一种用于拉曼光谱测试的碳纤维样品的制备方法

文档序号:10510389阅读:1180来源:国知局
一种用于拉曼光谱测试的碳纤维样品的制备方法
【专利摘要】本发明公开了一种用于拉曼光谱测试的碳纤维样品的制备方法,其特征是:在硅片上涂上胶水,将一束碳纤维丝缠绕在硅片上涂有胶水的位置,缠绕成一排碳纤维丝;在碳纤维丝上涂抹胶水,在缠绕有碳纤维丝的区域相对两侧各粘上一块陪片;放入模具中,夹紧,加热固化后冷却至室温;用金刚石线切割机沿垂直于固化的样品中碳纤维丝束的方向切割,得到截面样品;或者用金刚石线切割机沿平行于固化的样品中碳纤维丝束的方向进行切割,得到剖面样品;将样品进行研磨,即制得截面碳纤维样品或剖面碳纤维样品。本发明提供一种快速制备碳纤维样品的方法,且制得的碳纤维样品光滑、平整,便于用拉曼光谱测试研究碳纤维的皮芯结构,全面了解碳纤维的结构信息。
【专利说明】
一种用于拉曼光谱测试的碳纤维样品的制备方法
技术领域
[0001]本发明属于拉曼光谱测试样品的制备,涉及一种用于拉曼光谱测试的碳纤维样品的制备方法。特别适用于拉曼光谱测试的碳纤维截面和/或剖面样品的制备。
【背景技术】
[0002]碳纤维是既有碳素材料的结构特性,又有纤维形态特征的无机高分子纤维。它具有尚比强度、尚比t旲量、耐尚温、抗腐蚀和自润滑等一系列优良的性能,是先进复合材料最重要的增强材料。因此广泛应用于航天航空等军事领域和文体、机械、运输等民用领域,具有广阔的应用前景。
[0003]碳纤维的性能主要由其微观结构决定,皮芯结构是碳纤维的一种缺陷结构。研究表明,碳纤维皮层和芯部结构差异会降低其结构的径向均一化,导致杨氏模量、拉伸强度等皮层高而芯部低,严重影响其力学性能。因此,利用现代分析测试手段对碳纤维皮芯结构进行表征,有利于增加我们对碳纤维结构的认识。目前表征碳纤维皮芯结构的方法中最常用的是拉曼光谱,拉曼光谱技术可以从分子振动的角度探测碳纤维的微观结构,通常用于分析碳纤维表面和截面的碳结构和石墨化程度,进而获得碳纤维截面区域的信息,分析各区域存在的差异。用于拉曼测试的碳纤维截面样品要求光滑平整无缺陷,对于碳纤维这样的柔软丝材而言,制备完整可用于观察的截面样品并不容易。现有技术中,传统的制样方法是将碳纤维丝束包埋在环氧树脂中,再进行切割、打磨、抛光,获得截面样品。由于环氧树脂的粘稠性高,难以将碳纤维垂直固定在环氧树脂中,并且研磨过程中环氧树脂会将碳纤维截面覆盖,无法得到完整的碳纤维截面样品,成功率较低。目前对于这些问题还没有有效的解决方法,极大程度上取决于经验,使实验误差较大。

【发明内容】

[0004]本发明的目的旨在克服现有技术中的不足,提供一种用于拉曼光谱测试的碳纤维样品的制备方法。本发明提供的用于拉曼光谱测试的碳纤维截面和/或剖面样品的制备方法,可得到完整、光滑的截面和/或剖面样品,适用于利用拉曼光谱研究碳纤维的皮芯结构。
[0005]本发明的内容是:一种用于拉曼光谱测试的碳纤维样品的制备方法,其特征是包括以下步骤:
a、硅片涂胶和绕丝:在长方体形硅片上涂上胶水,将一束碳纤维丝(碳纤维丝的直径为5?8μπι,较好的是取10?30根碳纤维单丝即为一束)(均匀、整齐地)缠绕在硅片上涂有胶水的位置,缠绕成宽2?5mm的一排碳纤维丝;
b、对粘陪片:在硅片相对两侧的碳纤维丝上涂抹胶水,然后在缠绕有碳纤维丝的区域相对两侧各粘上一块陪片,得到粘贴有陪片的样品;
C、固化:将粘贴有陪片的样品放入模具(较好的是聚四氟乙烯材料制作的模具)中,用弹簧夹夹紧,在115?125°C的温度下加热固化2?3小时,然后冷却至室温,得到固化的样品; d、切割样品:用金刚石线切割机沿垂直于固化的样品中碳纤维丝束的方向切割,得到截面样品;或者用金刚石线切割机沿平行于固化的样品中碳纤维丝束的方向进行切割,得到剖面样品;
e、研磨:将截面样品用研磨柱固定后进行研磨,即制得(完整的)截面碳纤维样品;或者将剖面样品样品用研磨柱固定后进行研磨,即制得(完整的)剖面碳纤维样品。
[0006]本发明的内容中:步骤d中所述用金刚石线切割机进行切割固化的样品时,切割速度为0.5mm/min或小于0.5mm/min,以保证样品完整性。
