全温区热电两场透射电子显微镜原位样品杆的制作方法

文档序号:10470317阅读:474来源:国知局
全温区热电两场透射电子显微镜原位样品杆的制作方法
【专利摘要】本发明公开了一种全温区热电两场透射电子显微镜原位样品杆,包括DEWAR固定圈、DEWAR外罐上部、DEWAR外罐下部、导向销、样品杆外壳、密封圈、固定件和样品杆头、DEWAR內罐上部、DEWAR內罐下部、加热模块、固定板、真空电学接头、导线孔、样品杆内杆、PCB转接板,原位测试芯片。本发明在大温区设计的基础上,可以直接在样品处添加电学信号进行样品材料热电性能研究。采用液氮实现低温及高温冷却功能,快速制冷降温;样品杆头采用可拆卸方式,可以更换扩展功能,实现单一低温、高温或同时实现全温区;加热模块采用芯片微区加热方式,降低热接触,减小热漂移。使用加大工作微区设计,测温元件采用电阻信号变化检测,可以实现实时准确的温度检测。
【专利说明】
全温区热电两场透射电子显微镜原位样品杆
技术领域
[0001]本发明属于纳米材料测量领域。涉及透射电子显微镜样品观察及电、热学测量的样品杆,主要用于微纳米尺度下材料相变及热电性能研究。
【背景技术】
[0002]热电及相变是材料和器件的重要性质,可以反映材料和器件的诸多物理性能,1823年发现的塞贝克效应和1834年发现的帕尔帖效应为热电能量转换器和热电制冷的应用提供了理论依据。热电材料可以将生活中生成的许多废弃热能如:汽车尾气、工厂锅炉排放的气体等加以转换,使其成为再次可以使用的能源。对于热电及相变材料的原位研究有利于进一步提高功能材料利用率,促进现有能源产业结构升级转型。
[0003]由于透射电子显微镜样品腔室尺寸(毫米量级)限制,透射电子显微镜中的原位技术难度在于不但要将各种物理场准确的加载在样品上,同时还要保证一系列苛刻的条件,例如保持样品极尚的机械稳定度,保持电镜系统超尚的真空度,不能对成像电子广生太大影响,结构必须紧凑以便适应狭小的电镜样品室的尺寸等等。因此,实现在透射电子显微镜下的多场调控研究仍然是极具挑战性的课题。
[0004]传统具有变温功能的透射电子显微镜样品杆结构复杂,功能单一,技术要求高,价格昂贵,国际上只有少数商家可以研制和生产。更重要的是以单一物理场研究为主要方式,无法实现多场调控条件下性质研究。国内外尚无可加电、热场的全温区透射电子显微镜原位样品样。现有商业或自主开发的透射电子显微镜样品杆,多采用样品杆后端改造方式,实现低温效果,但由于透射电子显微镜样品杆尺寸限制,所加各部件构造的控温范围小,或者温度漂移大,主要存在以下问题:
[0005]1.现有低温样品杆,但只能实现低温段,对材料研究具有局限性;不能多物理场扩展,造成功能单一,无法实现多场调控下材料性能研究。
[0006]2.高温样品杆产生大量热量,且加热区域大,样品漂移大,极易损伤透射电镜样品杆,寿命短,大大限制了对样品的观察和分析能力。
[0007]3.样品台温度分布不均匀,并且由于测温元件与实验样品距离较远导致温度检测不准确。

【发明内容】

[0008]本发明的目的是克服现有技术的不足,提供了一种全温区热电两场透射电子显微镜原位样品杆。本发明的技术方案如下:
[0009 ] 全温区热电两场透射电子显微镜原位样品杆包括DEWAR固定圈、DEWAR外罐上部、DEWAR外罐下部、导向销、样品杆外壳、密封圈、固定件、样品杆头、DEffAR内罐上部、DEffAR内罐下部、加热模块、固定板、样品杆内杆、PCB转接板和原位测试芯片;
