包含测量电流的元件的设备和用于制造其的方法

文档序号:10487334阅读:208来源:国知局
包含测量电流的元件的设备和用于制造其的方法
【专利摘要】该设备(100)包括用于测量电流的元件(10、20、30、40),所述元件被封装在壳体(50)中。所述壳体(50)包括由塑料制成的彼此焊接的第一部分(51)和第二部分(55、57),其共同限定容纳测量元件的空间(52、53)。所述第一部分(51)是不透明的以便吸收用于焊接所述部分的激光束,并且第二部分(57)是透明的以便让所述激光束通过。制造设备(100)的方法包括装配步骤,在其中测量元件(10、20、30、40)被装配至壳体(50)中和组装步骤,在其中所述壳体(50)的所述部分(51、55、57)使用激光焊接方法彼此互相接合。
【专利说明】
包含测量电流的元件的设备和用于制造其的方法
技术领域
[0001 ]本发明涉及一种包含电流测量元件的设备,以及涉及一种用于制造这种设备的方法。
【背景技术】
[0002]本发明具体涉及包含在壳体中的具有芯缠绕磁电路的磁电流传感器的和包含罗柯夫斯基型线圈的电流测量设备的混合电流传感器。
[0003]罗柯夫斯基型电流测量设备,如文件EP-A-2667 205的电流传感器,包含放置在被测电流在其中流动的电流导体或电线周围的由磁性材料制成的支架。导线被缠绕在支架上以形成次级线圈。该单元组成变压器,其中电流导体或电线组成初级线圈以及次级线圈提供测量信号。穿过次级线圈端子提供的电压与流经电流导体或电线的电流强度直接成正比。由于没有磁芯,运行的饱和风险允许测量的宽的动态范围。
[0004]电流传感器的壳体由两部分组成,具有由通过如焊接组装到基座的盖封闭的中空基座。简单通过传感器的电子设备确保电流传感器的绝缘。介电绝缘位于电流线和传感器壳体之间。如果一部分壳体的焊接级别处有缺陷,用户处于危险中。
[0005]特别的为允许插座的增加,例如标准USB类型,由于USB插座产生电流泄漏,有必要提高电流传感器的壳体能够达到的绝缘。例如,电流传感器被集成至绝缘器中展示配备有具有USB插座的可编程接口的正面。电流传感器被连接至正面而不是电线。有必要使用户与存在于隔离器以及通过传感器的电压隔离。
[0006]本发明的设想提议具有改进的在高工作温度,超过1400C的介电绝缘的电流传感器。

【发明内容】

[0007]为了该目的,本发明的主题是一个设备,其包含封装在壳体中的电流测量元件,壳体包含由塑料组成的第一部分和第二部分,彼此焊接,其共同限定用于容纳测量元件的空间。第一部分是不透明的,从而用于吸收焊接壳体部分的激光束。第二部分是透明的,从而允许激光束穿过。
[0008]借助本发明,用于设备壳体采用的材料允许壳体的第一部分激光焊接在第二部分上,因此提高壳体达到的电绝缘。因此,不必要采取壳体中的电子设备确保双-绝缘功能的措施,这是昂贵的、复杂的并且导致增加的容积。
[0009]根据本发明的有利方面,这种设备可结合一个或多个以下特征,采取任何技术上可采用的组合:
[0010]-第一部分吸收至少60%,优选的吸收至少90%的,波长位于625至IlOOnm之间的激光束的能量,第一部分的材料特别的是黑色。
[0011]-第二部分允许穿过至少30%的波长位于625至IlOOnm之间的激光束的能量。
[0012]-第一部分限定所述空间和第二部分是平面。
[0013]-优选的,第二部分的厚度在0.5至3mm之间,优选的在0.8至1.6mm之间。
[0014]-壳体的部分是由具有有机磷阻燃剂的聚合组合物制造的。
[0015]-至少壳体的一个部分的边缘设有突出部,优选的可切开。
[0016]本发明的另一方面涉及用于制造设备的方法,该设备包含封装在壳体中的电流测量元件,所述壳体包含共同限定用于接收测量元件的空间的第一部分和第二部分,方法包括将测量元件嵌合到壳体中的装配步骤。方法包括装配步骤,在其中壳体的各部分通过激光焊接过程被装配在一起。
[0017]根据本发明的有利方面,这种方法可结合一个或多个以下特征,采取任何技术上可采用的组合:
[0018]-方法包括嵌合步骤和装配步骤之间的中间步骤,在其中壳体被减压,例如减压超过60kPa,优选的超过90kPa。
[0019]-优选地,至少壳体的一个部分的边缘设置按压突出部。在中间步骤期间,突出部的按压加固壳体各部分之间机械的接触。。
【附图说明】
[0020]通过阅读仅通过示例的方式给出根据本发明的设备和其制造方法的以下说明书时,本发明将更好理解,参考所附附图,其中:
[0021]-图1是根据本发明的电流传感器的分解透视图。
