问题,导致该类传感器稳定性较差、寿命较短;电解质型传感器虽然测量原理简单,但测量范围较窄且高湿下易潮解。因此,开发一种性能优越、适应性强且成本低廉的新型湿敏传感器是目前该领域面临的重大挑战。
[0004]近年来,碳纳米管因其极大的比表面积和优异的电、力学性能在氨气、二氧化氮及有机气体探测等领域得到广泛的研究。在湿敏探测领域,Yeow等人发现碳纳米管对水蒸气具有一定的敏感性,但响应和恢复时间较长,限制了碳纳米管的实际应用[Nanotechnology, 2006, 17(21):5441] Aarindra等人将碳纳米管与聚乙烯醇复合,制备出性能优良的湿敏材料[Applied surface science, 2006,252 (22):7987—7992]。相比于纯的碳纳米管,碳纳米管/聚乙烯醇复合材料不仅具有更加优异的机械性能和稳定性,而且具有更高的灵敏度和更短的响应恢复时间。然而,该工作所采用的制备工艺过于复杂,且灵敏度也远未达到实用要求。
[0005]我们首次制备了基于碳纳米管/聚乙烯吡咯烷酮的薄膜式复合湿敏材料,结果表明该材料灵敏度高,响应恢复时间短,制备工艺简单,成本低廉,具有极大的应用价值。

【发明内容】

[0006]本发明的目的是提供一种基于碳纳米管/聚乙烯吡咯烷酮的薄膜式湿敏传感器的制备方法。
[0007]下面简要阐述本发明的实现过程。首先选用叉指电极作为基底,清洗电极一侧以获得干净的表面,使用旋涂法在电极一侧旋涂一层氧化碳纳米管/聚乙烯吡咯烷酮薄膜,经过低温还原后得到碳纳米管/聚乙烯吡咯烷酮薄膜,最后分别在电极两接线点处涂上银胶作为电极。
[0008]本发明所述的基于碳纳米管/聚乙烯吡咯烷酮的薄膜式湿敏传感器的制备方法,其步骤如下:
[0009](I)将150毫克氧化碳纳米管加入13.5克二甲基甲酰胺,超声分散5分钟,得到氧化碳纳米管分散液;
[0010](2)将1.35克聚乙烯吡咯烷酮加入步骤(I)中所述的氧化碳纳米管分散液中,磁力搅拌直至聚乙烯吡咯烷酮完全溶解,再持续搅拌24小时;
[0011](3)依次用乙醇、丙酮和去离子水在超声波中清洗叉指电极各5分钟;
[0012](4)用微量移液器取上述步骤(2)中制备的分散液80微升,旋涂至上述步骤(3)中的叉指电极上,得到氧化碳纳米管/聚乙烯吡咯烷酮薄膜。将其在室温下干燥12小时,再转至60°C下干燥12小时,得到干燥的氧化碳纳米管/聚乙烯吡咯烷酮薄膜;
[0013](5)将上述步骤(4)中制备的氧化碳纳米管/聚乙烯吡咯烷酮薄膜置于管式炉中,通入氮气,加热到350°C,保温I小时,得到低温还原的碳纳米管/聚乙烯吡咯烷酮薄膜;
[0014](6)在上述步骤(5)中制备的碳纳米管/聚乙烯吡咯烷酮薄膜的电极接线端处滴涂银胶,便于引出导线。
[0015]本发明所提供的基于碳纳米管/聚乙烯吡咯烷酮的薄膜式湿敏传感器,能在室温稳定下工作,成本低,工艺简单,灵敏度高,响应、恢复时间短等特点。
【附图说明】
[0016]图1依据本发明所提供的基于碳纳米管/聚乙烯吡咯烷酮的薄膜式湿敏传感器示意图。
[0017]图2依据本发明所提供的基于碳纳米管/聚乙烯吡咯烷酮的薄膜式湿敏传感器在室温下、相对湿度为11% -94%的敏感性能测试结果。
[0018]图3依据本发明所提供的基于碳纳米管/聚乙烯吡咯烷酮的薄膜式湿敏传感器在不同湿度下的动态响测试结果。
【具体实施方式】
[0019]下面结合附图来详细描述本发明。
