将高频摩擦应力和低周疲劳结合的试验台的制作方法

文档序号:9457514阅读:490来源:国知局
将高频摩擦应力和低周疲劳结合的试验台的制作方法
【技术领域】
[0001]本发明涉及将高频摩擦应力和低周疲劳结合的试验设备,低周疲劳也称微动疲劳试验,该试验设备意在模拟涡轮发动机叶片-盘片附连件。
【背景技术】
[0002]许多涡轮机部件经受将高周(振动)应力和低周应力叠加的复杂应力。当例如对于叶片-盘片附连件而言,当加入摩擦应力时,特征变得非常复杂。
[0003]这是对于涡轮叶片而言的情况,涡轮叶片由于涡轮的旋转而加载有离心力、由于环境和其共振而加载振动力。这两种应力导致叶片根部在盘片中的凹部(叶片根部被插入到该凹部中)的侧向突出部上滑动。因为叶片根部随后经受微动疲劳损坏,所以这种摩擦学方面的认知是至关重要的。这一应力领域仍在很大程度上未被研究,但是对其的认知和对有关风险的处理是未来几年关注的重点。
[0004]为了纠正这一缺陷,利用与涡轮发动机的部件遭受的频率大不相同的频率下的非常简单的试验来表征和研究所述接触,当数种类型的应力被叠加时,有时甚至在非常低的温度下通过仅使用简单的交替滑动循环来对接触表面加载。
[0005]在微动疲劳损坏的研究的背景下,在现有技术中,两种不同类的试验装置之间具有下述区别:
[0006]I)被称为常规的微动疲劳试验,常规的微动疲劳试验旨在使用施加到试件之间的接触的局部条件的完美控制来深入研究接触。通常,这些试验使用了大量的仪器并且使得可取得重要的摩擦学参数(位移、摩擦系数等),以及
[0007]2)技术的微动疲劳试验,技术的微动疲劳试验旨在与应用和待研究的应力尽可能地接近。与前述试验相比,这些试验不基于仪器,而是变得更具代表性。
[0008]常规的微动疲劳试验在具有标准几何构造的试件上进行,所述试件与叶片/盘片附连件附连件应用相去甚远并且不能够将之前描述的应力结合。通常使用的试验装置能够达到10Hz的最大频率且在高温下不将低周循环和高周循环结合。
[0009]当试验装置旨在模拟与叶片-盘片附连件(通常为单叶式)类似的接触几何构造时,所述装置还在将应力结合的方面受限。另外,所述试验装置不被配置成在高温下将低周循环和高周循环结合。
[0010]来自现有技术的试验装置、甚至致力于微动疲劳和疲劳试验的试验装置因此不能够可靠地分析代表操作条件下的实际附连件的涡轮发动机叶片-盘片附连件。
[0011]本发明的目的具体地在于提供一种简单、有效且经济的方案来解决该问题。