[0022]-图2是在装配配置中的电流传感器的透视图。
[0023 ]-图3和图4是根据图1中的箭头F3和F4,图1和图2的电流传感器的壳体的基座的透视图。
【具体实施方式】
[0024]图1和图2中表示的电流传感器100包括组装在壳体50中的电流的磁传感器30以及电流测量装置40。这是混合电流传感器。
[0025]磁传感器30包括缠绕磁路33的第一线圈31。
[0026]测量装置40包括罗柯夫斯基型的次级线圈41,设置成使得磁传感器30的第一初级电路对应电流测量设备40的第二初级电路。罗柯夫斯基型线圈41由在其上缠绕金属线的绝缘主体(carCaSS)43组成。通过示例性实施例的方式,主体43是中空、圆形的,由磁性材料、刚性或半刚性组成并且优选的是圆柱形或卵形横截面。缠绕在主体43上的金属线优选的由铜或铜基合金组成。
[0027I壳体50配有中心凹槽90,允许在其上执行电流测量的电流导体或电流线的通过。此电流导体或电流线形成电流测量设备40的主要电路。
[0028]电流传感器100包括电流的采集和测量的电子装置20。电子装置20被提供通过磁传感器30的线圈31。
[0029]连接盒10包括将测量设备40连接至电子装置20的固定装置。
[0030]盒50包括第一部分或基座51,其包括用于容纳采集和测量的电子装置20的空间52。空间52的一个壁56包括用于连接盒10通过的开口 58。
[0031]固定装置被设计成通过将盒10卡扣-紧固在电流测量设备40上而定位和保持。盒10在可再生位置被固定在测量设备40上,因此使它更容易适应电流传感器100。
[0032]线圈41的主体43包括能与连接盒10的固定装置配合的卡扣(snap)-紧固装置。
[0033]盒10的第二固定装置被设置成通过将盒10和测量设备40卡扣-紧固到壳体50上而进行定位和保持。由连接盒10和测量设备40形成的单元在可再生产位置被固定至壳体50,因此使它更容易适应电流传感器100。
[0034]盒10包括分别连接至线圈41和电子装置20的电管脚13。以举例的方式,电管脚13被焊接至电子装置20。可使用一种通过激光焊锡的自动焊接方法。可选的,电子装置20包括旨在连接至插座的连接垫。
[0035]基座51界定第一中空外壳53,在其内部定位有磁传感器30和测量设备40。基座51包括全局平面后壁59,其界定电流传感器100的背面AR并通过开口 58与第二外壳52连通。后壁59联结垂直延伸至后壁59的基座的侧壁54。这些壁54的外部边缘B53在第一平面P53上延伸。外壳53是朝壳体50外部开放的中空体积,离开后壁59。
[0036]后壁59具有整体的矩形形状,长度小的边缘呈半圆形。
[0037]壳体50包括固定在基座51的空间53的壁54的外部边缘B53上的第二部分或第一平面盖57,其封闭空间53并界定壳体50的前表面AV。盖57与后壁59平行并且其形状与后壁59的形状类似。被焊接至壁54的边缘B53的盖57的外部边缘标示为B57。
[0038]磁传感器30通过电轨道被连接至电子装置20。电子装置20包括设计成放置在第二空间52的壁56内部的印刷电路板。印刷电路板包括通过盒1的电管脚13的互锁而允许通过的孔21。
[0039]在可选的方式中,壳体50包括旨在固定在基座51的第二外壳52的壁56的外部边缘B52上的第二盖55。边缘B52在第二平面P52中垂直于第一平面B53延伸。边缘B52界定出现在壳体50外部的外壳52的开口。
[0040]基座51和盖55与57共同界定壳体50的中空体积,即外壳53。
[0041]基座51和盖55与57由塑料材料制造,例如聚合物,适于允许通过激光焊接工艺将盖55与57和基座51装配。用于此装配的激光束的波长,由图2中箭头F55和F57表示,位于红外区域中,即625至I 10nm之间。以举例的方式,激光束F55或F57的波长等于980nm。以举例的方式,激光束F55或F57的能量等于480W。
[0042]对于第一盖57的焊接,激光束F57被垂直定向至盖57和边缘B53的平面,平行于基座51的壁54。激光束F57被放置于壳体50的外部,在空间53的壁54的延长部分并且其被定向在盖57的方向。
[0043]对于第二盖55的焊接,激光束F55被垂直定向至盖55的平面,平行于壁56和边缘B52,以及在它们的延长部分。激光束F55被放置于壳体50的外部,在外壳52的壁56的延长部分并且其被定向在盖55的方向。
