一种用于裂纹类缺陷定量识别的极性加权矢量全聚焦成像方法

文档序号:9808867阅读:312来源:国知局
一种用于裂纹类缺陷定量识别的极性加权矢量全聚焦成像方法
【技术领域】
[0001] 本发明涉及一种基于极性加权的矢量全聚焦成像的裂纹类缺陷方向识别方法,该 方法涉及裂纹类缺陷的方向识别技术,属于无损检测技术领域。
【背景技术】
[0002] 金属结构广泛应用于航空航天、船舶、机械制造等工业领域,如航天器构件,舰船 和潜艇构件,大型压力容器,大型锻件,桥梁用钢板等。金属结构在加工、制造、使用过程中 由于受到压力、温度、外荷载冲击、应力集中、化学腐蚀等因素作用,极易在结构的表面及内 部产生裂纹、孔洞、腐蚀等缺陷,如果无法及时检出存在的缺陷并采取相应措施,很可能造 成严重后果。以裂纹为例,在载荷的作用下,结构中裂纹会呈现加速扩展的趋势,以致结构 的剩余强度迅速降低,最终裂纹会急剧扩展,从而导致金属结构突然断裂,这往往会造成灾 难性的装备损毁和人员伤亡事故,因此,研究有效的金属结构缺陷检测方法不仅具有重要 的科学研究意义,而且具有很大的工程使用价值。
[0003] 超声无损检测技术是金属结构检测中非常重要的技术手段,该技术对结构内部裂 纹类等缺陷的检测灵敏度很高。近年来,超声相控阵检测技术在超声无损检测中得到了广 泛的应用,克服了传统超声检测效率低,分辨率低,检测结果直观性差等缺点,但商用相控 阵检测系统只能进行一些简单的成像显示,检测精度和缺陷表征能力都无法适应工业界逐 渐提高的检测评价要求。基于后处理的超声相控阵检测技术,由于可以正确表征被测对象 的内部状况,因而得到的广泛的研究和发展。通过对采集到的数据进行后处理研究,可得到 高精度和大范围的成像图,并可进一步提取缺陷的方向、形状、大小等特征,从而实现对缺 陷的定位检测和特征识别。
[0004] 2009年期刊论文"Phase coherence imaging"通过对阵列数据的极性(孔径数据 的符号位)进行分析,提出了一种抑制旁瓣和栅瓣、提高成像分辨率的超声阵列成像方 法--极性加权成像方法,该方法操作简单,且成像效果较好,但极性加权成像方法可以对 结构中裂纹等缺陷进行精确的定位,却无法对裂纹类缺陷进行方向识别。2007年期刊论文 "Advanced reflector characterization with ultrasonic phased arrays in NDE applications"提出了基于幅值的矢量全聚焦成像,通过将全阵列进行子阵列划分,利用该 基于幅值的矢量全聚焦方法提取了缺陷的特征信息,成功地区分了孔和裂纹,并对裂纹的 方向进行了定量识别。本专利的创新点在于借鉴极性加权成像的基本思想,提出了一种基 于极性加权的矢量全聚焦成像方法。通过在阵列中构造多个子阵列,求解出任意成像点处 的矢量,然后根据成像点矢量的方向来判断裂纹类缺陷的方向,实现了对裂纹类缺陷的定 位检测,而且能有效地识别出裂纹类缺陷的方向。此方法与基于幅值的矢量全聚焦成像方 法相比,成像质量以及裂纹方向测量精度都有了很大的提高。另外,对缺陷方向、形状等特 征识别也存在其它的方法,2015年硕士论文"结构中裂纹超声相控阵识别方法研究及其应 用"中将基于散射系数矩阵的裂纹方向识别方法应用到裂纹方向测量,并用主成分分析法 对散射系数分布特征指标进行了分析,研究了子阵列参数和探头位置对裂纹方向识别的影 响,确定了最佳检测参数。由于常规矢量全聚焦成像方法仅利用信号幅值信息,其成像质量 受噪声、旁瓣和栅瓣等的影响大,信噪比和分辨率低,缺陷的定量识别能力有限,本发明综 合利用全矩阵数据的幅值和相位信息,提出一种基于极性加权的矢量全聚焦成像方法,实 现金属结构中裂纹类缺陷的方向识别。

【发明内容】

[0005] 本发明的目的在于提出一种基于极性加权的矢量全聚焦成像的超声阵列裂纹类 缺陷方向识别方法。该基于极性加权的矢量全聚焦成像的原理是在阵列换能器中构造多个 子阵列,通过计算每一子阵列在任意成像点处的单位方向矢量和其极性加权成像幅值矩 阵,得到每一子阵列在任意成像点处的特征矢量;将计算所得的所有子阵列特征矢量进行 合成,得到合成特征矢量;对合成特征矢量的幅值进行全局化处理,即令合成特征矢量的幅 值等于全阵列所得的极性加权成像在任意聚焦点处的幅值,最终便可得到全阵列在任意成 像点处的幅值矢量。
[0006] 与现有检测方法相比,本发明具有以下优点:(1)对阵列数据的相位信息加以利 用,定义极性一致因子对合成输出进行加权处理,较好的提高了缺陷检测精度,以及对小缺 陷的检出能力;(2)在阵列中构造多个子阵列,计算子阵列中各成像点的矢量,根据矢量的 方向确定缺陷的方向,获取更多的缺陷特征信息,实现了裂纹类缺陷的方向识别。
[0007] 该方法需要的检测装置包括计算机1、相控阵检测仪2、线阵换能器3和被测试件4。 其中,相控阵检测仪2-端与计算机1连接,另一端与线阵换能器3连接,线阵换能器3与被测 试件4通过耦合介质进行耦合。在计算机1的控制下相控阵检测仪2中的激励/接收模块产生 激励信号,通过线阵换能器3激励出超声波信号沿被测试件传播,并通过换能器接收超声回 波信号,然后通过相控阵检测仪中的信号激励/接收模块传输到计算机中,通过计算机中安 装的与相控阵检测仪配套的采集软件即可获得检测的A扫波形,其中线阵换能器共有32个 阵元。
[0008] 本发明提出的基于极性加权的矢量全聚焦成像的超声阵列裂纹类缺陷方向识别 方法,其基本原理在于:
[0009] 假设线性阵列换能器阵元的个数为N,则采集得到NXN的全矩阵数据rij(t),其中 的i表示激励阵元,j表示接收阵元。
[0010]通过构造复解析函数RdthRMO+jRQdt),便可得到信号的瞬时相位,公式 如下:
[0012]其中RUt)称为同相分量,是信号阳⑴本身;RQlj⑴称为正交分量,是原信号的 希尔伯特变换。
[0013]将%归一化到[-π,JT],并将信号的相位区间[-JT,JT]分为两部分:

