光学传感器及光学感测系统的制作方法

文档序号:10623608阅读:470来源:国知局
光学传感器及光学感测系统的制作方法
【专利摘要】一种光学传感器及光学感测系统,所述光学传感器包含至少两个以上不同的光感测像素以及至少两个以上的光栅元件。这些光栅元件位于光感测像素的上方且各自与光感测像素相对应。
【专利说明】
光学传感器及光学感测系统
技术领域
[0001] 本发明设及一种光学传感器,具体地,设及一种可应用在距离测量或是手势辨识 上的光学传感器及光学感测系统。
【背景技术】
[0002] 一般来说,距离测量系统(Distance measurement system, DM巧通常会使用光源, 并利用光源的光束被物体反射回来的能量来计算物体的距离。传统上,可使用=角定位的 方式,或是飞行时间(Time Of f Ii曲t,TO巧的技术方案来计算距离,然而采用上述方式所 花费的成本与系统的尺寸相对来说都会较高。
[0003] 另外,手势(ges化re)辨识的开发基础通常可使用3D图像先消除背景图像W取出 前景物件图像,其中,运样的技术会使用到两个图像传感器,如此一来,手势辨识模块的尺 寸与成本同样地便无法有效地获得缩减。
[0004] 基于上述,本发明主要是利用相位侦测(phase detection)的技术取得3D图像, 而且无需额外打光(上述飞行时间法需要打光),且本发明的技术方案可只使用单个图像 传感器,便可实现侦测距离及手势辨识的应用。

【发明内容】
阳0化]有鉴于此,本发明提出一种光学传感器及光学感测系统,其具有低成本及尺寸小 的优点。
[0006] 本发明提供一种光学传感器,该光学传感器包含至少两个W上的光感测像素 W及 至少两个W上不同的光栅元件。所述多个光栅元件位于所述多个光感测像素的上方且各自 与所述多个光感测像素相对应。
[0007] 本发明还提供一种光学感测系统,该光学感测系统包含两个光感测像素、两个光 栅元件W及处理器。所述两个光栅元件彼此之间具有相位差并分别与所述两个光感测像素 相对应。所述处理器用于根据所述两个光感测像素感测的光强度信号判断入射光角度。
[0008] 本发明还提供一种光学传感器,包含两个光感测像素、两个光栅元件W及处理器。 所述两个光栅元件彼此之间具有相位差并分别与所述两个光感测像素相对应。所述处理器 用于根据所述两个光感测像素感测的两个光强度信号计算至少一个光强度参数。
[0009] 在本发明说明的实施例中,光学传感器还包括透镜,其中光栅元件位于透镜与光 感测像素之间。
[0010] 在本发明说明的实施例中,光栅元件中每一者至少由两层金属层所构成。
[0011] 在本发明说明的实施例中,光学传感器还包括滤光元件,其中所述多个光栅元件 位于所述滤光元件与所述多个光感测像素之间。
[0012] 为了让本发明的上述和其它目的、特征和优点能更明显,下文将配合所附图示,详 细说明如下。此外,在本发明的说明中,相同的元件W相同的符号表示,于此先述明。
【附图说明】
[0013] 图1为本发明一实施例的光学传感器的示意图。
[0014] 图2为不同角度的光线经过不同相位差的光栅元件的光强度变化的示意图。
[0015] 图3A~图3D分别为图1的光栅元件实施方式的示意图。
[0016] 图4A~图4C分别为不同光学传感器所使用的光栅元件的上视图。
【具体实施方式】
[0017] 图1为本发明一实施例的光学传感器的示意图,而图2则为不同角度的光线经过 不同相位差的光栅元件的光强度变化的示意图;其中,所述不同相位差的光栅元件例如为 显示于图3A至图3D的光栅元件。
[0018] 参考图1,本实施例的光学传感器100包括至少两个W上的光感测像素(例如此 处显示为四个光感测像素112曰、112b、112c、112d,但并不W此为限),其中,每个光感测像 素112曰、1126、112(3、112(1上方各自对应有一个光栅元件122曰、12213、122(3、122(1,且运些光 栅元件122a、122b、122c、122d的相位差可分别为0度相位、90度相位、180度相位W及270 度相位。亦即,所述多个光栅元件122曰、1226、122(3、122(1彼此之间具有相位差并分别与所 述多个光感测像素112日、11化、112(3、112(1相对应。