[0010] 所述的DEWAR外罐上部与DEWAR外罐下部密封连接,DEWAR内罐上部通过DEWAR固定圈与DEWAR外罐上部固定连接,DEWAR内罐上部与DEWAR内罐下部密封连接,DEWAR内罐下部下方设置有加热模块和固定板,DEWAR内罐下部侧壁与样品杆内杆一端密封连接,样品杆内杆另一端与样品杆头连接;DEWAR外罐下部侧壁与样品杆外壳的一端密封连接,导向销与样品杆外壳连接,用于导向定位,样品杆外壳与密封圈连接,实现透射电子显微镜内外的真空隔绝。样品杆外壳另一端与样品杆内杆另一端通过固定件连接;PCB转接板与样品杆头连接,原位测试芯片与样品杆头连接。
[0011]进一步的,所述的原位测试芯片由测温电极、控温电极、工作区域、样品观察孔四部分构成,样品观察孔均匀分布于工作区域中,控温电极通过芯片表面电极给工作区域进行供电,测温电极通过芯片表面电极检测电学信号。
[0012]优选的,所述的加热模块位于固定板下部并有固定板固定,加热模块采用芯片微区加热方式。所述的工作区域通过焦耳热原理实现微区电学加热。
[0013]优选的,根据本发明的一个实施例,所述的全温区热电两场透射电子显微镜原位样品杆还包括真空电学接头、导线孔,所述的PCB转接板连接的导线通过导线孔排布到样品杆后端,并通过真空电学接头将导线连接到透射电子显微镜外部。
[0014]优选的,所述的样品杆头与样品杆内杆的连接结构为可拆卸式结构。
[0015]样品杆内杆采用导热性优良的金属材料制作,实现短时间快速降温制冷,品杆外壳与样品杆内杆通过固定件连接。固定件为塑料绝热材质,既可以实现样品杆内外的温度绝缘,又可以给样品杆内杆提供支撑作用,增强样品杆稳定性。
[0016]PCB转接板实现导线汇聚排布作用,与样品杆头连接,原位测试芯片与样品杆头连接。原位测试芯片由测温电极、控温电极、工作区域、样品观察孔四部分构成。其中工作区域通过焦耳热原理实现微区电学加热,样品观察孔用于承载试验样品,实现透射电子显微镜的原位观察。
[0017]PCB转接板连接的导线通过导线孔排布到样品杆后端,最后通过真空电学接头将导线连接到透射电子显微镜外部。
[0018]使用前通过加热模块给DEWAR内罐加热烘烤,样品杆前端通过样品杆配套干栗系统烘烤,实现样品杆内部的洁净,防止液氮倒入后的结冰等现象影响正常使用;给DEWAR内罐倒入液氮,样品杆头也浸泡在液氮环境中,实现样品快速冷却降温;安装原位测试芯片,电学信号通过30um的金线与PCB转接板连接,实现工作区域的微区加热及电学信号检测;正常使用时以最低温度为工作温度的基准温度,通过控制原位测试芯片的电信号大小,控制工作区域的温度,实现工作区域样品的原位观察。
[0019]本发明与现有技术相比的有益效果是:
[0020]1.本发明在大温区设计的基础上,可以直接在样品处添加电学信号,进行样品材料热电性能研究。
[0021 ] 2.采用液氮实现低温及高温冷却功能,快速制冷降温;样品杆头采用可拆卸方式,可以更换扩展功能,实现单一低温、高温或同时实现全温区;加热模块采用芯片微区加热方式,降低热接触,减小热漂移。
[0022]3.为了使样品台温度分布均匀,使用加大工作微区设计,测温元件采用电阻信号变化检测,可以实现实时准确的温度检测。
[0023]不同功能的透射电子显微镜样品杆已经成为透射电子显微镜最基本配置。同时,目前功能单一的透射电子显微镜原位研究样品杆就如此受到用户青睐的现状,充分预示着全温区热电两场透射电子显微镜原位样品杆一定会有很好的市场前景。
【附图说明】
[0024]图1:全温区热电两场透射电子显微镜原位样品杆整体示意图;
[0025]图2:全温区热电两场透射电子显微镜原位样品杆剖面示意图;