[0007]本发明的内容中:步骤e所述研磨是沿“8”字形轨迹进行研磨,并采用水磨方式进行研磨,以保证样品截面完整。
[0008]本发明的内容中:步骤b中所述胶水为液体状AB胶或现有其它粘接剂,所述AB胶由胶粘剂和固化剂组成,均为市售产品。
[0009]本发明的内容中:所述用于拉曼光谱测试的碳纤维样品的制备方法,其特征是包括以下具体步骤:
a、娃片涂胶和绕丝:在长25mmX宽5mmX厚0.5mm的长方体形娃片上涂上胶水,涂抹区域大小为长3mm X宽5mm,将一束碳纤维丝(碳纤维丝的直径为5?8μηι,较好的是取10?30根碳纤维单丝即为一束)(均匀、整齐地)缠绕在硅片上涂有胶水的位置,缠绕成宽3mm的一排碳纤维丝(缠绕的碳纤维不宜过多,避免在后续的研磨中样品与硅片分离、脱落);
b、对粘陪片:在硅片相对两侧的碳纤维丝上涂抹胶水,然后在缠绕有碳纤维丝的区域相对两侧各粘上一块长3mm X宽5mm X厚0.5mm的陪片,得到粘贴有陪片的样品;然后用刀(可以是手术刀)将未缠有碳纤维丝的娃片切掉,得到一个规格为长3mmX宽5mmX厚1.5mm的粘贴有陪片的样品;
C、固化:将粘贴有陪片的样品放入模具(较好的是聚四氟乙烯材料制作的模具)中,用弹簧夹夹紧,在115?125°C的温度下加热固化2?3小时,然后冷却至室温,得到固化的样品;
d、切割样品:(可以将固化的样品用石蜡粘在载物台上),用金刚石线切割机沿垂直于固化的样品中碳纤维丝束的方向切割(即沿垂直于固化的样品宽5mm的一边进行切割),切割宽度为Imm,得到规格为长3mm X宽Imm X厚1.5mm的长方体截面样品(切割时为避免对样品的损伤,宜采用低速切割);
e、研磨:将长3mmX宽Imm X厚I.5mm的截面样品固定(可以用石錯粘接固定)在研磨台(可以是圆柱形研磨台,或称样品柱)上(并使厚1.5mm X长3mm的一面朝下)、用砂纸进行研磨后,即制得截面碳纤维样品(或称碳纤维截面样品);为防止样品破碎,研磨时较好的是加少量水,且沿“8”字形轨迹进行研磨;研磨过程中不时用显微镜观察碳纤维的情况,确定研磨进度。
[0010]步骤d中所述切割的速度较好的为0.5mm/min。
[0011]步骤e中所述用砂纸进行研磨较好的是依次用600、1200、4000、7000目的砂纸进行研磨。
[0012]本发明的内容中:所述用于拉曼光谱测试的碳纤维样品的制备方法,其特征是包括以下具体步骤:
a、娃片涂胶和绕丝:在长25mmX宽5mmX厚0.5mm的长方体形娃片上涂上胶水,涂抹区域大小为长3mm X宽5mm,将一束碳纤维丝(碳纤维丝的直径为5?8μηι,较好的是取10?30根碳纤维单丝即为一束)(均匀、整齐地)缠绕在硅片上涂有胶水的位置,缠绕成宽3mm的一排碳纤维丝(缠绕的碳纤维不宜过多,避免在后续的研磨中样品与硅片分离、脱落);
b、对粘陪片:在硅片相对两侧的碳纤维丝上涂抹胶水,然后在缠绕有碳纤维丝的区域相对两侧各粘上一块长3mm X宽5mm X厚0.5mm的陪片,得到粘贴有陪片的样品;然后用刀(可以是手术刀)将未缠有碳纤维丝的娃片切掉,得到一个规格为长3mmX宽5mmX厚1.5mm的粘贴有陪片的样品;
C、固化:将粘贴有陪片的样品放入模具(较好的是聚四氟乙烯材料制作的模具)中,用弹簧夹夹紧,在115?125°C的温度下加热固化2?3小时,然后冷却至室温,得到固化的样品;
d、切割样品:(可以将固化的样品用石蜡粘在载物台上),用金刚石线切割机沿平行于固化的样品中碳纤维丝束的方向切割(即沿平行于固化的样品宽5_的一边进行切割,亦即沿垂直于固化的样品长3mm的边进行剖面样品的切割),切割宽度为1mm,得到规格为长1_X宽5_ X厚1.5_的长方体剖面样品(切割时为避免对样品的损伤,宜采用低速切割);
e、研磨:将长ImmX宽5mm X厚1.5mm的剖面样品固定(可以用石錯粘接固定)在研磨台(可以是圆柱形研磨台,或称样品柱)上(并使厚1.5mm X宽5mm的一面朝下)、用砂纸进行研磨后,即制得剖面碳纤维样品(或称碳纤维剖面样品);为防止样品破碎,研磨时较好的是加少量水,且沿“8”字形轨迹进行研磨;研磨过程中不时用显微镜观察碳纤维的情况,确定研磨进度。