[0044]激光束F55或F57融化壳体50的材料,从而焊接盖55或57至基座51的边缘B52或B53。因此,获得了基座51和盖55或57之间的材料连续性并且这些元件之间的自由空间被移除,从而提高了壳体50的电绝缘。因此实现了基座51和盖55或57之间的绝缘密封性。
[0045]选择盖55和57的材料以便在焊接期间,激光束F55或F57穿过盖55或57的材料并且其被壳体51的材料吸收。盖55和57是透明的以便允许激光束F55或57至少部分的穿过,而基座51是不透明的以便至少部分的吸收激光束F55或F57。
[0046]盖55和57允许激光束F55或F57以比基座51更明显的方式穿过。类似的,基座51以比盖55和57更明显的方式吸收激光束F55或F57。
[0047]术语“透明”应理解为是指盖55和57允许至少通过激光束F55或F57总强度的60%,优选的至少90%。盖55和57的透明值取决于它们的相应厚度。优选的,盖55和57的厚度在
0.5至3_之间,优选的在0.8至1.6_之间。例如,盖55和57具有1.2_不变的厚度。
[0048]术语“不透明”应理解为是指基座吸收激光束F55或F57总强度的至少30%。
[0049]例如,盖55与57和基座51由防火塑料制成,由具有阻燃的聚合物组合物组成。例如,聚合物组合物是用玻璃纤维增强至20%至40%水平和耐火性的部分芳族聚酰胺型树月旨,优选的具有一种有机磷防火系统。“自然”色调将优选的被选择用于盖55和57。其它浅色可能是适当的。“黑”色调将优选的被选择用于基座51,但是其他吸收颜色可能是适当的。例如通过加入有利激光束Fl或F2吸收的黑颜料得到黑色。这可以是碳黑型矿物颜料或尼格苯胺黑(negrosin)型有机颜料。
[0050]这些材料符合与电绝缘相关的标准CEI60947-1。如该标准的表XV所示,对于1000V的指定绝缘电压Ui,泄漏线Lf的最小长度,对于污染程度3和组I的材料,等于12.5mm。对于1250V的指定绝缘电压Ui,泄漏线Lf的最小长度等于16mm。对于增强的绝缘,这些长度加倍。材料组由它们可比较的跟踪指数定义,该指数大于或等于组I的600V。
[0051 ] 污染程度由标准CEI 60664-1: 1992定义并且表征微环境设想的污染。污染程度3表示存在导电污染或存在在缩聚之后变得导电的导电效果差、非导电污染。
[0052]根据标准CEI61140,第5.1节,涂料,清漆,油漆和类似的产品不被视为在正常工作期间构成防止电击的足够绝缘保护。
[0053]作为变型,壳体50的基座51和第一盖57被替换为两个半壳体,其中每一个具有中空形状并且其中每一个包括在一平面延伸的外部边缘以及旨在固定在一起。当它们在已组装结构时,也就是说当它们的外部边缘固定在一起时,壳体的这两个部分然后界定用于容纳磁传感器和测量设备40的体积。
[0054]参考混合电流传感器已描述的本发明包括罗柯夫斯基型线圈,但是也可适用其他类型的电流传感器。在已描述的示例中,元件10、20、30和40形成测量电流的装置,但这些元件可被其他类型电流测量装置替代。
[0055]作为变型,本发明适用任何包括电流测量元件的系统,例如传感器、感应器、霍尔效应传感器或磁阻型的传感器、或实际上的机电元件,例如诸如控制组件的致动器,特别是隔离器。
[0056]本发明也涉及一种用于制造包含电子或电磁电流测量元件的系统的方法。这可以是电流传感器,如上文描述的电流传感器100。
[0057]该方法包括,在第一步骤中,将盒10,电子装置20、磁传感器30和测量设备40装配/嵌合至壳体50的基座51的空间53中。
[0058]盒10被固定在测量设备40的主体43中。罗柯夫斯基型线圈41的导线被电连接至盒10的电管脚13。
[0059]盒10和主体43形成的单元然后被放置和固定在壳体50的基座51的外壳53中。
[0060]磁传感器30随后被固定在壳体50的基座51中。固定装置使其可以将磁传感器30和测量设备40固定至壳体50的基座51。在电轨道和磁传感器30的线圈31之间形成电连接。例如可通过电焊接确保该连接。
[0061]电子装置20的印刷电路板随后被放置在第一空间52的壁之内。连接盒10的电管脚13穿过位于电路上的孔21。电管脚13然后优选的通过激光焊锡的自动焊接工艺被焊接。
[0062]在随后的步骤中,盖55和57被组装至基座51。基座上盖55和57的组装顺序是不重要的。
[0063]第一盖57被放置在基座51的第一空间53的壁54的外部边缘B53上。第一盖57和边缘B53在平面P53中延伸,确保边缘B53和盖57之间的机械接触。第一盖57然后通过激光束F57的装置被焊接在边缘53上。