[0020]实施例1,将150毫克氧化碳纳米管加入13.5克二甲基甲酰胺,超声分散5分钟,得到氧化碳纳米管分散液;将1.35克聚乙烯吡咯烷酮加入上述氧化碳纳米管分散液中,磁力搅拌直至聚乙烯吡咯烷酮完全溶解,再持续搅拌24小时;依次用乙醇、丙酮和去离子水在超声波中清洗叉指电极各5分钟;如附图1所示,其中⑴为叉指电极玻璃基底,⑵为叉指电极金属电极;用微量移液器取上述分散液80微升,旋涂至叉指电极上,得到氧化碳纳米管/聚乙烯吡咯烷酮薄膜。将其在室温下干燥12小时,再转至60°C下干燥12小时,得到干燥的氧化碳纳米管/聚乙烯吡咯烷酮,如附图1所示,其中(6)为旋涂所制的碳纳米管/聚乙烯吡咯烷酮薄膜。将制备的氧化碳纳米管/聚乙烯吡咯烷酮薄膜置于管式炉中,通入氮气,加热到350°C,保温I小时,低温还原得到碳纳米管/聚乙烯吡咯烷酮薄膜;最后将制备的碳纳米管/聚乙烯吡咯烷酮薄膜的电极接线端处滴涂银胶,便于引出导线。如附图1所示,其中(3)为银胶电极,(4) (5)分别为电流表和IV直流电源。至此,一种基于碳纳米管/聚乙烯吡咯烷酮的薄膜式湿敏传感器制备完成。
[0021]在室温下分别用相对湿度为11%和94%的水蒸汽对样品进行了测试,测试结果如图2所示。结果表明:与相对湿度为11%的水蒸汽中样品电流相比,在相对湿度为94%的水蒸汽中电流增加了 3800%。此外,在不同湿度下对样品进行动态测试,测试结果如图3所示。结果表明:在不同湿度下,样品的电流变化量随湿度增加而增大。其中在高湿度下,响应时间约为15秒,恢复时间约为1.8秒。
【主权项】
1.基于碳纳米管/聚乙烯吡咯烷酮的薄膜式湿敏传感器,其特征在于:从下到上依次包括碳纳米管/聚乙烯吡咯烷酮薄膜(6)旋涂覆盖在玻璃基底⑴的叉指电极⑵上。2.依据权利要求1所述的基于碳纳米管/聚乙烯吡咯烷酮的薄膜式湿敏传感器,其特征在于:碳纳米管/聚乙烯吡咯烷酮薄膜(6)覆盖在玻璃基底⑴的叉指电极⑵上,叉指电极(2)上的两个银胶(3)接触点作为两电极接点,接点处连接电源线,串联接通直流电源(5)和电流表(4),直流电源(5)的电压为I伏。3.依据权利要求1所述的基于碳纳米管/聚乙烯吡咯烷酮的薄膜式湿敏传感器的制备方法,其步骤如下: (1)将150毫克氧化碳纳米管加入13.5克二甲基甲酰胺,超声分散5分钟,得到氧化碳纳米管分散液; (2)将1.35克聚乙烯吡咯烷酮加入步骤(I)中所述的氧化碳纳米管分散液中,磁力搅拌直至聚乙烯吡咯烷酮完全溶解,再持续搅拌24小时; (3)依次用乙醇、丙酮和去离子水在超声波中清洗叉指电极各5分钟; (4)用微量移液器取上述步骤(2)中制备的分散液80微升,旋涂至上述步骤(3)中的叉指电极上,得到氧化碳纳米管/聚乙烯吡咯烷酮薄膜。将其在室温下干燥12小时,再转至60°C下干燥12小时,得到干燥的氧化碳纳米管/聚乙烯吡咯烷酮薄膜; (5)将上述步骤(4)中制备的氧化碳纳米管/聚乙烯吡咯烷酮薄膜置于管式炉中,通入氮气,加热到350°C,保温I小时,低温还原得到碳纳米管/聚乙烯吡咯烷酮薄膜; (6)在上述步骤(5)中制备的碳纳米管/聚乙烯吡咯烷酮薄膜的电极接线端处滴涂银胶,便于引出导线。
【专利摘要】本发明属于湿敏传感器领域,具体涉及基于碳纳米管/聚乙烯吡咯烷酮的薄膜式湿敏传感器。其制备方法是使用旋涂法将氧化碳纳米管/聚乙烯吡咯烷酮混合溶液旋涂到预制电极上,经过低温还原后得到碳纳米管/聚乙烯吡咯烷酮薄膜,最后分别在电极材料两端涂上银胶引出导线,从而制备出基于碳纳米管/聚乙烯吡咯烷酮的薄膜式湿敏传感器。该传感器能在室温下工作,成本低,工艺简单,灵敏度高,响应、恢复时间短等特点,在湿敏探测领域,具有重要的应用前景。
【IPC分类】G01N27/30, G01N27/26
【公开号】CN105136884
【申请号】CN201510578615
【发明人】薛庆忠, 潘兴龙, 张建强, 郭启凯, 鲁文博, 靳亚康
【申请人】中国石油大学(华东)
【公开日】2015年12月9日
【申请日】2015年9月14日
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1