[0013]步骤d中所述切割的速度较好的为0.5mm/min。
[0014]步骤e中所述用砂纸进行研磨较好的是依次用600、1200、4000、7000目的砂纸进行研磨。
[0015]与现有技术相比,本发明具有下列特点和有益效果:
(1)采用本发明,有效解决了现有传统的环氧包埋制备碳纤维截面的方法中过程复杂、成功率低的问题,提供了一种简单、有效的制备碳纤维截面和/或剖面样品的方法,本发明方法利用绕丝的方法固定碳纤维,可以同时制备用于拉曼光谱测试的碳纤维截面样品和碳纤维剖面样品,且成功率接近百分之百,便于利用拉曼光谱全面分析研究碳纤维的皮芯结构,并使实验误差明显减小;
(2)采用本发明,制备的样品中存在多个完整的碳纤维截面,有利于同时对多个相同条件下获得的样品进行测试,减小实验误差;另外,光滑平整的截面样品可用于对碳纤维截面做Mapping测试,得到更多的结构信息;本发明方法克服了传统的环氧包埋制样法存在的多种问题,比如难以将碳纤维丝束垂直固定在环氧树脂中、研磨进度慢以及难以得到光滑平整的碳纤维截面等缺陷;本发明方法中不存在难以实现的步骤,获得完美的样品的概率几乎为100%;
(3)本发明用于拉曼光谱测试的碳纤维样品的制备方法适用于各种牌号的碳纤维,不受碳纤维密度、直径、生产厂家的限制,并且对于有一定韧性的超细丝材也同样适用,本发明方法操作容易,简便快速,实用性强。
【附图说明】
[0016]图1为本发明及实施例中剖面碳纤维样品制备流程示意图;
图2为本发明及实施例制备的碳纤维截面样品在拉曼光谱下的照片;
图3为本发明及实施例制备的碳纤维剖面样品在拉曼光谱下的照片。
【具体实施方式】
[0017]下面给出的实施例拟对本发明作进一步说明,但不能理解为是对本发明保护范围的限制,该领域的技术人员根据上述本发明的内容对本发明作出的一些非本质的改进和调整,仍属于本发明的保护范围。
[0018]实施例1:
一种用于拉曼光谱测试的碳纤维样品的制备方法,包括以下步骤:
a、硅片涂胶和绕丝:在长方体形硅片上涂上胶水,将一束碳纤维丝(碳纤维丝的直径为5?8μπι中任一,取10根碳纤维单丝即为一束)(均匀、整齐地)缠绕在硅片上涂有胶水的位置,缠绕成宽2mm的一排碳纤维丝;
b、对粘陪片:在硅片相对两侧的碳纤维丝上涂抹胶水,然后在缠绕有碳纤维丝的区域相对两侧各粘上一块陪片,得到粘贴有陪片的样品;
C、固化:将粘贴有陪片的样品放入模具(较好的是聚四氟乙烯材料制作的模具)中,用弹簧夹夹紧,在115°C的温度下加热固化3小时,然后冷却至室温,得到固化的样品;
d、切割样品:用金刚石线切割机沿垂直于固化的样品中碳纤维丝束的方向切割,得到截面样品;或者用金刚石线切割机沿平行于固化的样品中碳纤维丝束的方向进行切割,得到剖面样品;
e、研磨:将截面样品用研磨柱固定后进行研磨,即制得(完整的)截面碳纤维样品;或者将剖面样品样品用研磨柱固定后进行研磨,即制得(完整的)剖面碳纤维样品。
[0019]实施例2:
一种用于拉曼光谱测试的碳纤维样品的制备方法,包括以下步骤:
a、硅片涂胶和绕丝:在长方体形硅片上涂上胶水,将一束碳纤维丝(碳纤维丝的直径为5?8μπι中任一,取30根碳纤维单丝即为一束)(均匀、整齐地)缠绕在硅片上涂有胶水的位置,缠绕成宽5mm的一排碳纤维丝;
b、对粘陪片:在硅片相对两侧的碳纤维丝上涂抹胶水,然后在缠绕有碳纤维丝的区域相对两侧各粘上一块陪片,得到粘贴有陪片的样品;
C、固化:将粘贴有陪片的样品放入模具(较好的是聚四氟乙烯材料制作的模具)中,用弹簧夹夹紧,在125°C的温度下加热固化2小时,然后冷却至室温,得到固化的样品;
d、切割样品:用金刚石线切割机沿垂直于固化的样品中碳纤维丝束的方向切割,得到截面样品;或者用金刚石线切割机沿平行于固化的样品中碳纤维丝束的方向进行切割,得到剖面样品;
e、研磨:将截面样品用研磨柱固定后进行研磨,即制得(完整的)截面碳纤维样品;或者将剖面样品样品用研磨柱固定后进行研磨,即制得(完整的)剖面碳纤维样品。
[0020]实施例3:
一种用于拉曼光谱测试的碳纤维样品的制备方法,包括以下步骤:
a、硅片涂胶和绕丝:在长方体形硅片上涂上胶水,将一束碳纤维丝(碳纤维丝的直径为5?8μπι中任一,较好的是取20根碳纤维单丝即为一束)(均匀、整齐地)缠绕在硅片上涂有胶水的位置,缠绕成宽3mm的一排碳纤维丝;
b、对粘陪片:在硅片相对两侧的碳纤维丝上涂抹胶水,然后在缠绕有碳纤维丝的区域相对两侧各粘上一块陪片,得到粘贴有陪片的样品;
C、固化:将粘贴有陪片的样品放入模具(较好的是聚四氟乙烯材料制作的模具)中,用弹簧夹夹紧,在120°C的温度下加热固化2.5小时,然后冷却至室温,得到固化的样品;
d、切割样品:用金刚石线切割机沿垂直于固化的样品中碳纤维丝束的方向切割,得到截面样品;或者用金刚石线切割机沿平行于固化的样品中碳纤维丝束的方向进行切割,得到剖面样品;
e、研磨:将截面样品用研磨柱固定后进行研磨,即制得(完整的)截面碳纤维样品;或者将剖面样品样品用研磨柱固定后进行研磨,即制得(完整的)剖面碳纤维样品。
[0021]上述实施例1?3中:步骤d中所述用金刚石线切割机进行切割固化的样品时,切割速度为0.5mm/min或小于0.5mm/min,以保证样品完整性。
[0022]上述实施例1?3中:步骤e所述研磨是沿“8”字形轨迹进行研磨,并采用水磨方式进行研磨,以保证样品截面完整。
[0023]实施例4:
一种用于拉曼光谱测试的碳纤维样品的制备方法,包括以下步骤:
a、娃片涂胶和绕丝:在长25mmX宽5mmX厚0.5mm的长方体形娃片上涂上胶水,涂抹区域大小为长3mm X宽5mm,将一束碳纤维丝(碳纤维丝的直径为5?8μηι中任一,取10根碳纤维单丝即为一束)(均匀、整齐地)缠绕在硅片上涂有胶水的位置,缠绕成宽3mm的一排碳纤维丝(缠绕的碳纤维不宜过多,避免在后续的研磨中样品与硅片分离、脱落);
b、对粘陪片:在硅片相对两侧的碳纤维丝上涂抹胶水,然后在缠绕有碳纤维丝的区域相对两侧各粘上一块长3mm X宽5mm X厚0.5mm的陪片,得到粘贴有陪片的样品;然后用刀(可以是手术刀)将未缠有碳纤维丝的娃片切掉,得到一个规格为长3mmX宽5mmX厚1.5mm的粘贴有陪片的样品;
C、固化:将粘贴有陪片的样品放入模具(较好的是聚四氟乙烯材料制作的模具)中,用弹簧夹夹紧,在115°C的温度下加热固化3小时,然后冷却至室温,得到固化的样品;
d、切割样品:(可以将固化的样品用石蜡粘在载物台上),用金刚石线切割机沿垂直于固化的样品中碳纤维丝束的方向切割(即沿垂直于固化的样品宽5mm的一边进行切割),切割宽度为Imm,得到规格为长3mm X宽Imm X厚1.5mm的长方体截面样品(切割时为避免对样品的损伤,宜采用低速切割);
e、研磨:将长3mmX宽Imm X厚I.5mm的截面样品固定(可以用石錯粘接固定)在研磨台(可以是圆柱形研磨台,或称样品柱)上(并使厚1.5mm X长3mm的一面朝下)、用砂纸进行研磨后,即制得截面碳纤维样品;为防止样品破碎,研磨时较好的是加少量水,且沿“8”字形轨迹进行研磨;研磨过程中不时用显微镜观察碳纤维的情况,确定研磨进度。
[0024]实施例5:
一种用于拉曼光谱测试的碳纤维样品的制备方法,包括以下步骤:
a、娃片涂胶和绕丝:在长25mmX宽5mmX厚0.5mm的长方体形娃片上涂上胶水,涂抹区域大小为长3mm X宽5mm,将一束碳纤维丝(碳纤维丝的直径为5?8μηι中任一,取30根碳纤维单丝即为一束)(均匀、整齐地)缠绕在硅片上涂有胶水的位置,缠绕成宽3mm的一排碳纤维丝(缠绕的碳纤维不宜过多,避免在后续的研磨中样品与硅片分离、脱落);
b、对粘陪片:在硅片相对两侧的碳纤维丝上涂抹胶水,然后在缠绕有碳纤维丝的区域相对两侧各粘上一块长3mm X宽5mm X厚0.5mm的陪片,得到粘贴有陪片的样品;然后用刀(可以是手术刀)将未缠有碳纤维丝的娃片切掉,得到一个规格为长3mmX宽5mmX厚1.5mm的粘贴有陪片的样品;
C、固化:将粘贴有陪片的样品放入模具(较好的是聚四氟乙烯材料制作的模具)中,用弹簧夹夹紧,在125°C的温度下加热固化2小时,然后冷却至室温,得到固化的样品;