[0019] 本发明说明中,所述多个光感测像素112a、l^b、112c、112d可为独立制作的光感 测像素,或者可为同一像素阵列中相邻或不相邻的光感测像素,并无特定限制。例如某些实 施例中,可在像素阵列选择部分像素 W作为所述多个光感测像素112曰、112b、112c、112山而 其它像素可用于执行其它功能。
[0020] 具体来说,不同角度的入射光束Ll (或称物体光束)在经过不同相位差的光栅元 件时相对应的光感测像素的成像会有不同的光强度变化,如图2所示对应4个光栅元件的 四种光强度变化。换言之,本实施例的光学传感器100可通过光感测像素112a、112b、112c、 112d所感测的光强度来反推入射光束LI (或是物体光束)的方向与位置,从而计算出物体 Ol位置,W下将举例进行较为详细的说明。
[0021] 请先参考图2的曲线1101,曲线Lioi为不同角度(例如图2所绘示的负40度至 正40度)的入射光束Ll经过相位差为180度的光栅元件后的光强度变化,其中,正向入 射(入射角度为零度时)的入射光束的光强度最高,且当入射角度逐渐增加时光强度逐渐 改变;相对地,曲线L102为不同角度(例如图2所绘示的负40度至正40度)的入射光束 Ll经过相位差为0度的光栅元件后的光强度变化,其中,正向入射(入射角度为零度时)的 入射光束的光强度最低,且当入射角度逐渐增加时光强度逐渐改变。因此,通过光感测像素 112曰、11化、112(3、112(1所感测的光强度信号(即灰度值信号)便可反推入射光束1^的入 射角度,进而通过光线追踪的方式便可计算出物体Ol的位置与位置变化。换言之,本实施 例的光学传感器100可只使用两个W上的光感测像素112曰、112b、112c、112d即可反推物体 Ol的位置。此外,相较于传统距离感测系统值M巧须使用打光的方式,本实施例的光学传感 器100由于无须打光,且可仅使用数量较少的光感测像素112曰、112b、112c、112d即可侦测 到物体Ol位置,从而具有低成本与小体积的优点。
[0022] 在某些实施例中,为了消除物体Ol本身的颜色化及环境光线的影响,可计算物体 Ol在相同位置时,不同光感测像素所感测的光强度信号与角度的相对关系,W预先建立查 找表(look-up t油le),例如下表1所示,并储存于存储单元中,
[0023]
[0024] 巧 1
[00巧]例如表1中,Iai为物体Ol位于第1位置时光线经过180度光栅元件的光强度而 Iei为物体Ol位于所述第1位置时光线经过0度光栅元件的光强度;I A2为物体Ol位于第2 位置时光线经过180度光栅元件的光强度而Iez为物体Ol位于所述第2位置时光线经过0 度光栅元件的光强度;1?为物体Ol位于第3位置时光线经过180度光栅元件的光强度而 为物体Ol位于所述第3位置时光线经过0度光栅元件的光强度;其中,光强度I M~I A3 及Iei~I 例如可参照图2。O M~O A3为光强度参数1对应180度光栅元件的入射光角 度而?ei~? B3为光强度参数2对应0度光栅元件的入射光角度。由于不同光栅元件的横 向距离可预先求得,因此当入射光角度已知时,可根据=角运算求得物体Ol的距离(或高 度)、二维坐标及=维坐标。同时,根据=维坐标随时间的变化即可进行手势判断。
[00%] 藉此,在实际测量时,所述光学传感器100则可利用查表的方式判断物体Ol的高 度及坐标。然而,本发明说明并不W此为限,亦可利用其它算法,例如表1中的光强度参数 1及2可定义成其它方式,只要能够消除物体Ol本身的颜色W及环境光线的影响即可。例 如,光强度参数1及2可利用光强度(例如1,1、Iei)分别减去平均光强度(Iai+Im)/2后再 除W光强度和(Iai+Im)求得;例如,光强度参数1及2可直接通过计算两光强度(例如Iai、 Iei)的比例求得。因此,既然可消除环境光线的影响,本实施例亦可应用于具有光源的其它 装置中。
[0027] 当所述光学传感器100包含两个W上的光感测像素时,相对一个物体距离或物体 坐标,可同时利用多个光强度决定一个光强度参数,或者利用所述多个光强度的每两个光 强度决定多个光强度参数,接着根据所述至少一个光强度参数决定物体距离或物体坐标。