[0026]图3:全温区热电两场透射电子显微镜原位样品杆前端局部示意图;
[0027]图4:全温区热电两场透射电子显微镜原位样品杆测试芯片示意图。
[0028]图中,DEWAR固定圈1、DEWAR外罐上部2、DEWAR外罐下部3、导向销4、样品杆外壳5、密封圈6、固定件7和样品杆头8、DEffAR内罐上部9、DEffAR内罐下部1、加热模块11、固定板12、真空电学接头13、导线孔14、样品杆内杆15、PCB转接板16,原位测试芯片17、测温电极18、控温电极19、工作区域20、样品观察孔21。
【具体实施方式】
[0029]下面结合说明书附图对本发明做进一步说明。
[0030]如图1-3所示,为本发明的一个具体实施例,在本实施中,全温区热电两场透射电子显微镜原位样品杆包括DEWAR固定圈1、DEWAR外罐上部2、DEWAR外罐下部3、导向销4、样品杆外壳5、密封圈6、固定件7、样品杆头8、DEWAR内罐上部9、DEWAR内罐下部10、加热模块11、固定板12、真空电学接头13、导线孔14、样品杆内杆15、PCB转接板16和原位测试芯片17;所述的DEWAR外罐上部2与DEWAR外罐下部3密封连接,DEWAR内罐上部9通过DEWAR固定圈I与DEWAR外罐上部2固定连接,DEWAR内罐上部9与DEWAR内罐下部10密封连接,DEWAR内罐下部10下方设置有加热模块11和固定板12,DEWAR内罐下部10侧壁与样品杆内杆15—端密封连接,样品杆内杆15另一端与样品杆头8连接;DEWAR外罐下部3侧壁与样品杆外壳5的一端密封连接,导向销4与样品杆外壳5连接,用于导向定位,样品杆外壳5与密封圈6连接,实现透射电子显微镜内外的真空隔绝。样品杆外壳5另一端与样品杆内杆15另一端通过固定件7连接;PCB转接板16与样品杆头8连接,原位测试芯片17与样品杆头8连接。所述的样品杆头8与样品杆内杆15的连接结构为可拆卸式结构,可以更换扩展功能,实现单一低温、高温或同时实现全温区。
[0031]所述的加热模块11位于固定板12下部并有固定板12固定,加热模块11采用芯片微区加热方式,降低热接触,减小热漂移。所述的工作区域20通过焦耳热原理实现微区电学加热。所述的PCB转接板16连接的导线通过导线孔14排布到样品杆后端,并通过真空电学接头13将导线连接到透射电子显微镜外部。为了使样品台温度分布均匀,使用加大工作微区设计,测温元件采用电阻信号变化检测,可以实现实时准确的温度检测。
[0032]样品杆内杆采用导热性优良的金属材料制作,实现短时间快速降温制冷,品杆外壳与样品杆内杆通过固定件连接。固定件为塑料绝热材质,既可以实现样品杆内外的温度绝缘,又可以给样品杆内杆提供支撑作用,增强样品杆稳定性。
[0033]如图3和4所示,根据本发明的另一个实施例,所述的原位测试芯片17由测温电极18、控温电极19、工作区域20、样品观察孔21四部分构成,样品观察孔21均匀分布于工作区域20中,控温电极19通过芯片表面电极给工作区域20进行供电,测温电极18通过芯片表面电极检测电学信号。
[0034]PCB转接板实现导线汇聚排布作用,与样品杆头连接,原位测试芯片与样品杆头连接。原位测试芯片由测温电极、控温电极、工作区域、样品观察孔四部分构成。其中工作区域通过焦耳热原理实现微区电学加热,样品观察孔用于承载试验样品,实现透射电子显微镜的原位观察。PCB转接板连接的导线通过导线孔排布到样品杆后端,最后通过真空电学接头将导线连接到透射电子显微镜外部。