d、切割样品:(可以将固化的样品用石蜡粘在载物台上),用金刚石线切割机沿垂直于固化的样品中碳纤维丝束的方向切割(即沿垂直于固化的样品宽5mm的一边进行切割),切割宽度为Imm,得到规格为长3mm X宽Imm X厚1.5mm的长方体截面样品(切割时为避免对样品的损伤,宜采用低速切割);
e、研磨:将长3mmX宽Imm X厚I.5mm的截面样品固定(可以用石錯粘接固定)在研磨台(可以是圆柱形研磨台,或称样品柱)上(并使厚1.5mm X长3mm的一面朝下)、用砂纸进行研磨后,即制得截面碳纤维样品;为防止样品破碎,研磨时较好的是加少量水,且沿“8”字形轨迹进行研磨;研磨过程中不时用显微镜观察碳纤维的情况,确定研磨进度。
[0025]实施例6:
一种用于拉曼光谱测试的碳纤维样品的制备方法:
实验材料准备有:
日本东丽公司T800碳纤维、丙酮、硅片(双面抛光)、AB胶、聚四氟乙烯模具、不锈钢研磨柱、水磨砂纸(型号为:600、1200、4000、7000目)、石蜡、手术刀;
将碳纤维样品除浆:将碳纤维放入丙酮中浸泡96h,于80°C下烘干备用;
切割硅片:将厚度为0.5mm的硅片切割出I个长25mm X宽5mm、2个长3mm X宽5mm的硅片,备用。
[0026]用于拉曼光谱测试的碳纤维样品的制备方法有以下步骤:
a、娃片涂胶和绕丝:在长25mmX宽5mmX厚0.5mm的长方体形娃片上涂上胶水,涂抹区域大小为长3mmX宽5mm,将一束碳纤维丝(碳纤维丝的直径为5?8μηι中任一,取11?29根中任一数量碳纤维单丝即为一束)(均匀、整齐地)缠绕在硅片上涂有胶水的位置,缠绕成宽3mm的一排碳纤维丝(缠绕的碳纤维不宜过多,避免在后续的研磨中样品与硅片分离、脱落);
b、对粘陪片:在硅片相对两侧的碳纤维丝上涂抹胶水,然后在缠绕有碳纤维丝的区域相对两侧各粘上一块长3mm X宽5mm X厚0.5mm的陪片,得到粘贴有陪片的样品;然后用刀(可以是手术刀)将未缠有碳纤维丝的娃片切掉,得到一个规格为长3mmX宽5mmX厚1.5mm的粘贴有陪片的样品;
C、固化:将粘贴有陪片的样品放入模具(较好的是聚四氟乙烯材料制作的模具)中,用弹簧夹夹紧,在120°C的温度下加热固化2小时,然后冷却至室温,得到固化的样品;
d、切割样品:(可以将固化的样品用石蜡粘在载物台上),用金刚石线切割机沿垂直于固化的样品中碳纤维丝束的方向切割(即沿垂直于固化的样品宽5mm的一边进行切割),切割宽度为Imm,得到规格为长3mm X宽Imm X厚1.5mm的长方体截面样品(切割时为避免对样品的损伤,宜采用低速切割);
e、研磨:将长3mm X宽Imm X厚I.5mm的截面样品固定(可以用石錯粘接固定)在研磨台(可以是圆柱形研磨台,或称样品柱)上(并使厚1.5mm X长3mm的一面朝下)、用砂纸进行研磨后,即制得截面碳纤维样品;为防止样品破碎,研磨时较好的是加少量水,且沿“8”字形轨迹进行研磨;研磨过程中不时用显微镜观察碳纤维的情况,确定研磨进度。
[0027]上述实施例4?6中:步骤d中所述切割的速度为0.5mm/min。
[0028]上述实施例4?6中:步骤e中所述用砂纸进行研磨是依次用600、1200、4000、7000目的砂纸进行研磨。
[0029]实施例7:
一种用于拉曼光谱测试的碳纤维样品的制备方法,包括以下步骤:
a、娃片涂胶和绕丝:在长25mmX宽5mmX厚0.5mm的长方体形娃片上涂上胶水,涂抹区域大小为长3mm X宽5mm,将一束碳纤维丝(碳纤维丝的直径为5?8μηι中任一,取10根碳纤维单丝即为一束)(均匀、整齐地)缠绕在硅片上涂有胶水的位置,缠绕成宽3mm的一排碳纤维丝(缠绕的碳纤维不宜过多,避免在后续的研磨中样品与硅片分离、脱落);
b、对粘陪片:在硅片相对两侧的碳纤维丝上涂抹胶水,然后在缠绕有碳纤维丝的区域相对两侧各粘上一块长3mm X宽5mm X厚0.5mm的陪片,得到粘贴有陪片的样品;然后用刀(可以是手术刀)将未缠有碳纤维丝的娃片切掉,得到一个规格为长3mmX宽5mmX厚1.5mm的粘贴有陪片的样品;
C、固化:将粘贴有陪片的样品放入模具(较好的是聚四氟乙烯材料制作的模具)中,用弹簧夹夹紧,在115°C的温度下加热固化3小时,然后冷却至室温,得到固化的样品;