[0028] 本实施例中,所述光学传感器100还包含处理器150,该处理器150电性禪接所述 多个光感测像素112a、112b、112c、112d,用于计算入射光角度、高度及坐标,并进行手势判 断。
[0029] 在一实施例中,所述处理器设置于所述光学传感器100外部并与所述光学传感器 100共同形成光学感测系统,亦即所述光学传感器100仅输出每一光感测像素的测量值(即 光强度信号),而由所述外部处理器根据所述多个光感测像素感测的光强度信号计算至少 一个光强度参数并判断入射光角度、根据所述至少一个光强度参数计算物体距离及坐标、 根据多个光强度参数的变化进行手势判断;其中,光强度参数与入射光角度的对应关系可 预先形成查找表,如表1所示。
[0030] 在另一实施例中,所述多个光感测像素112a、112b、112c、112d与所述处理器150 均制作在基底层化ase layer)中,亦即所述处理器150为处理电路,可用于根据所述多个 光感测像素感测112a、l^b、112c、112d的光强度信号计算至少一个光强度参数,所述至少 一个光强度参数例如被输出至外部主机;而所述多个光栅元件122a、122b、122c、122d则为 形成于所述基底层上方的至少两层金属层。此外,只要所述处理器150具有足够的运算能 量,也可进行上述外部处理器的运算,并无特定限制。
[0031] 在本实施例中,光学传感器100还可具有滤光元件130,该滤光元件130用于滤 除特定波长W外的光线,其中所述多个光栅元件122a、122b、122c、122d位于所述滤光元件 130与所述多个光感测像素112曰、11化、112(:、112(1之间。本实施例的图2^ 550皿波长 作为举例说明,但不限于此。更具体而言,所述滤光元件130的波长选择可根据衍射公式 (difTraction equation),配合元件参数,例如两金属层(如图3A~3D所示)间距dl W 及光栅元件与光感测像素的间距来决定,W达到较佳的感测结果。
[0032] 此外,由于本实施例的光学传感器100可只使用少量的光感测像素112a、112b、 112c、112d即可反推物体Ol的位置,换言之,若本实施例的光学传感器100采取更多数量的 光感测像素阵列,例如:300X 300、600X600、900X900的光感测像素阵列,便可获得物体 Ol的更多位置信息,进而建构出物体的3D图像。
[0033] 另外,需要说明的是,图1所绘示的光栅元件122曰、12化、122c、122d仅为举例说 明,【具体实施方式】例如是图3A~图3D绘示的实施方式。详细来说,参考图3A~图3D,位于 光感测像素112a、11化、112c、112d上方的光栅元件122a、122b、122c、122d可W是由至少两 层金属层Ml、M2所构成,其中,不同相位差的光栅元件的产生方式可由运些金属层Ml、M2产 生偏移、改变金属层M1/M2与M1/M2的间隔Wl或是金属层M1、M2的间距dl,而产生0度相 位、90度相位、180度相位化及270度相位的形态;其中,间隔Wl及间距dl的数值可根据目 标光谱依据衍射公式决定。此外,光栅元件122a、122b、122c、122d的金属层Ml、M2可W是 CMOS工艺中的第一道金属层至第十道金属层之间的任意两层。本发明说明中,M1、M2仅用 于表示不同金属层而并非用于限定为第一道金属层与第二道金属层,特此说明。更详细地, 本发明说明中的光栅元件可利用CMOS工艺中的至少两道金属层来制作,并无特定限制。某 些实施例中,光感测像素中每一者可对应多个光栅元件,而并不限于图1所示。
[0034] 另外,位于光感测像素112曰、1126、112(3、112(1上方的光栅元件122曰、12213、122(3、 122d的金属层排列方式可W是呈现为如图4A~图4C所绘示的光学传感器200a~200c的 实施方式,例如:金属层水平(横向)排列、垂直(纵向)排列、倾斜一角度,或是其组合,可 视实际应用而定。