[0064]为了改善激光焊接期间基座51和第一盖57之间的机械接触,在盖55的焊接之前,抽吸系统被用于将壳体50的内部抽成真空。例如,通过基座51的开口 58创建真空。真空开关验证壳体50内部压力。在激光束F57通过期间,注意到盖57的厚度减少了0.3mm。尽管这种变形,降压使得确保盖57和基座51之间的机械接触成为可能。例如,降压大于60kPa,优选的大于80kPa。
[0065]为了改善盖57和壳体51之间的机械接触,盖57设有沿盖57的边缘B57分布的突出部70。在盖57的焊接期间,当壳体50被降压,未示出的机器人的指状物,按压在这些突出部70上以便有利于基座51的接触。优选的,突出部是可切开的以便它们随后能被轻易撕开。
[0066]第二盖55被放置第二空间52的壁56的外部边缘B52上。外部边缘B52和第二盖55在平面P52中延伸,从而确保边缘B52和盖55之间的机械接触。第二盖55然后通过激光束F55装置被焊接在边缘52上。
[0067]如在图3中所见,基座51的后壁59在其外表面设有加强肋60,其在该部分模制期间,参与基座51的几何一致性。
[0068]在描述的示例中,基座51限定空间53和盖57是平面。作为变型,壳体50的两个部分51和57可每一个限定一壳体,也就是说显示成凹形。壳体50的中空体积然后通过这两个壳体的结合形成。
[0069]多个盖55和57的存在是可选的;壳体50可包括单个盖。
[0070]根据本发明,描述的不同变型可组合在一起,至少部分的组合在一起。
【主权项】
1.设备(100),包括容纳在壳体(50)中的电流测量元件(10,20,30,40),所述壳体(50)包括由塑料制成的第一部分(51)和第二部分(55,57),彼此焊接,其共同限定容纳所述电流测量元件的外壳(52,53),其特征在于,所述第一部分(51)是不透明的,从而吸收用于焊接所述部分(51,55,57)的激光束(F55、F57),所述第二部分(57)是透明的,从而允许所述激光束(F55、F57)通过。2.根据权利要求1所述的设备(100),其特征在于,所述第一部分(51)吸收至少60%,优选的吸收至少90%的,具有位于625至1100纳米之间的波长的激光束(F55、F57)的能量,所述第一部分(51)的材料尤其是黑色。3.根据权利要求1和2之一所述的设备(100),其特征在于,所述第二部分(55、57)允许通过至少30%的具有位于625至1100纳米之间的波长的激光束(F55,F57)的能量。4.根据权利要求1至3之一所述的设备(100),其特征在于,所述第一部分(51)界定所述外壳(52、53),所述第二部分(55、57)是平面。5.根据权利要求4所述的设备(100),其特征在于,所述第二部分(55、57)的厚度处于0.5至3毫米之间,优选地处于0.8至1.6毫米之间。6.根据前述权利要求之一所述的设备(100),其特征在于,所述壳体(50)的所述部分(51,55,57)由具有有机磷阻燃剂的聚合物组合物制成。7.根据前述权利要求之一所述的设备(100),其特征在于,所述壳体(50)的至少一个所述部分(51,55,57)的所述边缘(B52,B53,B57)设有突出部(70),优选的可切开。8.用于制造设备(100)的方法,包括容纳在壳体(50)中的电流测量元件(10,20,30,40),包含共同限定容纳所述电流测量元件的外壳(53)的第一部分(51)和第二部分(55,57),所述方法包括装配步骤,其中所述电流测量元件(10,20,30,40)被装配至壳体(50)中,其特征在于,其包括组装步骤,其中,所述壳体(50)的所述部分(51,55,57)通过激光焊接方法组装在一起。9.根据权利要求8所述的方法,其特征在于,其包括装配步骤和组装步骤之间的中间步骤,其中所述外壳(52,53)被减压,例如减压超过60kPa,优选的超过80kPa。10.根据权利要求9所述的方法,其特征在于,所述壳体(50)的至少一个部分(51,55,57)的边缘(B52,B53,B57)设有按压突出部(70),在中间步骤期间,突出部(70)上的按压增强所述壳体(50)的所述部分(51,55,57)之间的机械接触。
【文档编号】G01R19/00GK105842515SQ201511036282
【公开日】2016年8月10日
【申请日】2015年12月23日
【发明人】A·奥利维尔, D·洛格利斯西, M·拉佩奥克斯
【申请人】施耐德电器工业公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1