d、切割样品:(可以将固化的样品用石蜡粘在载物台上),用金刚石线切割机沿平行于固化的样品中碳纤维丝束的方向切割(即沿平行于固化的样品宽5_的一边进行切割,亦即沿垂直于固化的样品长3mm的边进行剖面样品的切割),切割宽度为1mm,得到规格为长1_X宽5_ X厚1.5_的长方体剖面样品(切割时为避免对样品的损伤,宜采用低速切割);
e、研磨:将长ImmX宽5mm X厚1.5mm的剖面样品固定(可以用石錯粘接固定)在研磨台(可以是圆柱形研磨台,或称样品柱)上(并使厚1.5mm X宽5mm的一面朝下)、用砂纸进行研磨后,即制得剖面碳纤维样品;为防止样品破碎,研磨时较好的是加少量水,且沿“8”字形轨迹进行研磨;研磨过程中不时用显微镜观察碳纤维的情况,确定研磨进度。
[0030]实施例8:
一种用于拉曼光谱测试的碳纤维样品的制备方法,包括以下步骤:
a、娃片涂胶和绕丝:在长25mmX宽5mmX厚0.5mm的长方体形娃片上涂上胶水,涂抹区域大小为长3mm X宽5mm,将一束碳纤维丝(碳纤维丝的直径为5?8μηι中任一,取30根碳纤维单丝即为一束)(均匀、整齐地)缠绕在硅片上涂有胶水的位置,缠绕成宽3mm的一排碳纤维丝(缠绕的碳纤维不宜过多,避免在后续的研磨中样品与硅片分离、脱落);
b、对粘陪片:在硅片相对两侧的碳纤维丝上涂抹胶水,然后在缠绕有碳纤维丝的区域相对两侧各粘上一块长3mm X宽5mm X厚0.5mm的陪片,得到粘贴有陪片的样品;然后用刀(可以是手术刀)将未缠有碳纤维丝的娃片切掉,得到一个规格为长3mmX宽5mmX厚1.5mm的粘贴有陪片的样品;
C、固化:将粘贴有陪片的样品放入模具(较好的是聚四氟乙烯材料制作的模具)中,用弹簧夹夹紧,在125°C的温度下加热固化2小时,然后冷却至室温,得到固化的样品;
d、切割样品:(可以将固化的样品用石蜡粘在载物台上),用金刚石线切割机沿平行于固化的样品中碳纤维丝束的方向切割(即沿平行于固化的样品宽5_的一边进行切割,亦即沿垂直于固化的样品长3mm的边进行剖面样品的切割),切割宽度为1mm,得到规格为长1_X宽5_ X厚1.5_的长方体剖面样品(切割时为避免对样品的损伤,宜采用低速切割);
e、研磨:将长ImmX宽5mm X厚1.5mm的剖面样品固定(可以用石錯粘接固定)在研磨台(可以是圆柱形研磨台,或称样品柱)上(并使厚1.5mm X宽5mm的一面朝下)、用砂纸进行研磨后,即制得剖面碳纤维样品;为防止样品破碎,研磨时较好的是加少量水,且沿“8”字形轨迹进行研磨;研磨过程中不时用显微镜观察碳纤维的情况,确定研磨进度。
[0031]实施例9:
一种用于拉曼光谱测试的碳纤维样品的制备方法:
实验材料准备有:
威海拓展公司的QZ5526碳纤维、丙酮、硅片(双面抛光)、AB胶、聚四氟乙烯模具、不锈钢研磨柱、水磨砂纸(型号为:600、1200、4000、7000目)、石蜡、手术刀。
[0032]碳纤维样品除浆:将碳纤维放入丙酮中浸泡96h,于80°C下烘干备用;
切割硅片:将厚度为0.5mm的硅片切割出I个长25mm X宽5mm、2个长3mm X宽5mm的硅片,备用。
[0033]用于拉曼光谱测试的碳纤维样品的制备有以下步骤:
a、娃片涂胶和绕丝:在长25mmX宽5mmX厚0.5mm的长方体形娃片上涂上胶水,涂抹区域大小为长3mmX宽5mm,将一束碳纤维丝(碳纤维丝的直径为5?8μηι中任一,取11?29根中任一数量的碳纤维单丝即为一束)(均匀、整齐地)缠绕在硅片上涂有胶水的位置,缠绕成宽3mm的一排碳纤维丝(缠绕的碳纤维不宜过多,避免在后续的研磨中样品与硅片分离、脱落);
b、对粘陪片:在硅片相对两侧的碳纤维丝上涂抹胶水,然后在缠绕有碳纤维丝的区域相对两侧各粘上一块长3mm X宽5mm X厚0.5mm的陪片,得到粘贴有陪片的样品;然后用刀(可以是手术刀)将未缠有碳纤维丝的娃片切掉,得到一个规格为长3mmX宽5mmX厚1.5mm的粘贴有陪片的样品;
C、固化:将粘贴有陪片的样品放入模具(较好的是聚四氟乙烯材料制作的模具)中,用弹簧夹夹紧,在120°C的温度下加热固化2小时,然后冷却至室温,得到固化的样品;