代表负极性。如果瞬时相位同时落在两个区间之一,就认为所有的信号 是完全一致的,也就是说,所有的孔径数据有同样的极性,因此用孔径数据的符号位值代替 相位值,孔径数据符号位的计算公式如下:
[0015]当激励阵元为i时,计算N个接收信号的符号位1^的方差为:
[0017]因为=#,因此,符号位的标准差可表示为:
[0019]定义激励阵元为i时,极性一致因子SCFi的公式如下:
[0021] 从公式(5)中可知,当所有孔径数据的符号位相等时,极性一致因子50?1等于最大 值1;当孔径数据的符号位一半为正极性,一半为负极性时,SCF等于(KSCF因子的大小代表 对信号幅值的抑制程度的强弱。
[0022] 设F为任意成像点,其坐标为(x,z),当激励阵元为i时,其对应的SCF因子记作SCFi (X,z),用得到的SCFi对合成输出尺^ WxlZ))进行加权;最终将加权后的幅值 进行叠加。因此,可得任意成像点处的幅值公式ISCF( X,z),如下式所示:
[0024]式中,tij(x,z)代表声波从第i个阵元激励传播到成像点(x,z),再被第j个阵元接 收所需要的时间,可由特定的延迟时间公式计算获得。tij (X,z)的计算由总的传播距离除以 波速c即可得到:
[0026] 将上述极性加权成像的基本思想引入到矢量全聚焦成像中,通过构造子阵列来实 现基于极性加权的矢量全聚焦成像。现假设N个阵元为一个全阵列,将该阵列划分为K个子 阵列,每个子阵列中含有η个阵元(n<N),相邻两个子阵列间的阵元个数为m(m<N)。则第k 个子阵列对应的阵元在全阵列中的序号最小值为l+m(k-l),最大值为n+m(k-l),其中,k = 1,2,3..,K〇
[0027] 利用下式可得第k个子阵列在任意成像点的特征矢量为#'(χζ):
[0029]其中,/以.(^)为第k个子阵列的极性加权成像公式,为第k个子阵列单位 方向矢量,公式如下:
[0032]式中,&是第i个阵元激励超声波入射到任意成像点后经第j个阵元接收形成的法 线方向的单位方向矢量,依据反射定理可知,该单位方向矢量的方向会与反射面垂直,具体 计算公式可表示为:
[0034]得到每个子阵列的特征矢量?^(χ,ζ)后,对所有子阵列的特征矢量进行合成,以获 得准确的缺陷方向信息。若对得到的子阵列特征矢量进行简单地叠加,会使计算得到的缺 陷方向偏离反射能量最强的方向,使得裂纹方向误差较大。为了获得准确的裂纹方向信息, 应使合成后的特征矢量方向接近反射能量最强的方向。为此,在矢量求和过程中引入权重 因子,合成后的特征矢量表示为:
[0036]式中,α为子阵列特征矢量合成加权因子。
[0037]为提高缺陷检测精度及对小缺陷的识别能力,对矢量合成后成像点(x,z)处的特 征矢量幅值进行全局化处理,即令合成后特征矢量幅值等于进极性加权成像得到的 成像点处的幅值,这样处理后,全阵列在聚焦点(x,z)处的矢量成像特征矢量可表示为:
[0039 ]矢量成像特征矢量? (τ, z)的方向与该点处的反射面能量最强的方向平行,因此,可 提取出缺陷的方向信息。
[0040] 为实现上述目的,本发明采用的技术方案为一种基于极性加权的矢量全聚焦成像 的超声阵列裂纹类缺陷方向识别方法,具体可以按照以下步骤实施检测,方法流程如图2所 不。
[0041] 步骤一:在如图1所示的检测装置下进行实验,其中,实验所用阵列换能器中心频 率为f,阵元总个数为Ν,单个阵元的宽度为a,相邻两阵元的中心距离为Ρ,超声波在被测试 件中的传播波速为c,则波长A = c/f。通过全矩阵模式采集得到时域信号rij(t)(i = l,2, 3...化」=1,2,3...?,其中,下标1表示阵列换能器中第1个阵元激励,」表示阵列换能器中 第j个阵元接收。
[0042] 步骤二:对采集到的时域信号rij(t)进行希尔伯特变换得到信号的包络,将此时得 到的信号称为包络信号g^(t)。
[0043] 步骤三:建立成像坐标系,如图3所示。其中,图中〇为坐标原点,X轴表示与换能器 位置平行
当前第1页1 2 3 4 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1