[0035] 某些实施例中,光学传感器100还包含至少一个透镜W增加感光效率。在一实施 例中,透镜140可设置于所述多个光栅元件122a、122b、122c、122d上方,W使所述多个光 栅元件122a、122b、122c、122d位于所述透镜140与所述多个光感测像素112a、112b、112c、 112d之间;其中,所述透镜140与所述多个光栅元件122a、12化、122c、122d可利用垫片 (spacer)维持预设距离。在另一实施例中,多个微透镜(microlens)可分别对应于所述多 个光栅元件122a、122b、122c、122d而设置,且所述多个微透镜与所述多个光栅元件122曰、 122b、122c、122d 之间具有保护层(passivation layer)。
[0036] 必须说明的是,上述实施例中的数值,例如光强度、相位等,仅用于说明而并非用 于限定本发明说明。
[0037] 综上所述,公知距离测量系统及手势辨识系统需要较高的成本及尺寸,且通常需 要另外提供光源。因此,本发明说明提出一种光学传感器(图I)及光学感测系统,其利用 穿过光栅元件的衍射光强度随入射角度变化的特性,藉W判断物体的二维、=维位置W及 位置变化,且由于无需使用光源,因此具有低成本及尺寸小的优点。
[0038] 虽然本发明已通过上述实施例进行了公开,然其并非用于限定本发明,任何本发 明所属技术领域的技术人员,在不脱离本发明的精神和范围内,可作各种的更动与修改。因 此本发明的保护范围应该W所附的权利要求书所限定范围为准。
【主权项】
1. 一种光学传感器,包含: 至少两个以上的光感测像素;以及 至少两个以上不同的光栅元件,位于所述多个光感测像素的上方且各自与所述多个光 感测像素相对应。2. 根据权利要求1所述的光学传感器,还包含透镜,其中所述多个光栅元件位于所述 透镜与所述多个光感测像素之间。3. 根据权利要求1所述的光学传感器,其中光栅元件中每一者至少由两层金属层所构 成。4. 根据权利要求1所述的光学传感器,还包含滤光元件,其中所述多个光栅元件位于 所述滤光元件与所述多个光感测像素之间。5. 根据权利要求1所述的光学传感器,其中所述多个光栅元件之间具有相位差。6. 根据权利要求1所述的光学传感器,其中所述多个光栅元件沿横向方向、纵向方向、 倾斜方向或其组合排列。7. -种光学感测系统,包含: 两个光感测像素; 两个光栅元件,彼此之间具有相位差并分别与所述两个光感测像素相对应;以及 处理器,用于根据所述两个光感测像素感测的光强度信号判断入射光角度。8. 根据权利要求7所述的光学感测系统,还包含至少一个滤光元件,该至少一个滤光 元件位于所述两个光栅元件上方。9. 根据权利要求7所述的光学感测系统,还包含至少一个透镜,对应于所述两个光栅 元件。10. 根据权利要求7所述的光学感测系统,其中所述两个光栅元件由CMOS工艺所制作 的至少两层金属层所构成。11. 根据权利要求7所述的光学感测系统,其中所述处理器还用于根据所述两个光感 测像素感测的两个光强度信号计算至少一个光强度参数。12. 根据权利要求11所述的光学感测系统,其中所述至少一个光强度参数与所述入射 光角度的对应关系预先被形成为查找表。13. 根据权利要求11所述的光学感测系统,其中所述处理单元还根据所述至少一个光 强度参数计算物体距离。14. 根据权利要求11所述的光学感测系统,其中所述处理单元还根据多个光强度参数 的变化进行手势判断。15. -种光学传感器,包含: 两个光感测像素; 两个光栅元件,彼此之间具有相位差并分别与所述两个光感测像素相对应;以及 处理器,用于根据所述两个光感测像素感测的两个光强度信号计算至少一个光强度参 数。16. 根据权利要求15所述的光学传感器,还包含滤光元件,该滤光元件位于所述两个 光栅元件上方。17. 根据权利要求15所述的光学传感器,还包含至少一个透镜,对应于所述两个光栅 元件。18. 根据权利要求15所述的光学传感器,其中所述两个感测像素与所述处理器形成在 基底层中。19. 根据权利要求18所述的光学传感器,其中所述两个光栅元件为形成于所述基底层 上方的至少两层金属层。20. 根据权利要求19所述的光学传感器,其中所述至少两层金属层由CMOS工艺所制 作。
【文档编号】G01D5/26GK105987712SQ201510054956
【公开日】2016年10月5日
【申请日】2015年2月3日
【发明人】许恩峯, 刘家佑
【申请人】原相科技股份有限公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1