d、切割样品:(可以将固化的样品用石蜡粘在载物台上),用金刚石线切割机沿平行于固化的样品中碳纤维丝束的方向切割(即沿平行于固化的样品宽5_的一边进行切割,亦即沿垂直于固化的样品长3mm的边进行剖面样品的切割),切割宽度为1mm,得到规格为长1_X宽5_ X厚1.5_的长方体剖面样品(切割时为避免对样品的损伤,宜采用低速切割);
e、研磨:将长ImmX宽5mm X厚1.5mm的剖面样品固定(可以用石錯粘接固定)在研磨台(可以是圆柱形研磨台,或称样品柱)上(并使厚1.5mm X宽5mm的一面朝下)、用砂纸进行研磨后,即制得剖面碳纤维样品;为防止样品破碎,研磨时较好的是加少量水,且沿“8”字形轨迹进行研磨;研磨过程中不时用显微镜观察碳纤维的情况,确定研磨进度。
[0034]上述实施例7?9中:步骤d中所述切割的速度为0.5mm/min。
[0035]上述实施例7?9中:步骤e中所述用砂纸进行研磨是依次用600、1200、4000、7000目的砂纸进行研磨。
[0036]上述实施例1?9中:步骤b中所述胶水为液体状AB胶或现有其它粘接剂,所述AB胶由胶粘剂和固化剂组成,均为市售产品。
[0037]上述实施例1?9中:步骤e研磨完成后,可将样品柱加热,用镊子小心取下样品;也可以直接将样品柱置于拉曼光谱显微镜下进行测试。
[0038]上述实施例1?6制得的碳纤维截面样品的测试方法是:
将制得的碳纤维截面样品中研磨过的一面朝上,置于拉曼光谱显微镜下进行测试即可获得碳纤维截面不同区域的拉曼光谱,进而对碳纤维的皮层和芯部石墨化程度等进行研究。图2为利用本发明实施例中制备的日本东丽T800碳纤维的碳纤维截面样品在拉曼光谱下的照片。
[0039]本发明制得的碳纤维截面样品,存在多个完整的碳纤维截面,有利于同时对多个相同条件下获得的样品进行测试,减小实验误差;另外,光滑平整的截面样品可用于对碳纤维截面做Mapping测试,得到更多的结构信息;本发明方法克服了传统的环氧包埋制样法存在的多种问题,比如难以将碳纤维丝束垂直固定在环氧树脂中、研磨进度慢以及难以得到光滑平整的碳纤维截面等。本发明方法提供的制样方法中不存在难以实现的步骤,获得完美的截面样品的概率几乎为100%。
[0040]上述实施例1?3和7?9制得的碳纤维剖面样品的测试方法是:
将制得的碳纤维剖面样品中研磨过的一面朝上,置于拉曼光谱显微镜下进行测试即可获得碳纤维剖面不同区域的拉曼光谱,进而从剖面对碳纤维的不同区域的皮层和芯部石墨化程度等进行研究。图3为利用本发明实施例制备的QZ5526碳纤维的剖面样品在拉曼光谱下的照片。
[0041]上述实施例中:所采用的各原料均为市售产品。
[0042]上述实施例中:各步骤中的工艺参数(温度、时间等)和数值等为范围的,任一点均可适用。
[0043]本
【发明内容】
及上述实施例中未具体叙述的技术内容同现有技术。
[0044]本发明提出了一种非常简便的制备碳纤维剖面样品的方法,便于从剖面研究碳纤维的皮芯结构。采用本发明方法制备剖面样品不会破坏碳纤维的结构,并且可以根据研究需要调整研磨深度,进而获得碳纤维皮层下不同深度的结构信息,有利于研究碳纤维的皮芯结构。
[0045]本发明不限于上述实施例,本发明适用于各种牌号的碳纤维,不受碳纤维密度、直径、生产厂家的限制,对于有一定韧性的超细丝材也同样适用。上述实施例只为说明本发明的技术特点,目的在于让熟悉此项技术的人士能够了解本发明的内容并据以实施,并不能以此限制本发明的保护范围,根据本发明精神实质所作的等效变化或者修饰,应在本发明的保护范围之内。
【主权项】