[0035]使用本发明装置的工作流程为:使用前通过加热模块给DEWAR内罐加热烘烤,样品杆前端通过样品杆配套干栗系统烘烤,实现样品杆内部的洁净,防止液氮倒入后的结冰等现象影响正常使用;给DEWAR内罐倒入液氮,样品杆头也浸泡在液氮环境中,实现样品快速冷却降温;安装原位测试芯片,电学信号通过30um的金线与PCB转接板连接,实现工作区域的微区加热及电学信号检测;正常使用时以最低温度为工作温度的基准温度,通过控制原位测试芯片的电信号大小,控制工作区域的温度,实现工作区域样品的原位观察。
[0036]最后,还需注意的是,以上公布的仅是本发明的具体实施例。本领域的普通技术人员能从本发明公开的内容直接导出或联想到的所有变形,均应认为是本发明的保护范围。
【主权项】
1.一种全温区热电两场透射电子显微镜原位样品杆,其特征在于包括DEWAR固定圈(1)、DEWAR外罐上部(2)、DEWAR外罐下部(3)、导向销(4)、样品杆外壳(5)、密封圈(6)、固定件(7)、样品杆头(8)、DEWAR内罐上部(9)、DEWAR内罐下部(10)、加热模块(11)、固定板(12)、样品杆内杆(15)、PCB转接板(16)和原位测试芯片(17); 所述的DEWAR外罐上部(2)与DEWAR外罐下部(3)密封连接,DEWAR内罐上部(9)通过DEWAR固定圈(I)与DEWAR外罐上部(2)固定连接,DEWAR内罐上部(9)与DEWAR内罐下部(10)密封连接,DEWAR内罐下部(10)下方设置有加热模块(11)和固定板(12),DEWAR内罐下部(10)侧壁与样品杆内杆(15)—端密封连接,样品杆内杆(15)另一端与样品杆头(8)连接;DEWAR外罐下部(3)侧壁与样品杆外壳(5)的一端密封连接,导向销(4)与样品杆外壳(5)连接,样品杆外壳(5)与密封圈(6)连接,样品杆外壳(5)另一端与样品杆内杆(15)另一端通过固定件(7)连接;PCB转接板(16)与样品杆头(8)连接,原位测试芯片(17)与样品杆头(8)连接。2.根据权利要求1所述的全温区热电两场透射电子显微镜原位样品杆,其特征在于所述的原位测试芯片(17)由测温电极(18)、控温电极(19)、工作区域(20)、样品观察孔(21)四部分构成,样品观察孔(21)均匀分布于工作区域(20)中,控温电极(19)通过芯片表面电极给工作区域(20)进行供电,测温电极(18)通过芯片表面电极检测电学信号。3.根据权利要求1所述的全温区热电两场透射电子显微镜原位样品杆,其特征在于所述的加热模块(11)位于固定板(12)下部并有固定板(12)固定,加热模块(11)采用芯片微区加热方式。4.根据权利要求1所述的全温区热电两场透射电子显微镜原位样品杆,其特征在于所述的工作区域(20)通过焦耳热原理实现微区电学加热。5.根据权利要求1-4任一项所述的全温区热电两场透射电子显微镜原位样品杆,其特征在于还包括真空电学接头(13)、导线孔(14),所述的PCB转接板(16)连接的导线通过导线孔(14)排布到样品杆后端,并通过真空电学接头(13)将导线连接到透射电子显微镜外部。6.根据权利要求5所述的全温区热电两场透射电子显微镜原位样品杆,其特征在于所述的样品杆头(8)与样品杆内杆(15)的连接结构为可拆卸式结构。
【文档编号】G01Q30/20GK105823908SQ201610408612
【公开日】2016年8月3日
【申请日】2016年6月8日
【发明人】夏卫星, 郑修军, 彭勇, 关超帅, 胡阳, 杨保林, 张军伟, 马鸿斌, 薛德胜
【申请人】中国科学院宁波材料技术与工程研究所, 兰州大学
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1