【发明内容】

[0012]本发明提出了一种将高频摩擦应力和低周疲劳结合的试验设备,所述试验设备包括第一试件和第二试件,所述第一试件被固定至框架并且限定出至少一个支承表面,所述第二试件被连接至牵引装置,该牵引装置用于对所述第二试件加载,以使得所述第二试件压靠所述第一试件的所述支承表面和每个所述支承表面并执行低周疲劳试验,所述试件中的一个试件包括呈涡轮发动机转子叶片根部的形状并且被插入到凹槽中的部分,所述凹槽的形状与另一试件大体上互补以便模拟涡轮发动机叶片-盘片附连件,所述设备还包括用于对所述试件加热的装置和用于以振动的方式对所述试件加载以便执行微动疲劳试验的装置,并且所述设备的特征在于,所述设备包括用于绕与拉伸轴线平行的轴线调节所述试件的位置的装置以及用于绕所述轴线将所述试件锁定就位的装置。
[0013]具有呈叶片根部的形状的部分的试件例如被连接至所述牵引装置,并且包括所述凹槽的另一试件于是被固定到所述框架上。
[0014]本发明旨在通过能够表征受到微动疲劳应力的叶片-盘片附连件来提出一种新的实验性试验设备,所述试验设备将代表动力飞行(离心力)的低周循环和代表由飞机和发动机的工作产生的振动的高周循环结合并同时确保所述支承表面之间的滑动。本发明的定义特征是使得能够尽可能地接近叶片的振动应力模式(有时复杂并且处于高频下)以及叶片的使用的实际温度条件,同时确保和控制接触区域中的滑动。
[0015]最后,绕与拉伸轴线平行的轴线调节和锁定试件的位置使得可调节加载方向,并且因此实现能够将例如弯曲和扭曲结合的复杂的共振模式。
[0016]本发明因此可尽可能接近地模拟转子叶片在工作期间遭受的条件。
[0017]所述试件能够由相同的或不同的材料制成。在试件由不同的材料制成的情况下,所述试验设备可表征处于接触的成对的材料。
[0018]加热装置能够将试件加热到大约800°C的温度,即,该温度代表涡轮发动机转子叶片根部的使用中的实际条件的温度。
[0019]有利地,试验设备被配置成:使得呈第一试件的叶片根部的形状的部分和第二试件中的凹槽位于所述设备的第一振动模式的波腹中。这可使试件的滑动幅度和形变幅度最大化。
[0020]优选地,呈叶片根部的形状的部分具有与实际的涡轮发动机转子叶片的形状和尺寸类似的形状和尺寸,以便尽可能如实地模拟叶片-盘片附连件。试件的尺寸能够被设置成与可购得的单晶体坯的尺寸相配。这使得可表征该单晶体并且设想对加工和关于成对的材料的性能方面的几何参数(叶片-盘片附连件中的间隙的作用、表面冶金学健康等)进行研究。优选地,包括凹槽的试件足够刚性以防止由于所述试件受到的大的机械应力而引起其太大的变形。
[0021]加载装置能够包括振动器,所述振动器将所述设备的一部分加载到大约2000Hz,并且优选地,加载到介于1000Hz和2000Hz之间的频率。所述设备因此可在与转子叶片的固有频率类似的高频下工作。试件的固有频率能够通过以适当的方式改变激励装置的尺寸来更改。
[0022]有利地,所述试件中的一个试件通过具有挠性中间部分的I形部件连接至框架,并且另一试件通过具有挠性中间部分的另一I形部件连接至牵引装置。所述I形部件用于被加载装置激励。通过计算和改变其沿振动激励的方向的惯性力矩,可更改拉索的固有模式并且因此扫过叶片-盘片附连件的非常广泛的工作区。
[0023]调节和锁定装置能够包括同样用于将试件固定至I形部件的螺栓。
[0024]试件的呈叶片根部的形状的部分能够为楔型(单叶型)或枞树型(三叶型)。
[0025]本发明还涉及一种用于使用用于微动疲劳和疲劳试验的设备的方法,所述试验设备包括试件和另一试件,所述试件被连接至牵引装置并且包括呈涡轮发动机转子叶片根部的形状的部分,所述另一试件被固定至框架并且包括用于容纳所述呈叶片根部的形状的部分的凹槽,所述凹槽大体上与所述部分互补并且限定了所述部分的至少一个支承表面,所述步骤包括下述一步骤,所述步骤在于使两个试件同时受到加热并且同时受到用于微动疲劳和低周疲劳试验及高周疲劳试验的拉伸应力和振动应力。所述方法的特征在于,所述方法在前述步骤之前包括以下步骤:绕与拉伸轴线平行的轴线调节和锁定所述试件的位置。
【附图说明】
[0026]根据阅读以非限制性示例给出并且参考附图的以下说明,本发明将被更好地理解,并且本发明的其它细节、特征和优点将变得清楚,在附图中:
[0027]-图1为涡轮发动机的转子盘片的凹槽中的叶片根部的附连件的示意性的视图,
[0028]-图2为根据本发明的试验设备的示意性的视图,
[0029]-图3为根据本发明的另一试验设备的示意性视图,
[0030]-图4为根据本发明的试验设备的试件的局部示意性透视图,
[0031]-图5和图6为来自图4的试件的示意性透视图,
[0032]-图7为根据本发明的另一试验设备的试件的示意性透视图,
[0033]-图8为图7的试件中的一个试件的示意性透视图,以及
[0034]-图9为用于将试件固定到图3的设备的I形部件上的装置的示意性透视图。
【具体实施方式】
[0035]首先参考图1,图1示意性地示出了涡轮发动机的叶片-盘片附连件,叶片10为包括根部12的转子叶片,根部12被插入到盘片16的外周中的凹槽14中,所述盘片包括这种类型的凹槽14的环形阵列以用于容纳多个叶片的根部。由盘片16和叶片10形成的组件形成了例如涡轮发动机的涡轮的转子轮。在此处的情况下,根部12为楔型。
[0036]在工作期间,叶片10受到离心力(箭头18)的作用并且其轮叶具有摆动(箭头20)的倾向,从而导致代表叶片根部12的螺纹的侧向部分压靠盘片中的凹槽14的侧向突出部22并在该侧向突出部上滑动。箭头24示出了施加到面向叶片根部12和凹槽14的表面的法向力,并且箭头26表示施加到所述表面上的剪切力。
[0037]图2示意性地示出了根据本发明的试验设备的实施例,该试验设备被设计成模拟受到低周疲劳(low-cycle fatigue,LCF)载荷和高周疲劳(high-cycle fatigue,high-cycle fatigue)载荷的叶片-盘片附连件。
[0038]试验设备100包括连接至牵引装置(箭头104)的第一部分102和连接至固定框架108的第二部分106。
[0039]第一部分102包括凸形试件110,凸形试件110包括成形到叶片根部中且连接至牵引装置的部分112。所述牵引装置例如包括致动器,致动器的杆的自由端被连接至试件110并且致动器的圆筒由试验设备100的固定部分支撑。优选地,所述致动器定向成与凸形试件110的延伸轴线平行并且意在模拟转子叶片在工作期间受到的离心力。
[0040]试验设备100的第二部分106包括凹形试件114,凹形试件114包括用于插入试件110的前述部分112的凹槽116。
[0041]用于将凸形试件110连接至牵引装置的装置118和用于将凹形试件114连接至框架108的装置120中的至少一个由例如为振动器的激励装置122加载,激励装置122用于使叶片-盘片附
当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1