1.一种用于拉曼光谱测试的碳纤维样品的制备方法,其特征是包括以下步骤: a、硅片涂胶和绕丝:在长方体形硅片上涂上胶水,将一束碳纤维丝缠绕在硅片上涂有胶水的位置,缠绕成宽2?5mm的一排碳纤维丝; b、对粘陪片:在硅片相对两侧的碳纤维丝上涂抹胶水,然后在缠绕有碳纤维丝的区域相对两侧各粘上一块陪片,得到粘贴有陪片的样品; c、固化:将粘贴有陪片的样品放入模具中,用弹簧夹夹紧,在115?125°C的温度下加热固化2?3小时,然后冷却至室温,得到固化的样品; d、切割样品:用金刚石线切割机沿垂直于固化的样品中碳纤维丝束的方向切割,得到截面样品;或者用金刚石线切割机沿平行于固化的样品中碳纤维丝束的方向进行切割,得到剖面样品; e、研磨:将截面样品用研磨柱固定后进行研磨,即制得截面碳纤维样品;或者将剖面样品样品用研磨柱固定后进行研磨,即制得剖面碳纤维样品。2.按权利要求1所述用于拉曼光谱测试的碳纤维样品的制备方法,其特征是:步骤d中所述用金刚石线切割机进行切割固化的样品时,切割速度为0.5mm/min或小于0.5mm/min。3.按权利要求1所述用于拉曼光谱测试的碳纤维样品的制备方法,其特征是:步骤e所述研磨是沿“8”字形轨迹进行研磨。4.按权利要求1所述用于拉曼光谱测试的碳纤维样品的制备方法,其特征是:步骤b中所述胶水为液体状AB胶。5.按权利要求1所述用于拉曼光谱测试的碳纤维样品的制备方法,其特征是包括以下步骤: a、娃片涂胶和绕丝:在长25mmX宽5mm X厚0.5mm的长方体形娃片上涂上胶水,涂抹区域大小为长3mm X宽5mm,将一束碳纤维丝缠绕在硅片上涂有胶水的位置,缠绕成宽3mm的一排碳纤维丝; b、对粘陪片:在硅片相对两侧的碳纤维丝上涂抹胶水,然后在缠绕有碳纤维丝的区域相对两侧各粘上一块长3mm X宽5mm X厚0.5mm的陪片,得到粘贴有陪片的样品;然后用刀将未缠有碳纤维丝的娃片切掉,得到一个规格为长3mmX宽5mmX厚1.5mm的粘贴有陪片的样品; c、固化:将粘贴有陪片的样品放入模具中,用弹簧夹夹紧,在115?125°C的温度下加热固化2?3小时,然后冷却至室温,得到固化的样品; d、切割样品:用金刚石线切割机沿垂直于固化的样品中碳纤维丝束的方向切割,切割宽度为1mm,得到规格为长3mm X宽Imm X厚1.5mm的长方体截面样品; e、研磨:将长3mmX宽Imm X厚1.5mm的截面样品固定在研磨台上、用砂纸进行研磨后,即制得截面碳纤维样品。6.按权利要求5所述用于拉曼光谱测试的碳纤维样品的制备方法,其特征是:步骤d中所述切割的速度为0.5mm/min。7.按权利要求5所述用于拉曼光谱测试的碳纤维样品的制备方法,其特征是:步骤e中所述用砂纸进行研磨是依次用600、1200、4000、7000目的砂纸进行研磨。8.按权利要求1所述用于拉曼光谱测试的碳纤维样品的制备方法,其特征是包括以下步骤: a、娃片涂胶和绕丝:在长25mmX宽5mm X厚0.5mm的长方体形娃片上涂上胶水,涂抹区域大小为长3mm X宽5mm,将一束碳纤维丝缠绕在硅片上涂有胶水的位置,缠绕成宽3mm的一排碳纤维丝; b、对粘陪片:在硅片相对两侧的碳纤维丝上涂抹胶水,然后在缠绕有碳纤维丝的区域相对两侧各粘上一块长3mm X宽5mm X厚0.5mm的陪片,得到粘贴有陪片的样品;然后用刀将未缠有碳纤维丝的娃片切掉,得到一个规格为长3mmX宽5mmX厚1.5mm的粘贴有陪片的样品; c、固化:将粘贴有陪片的样品放入模具中,用弹簧夹夹紧,在115?125°C的温度下加热固化2?3小时,然后冷却至室温,得到固化的样品; d、切割样品:用金刚石线切割机沿平行于固化的样品中碳纤维丝束的方向切割,切割宽度为1mm,得到规格为长Imm X宽5mm X厚1.5mm的长方体剖面样品; e、研磨:将长ImmX宽5mm X厚1.5mm的剖面样品固定在研磨台上、用砂纸进行研磨后,即制得剖面碳纤维样品。9.按权利要求8所述用于拉曼光谱测试的碳纤维样品的制备方法,其特征是:步骤d中所述切割的速度为0.5mm/min。10.按权利要求8所述用于拉曼光谱测试的碳纤维样品的制备方法,其特征是:步骤e中所述用砂纸进行研磨是依次用600、1200、4000、7000目的砂纸进行研磨。
【文档编号】G01N1/28GK105866097SQ201610203406
【公开日】2016年8月17日
【申请日】2016年4月1日
【发明人】霍冀川, 贾茹, 李林
【申请人】西南科技大学
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1