以SnO<sub>2</sub>为敏感电极的YSZ基混成电位型NH<sub>3</sub>传感器及其制备方法

文档序号:10722465阅读:500来源:国知局
以SnO<sub>2</sub>为敏感电极的YSZ基混成电位型NH<sub>3</sub>传感器及其制备方法
【专利摘要】一种以SnO2为敏感电极材料的YSZ基混成电位型NH3传感器及其制备方法,属于气体传感器技术领域。依次由带有Pt加热电极的Al2O3陶瓷板、YSZ基板、条状结构的Pt参考电极和SnO2敏感电极组成;在YSZ基板上表面的部分区域构筑有金纳米颗粒阵列结构,在该阵列结构上制备SnO2敏感电极;在YSZ基板上表面没有构筑金纳米颗粒阵列结构的区域上制备Pt参考电极;YSZ基板下表面与带有Pt加热电极的Al2O3陶瓷板粘结在一起。本发明以YSZ作为离子导电层,利用具有高电化学催化活性的SnO2为敏感电极,并将SnO2敏感电极材料涂敷在构筑有金纳米颗粒阵列结构上,通过金纳米颗粒阵列结构的引入,达到提高敏感特性的目的。
【专利说明】
以Sn02为敏感电极的YSZ基混成电位型NH3传感器及其制备 方法
技术领域
[0001] 本发明属于气体传感器技术领域,具体涉及一种表面构筑有金纳米颗粒阵列结构 的YSZ基板并以Sn02为敏感电极材料的YSZ基混成电位型NH 3传感器及其制备方法,主要应用 于汽车尾气的检测。
【背景技术】
[0002] 随着世界汽车保有量的不断增加,由汽车尾气排放所造成的空气污染问题日益显 著。世界各国纷纷制定出严格的尾气排放标准来限制汽车尾气中N0 X的排放。为满足要求, 在汽车尾气的排放过程中必须要进行脱硝处理。在发动机后处理系统中使用尿素作为选择 催化还原剂来减少N0 X排放被认为是一种最为行之有效的方法。在该系统中,尿素溶液被注 入到排气管线与燃烧废气中的N0X反应,减少了尾气中N0 X的含量。为精确控制尿素的注入 量,避免由尿素产生的过量氨气所带来的环境问题,在线监测反馈控制系统中常常引入氨 气传感器。由于汽车发动机尾气排放过程长期处于高温高湿的环境中,要求NH 3传感器在具 有良好的敏感特性(灵敏度、选择性和响应-恢复特性)的同时还要求传感器具有良好的长 期稳定性。固体电解质一钇稳定氧化锆(YSZ)和金属氧化物敏感电极材料具有良好的化学 稳定性和长期稳定性,同时具有响应恢复快、灵敏度高等特点,由二者构成的NH 3传感器在 汽车尾气监控领域有着广泛的应用前景。
[0003] 钇稳定氧化锆基混成电位型NH3传感器的敏感机理是:气氛中NH3通过敏感电极层 向三相界面扩散,在扩散的过程中伴随着反应(1)的发生,NH 3的浓度逐渐降低。在气体到达 气体/敏感电极/YSZ基板三相界面的交界处时,同时发生氧的电化学还原反应(2)和NH 3的 电化学氧化反应(3),反应(2)和(3)构成一个局部电池,当两者的反应速率相同时,反应达 到动态平衡时,在敏感电极形成混成电位,它与参考电极之间的电位差作为传感器的检测 信号。通过检测该电位差的大小来反映气体浓度。检测信号的大小由电化学反应(2)(3)反 应速率的快慢决定,而反应速率的快慢又受到敏感电极材料的电化学和化学催化活性、YSZ 基板表面的微观结构的影响。
[0004] 反应机理
[0005] 4NH3+3〇2^2N2+6H20 (1)
[0006] l/2〇2+2e--Ο2- (2)
[0007] 2/3NH3+02--l/3N2+H2〇+2e- (3)
[0008] 目前,为了提高此类性能传感器的敏感性能,国内外对敏感电极材料等方面进行 了广泛深入的探索。例如,本课题组制作的以Co W04为敏感电极材料的YSZ基混成电位型NH3 传感器对lOOppm NH3的混成电位值为-7.8mV(Quan Diao,Fasheng Yang,Chengguo Yin, Jianguo Li,Shiqi Yang ,Xishuang Liang ,Geyu Lu,Ammonia sensors based on stabilized zirconia and Coff〇4sensing electrode,Solid State Ion 225(2012)328-331)。此类氨气传感器的缺点在于响应值低、选择性不够优秀,达不到实用的要求。因此,需 要开发出具有高电化学催化活性和多孔性的敏感电极,进而提高气体通过敏感电极向三相 界面扩散的速率,加快三相界面处的电化学反应,使敏感特性(灵敏度、响应值、选择性、稳 定性等)明显提尚。

【发明内容】

[0009] 本发明的目的是提供一种在YSZ基板上构筑金纳米颗粒阵列结构并以Sn02为敏感 电极材料的高效三相界面的YSZ基混成电位型NH 3传感器及其制备方法,以提高NH3传感器灵 敏度、选择性等性能,进而提高这种传感器在汽车尾气检测领域中的应用。本发明所得到传 感器除了具有高的灵敏度外,还具有良好的重复性,选择性和稳定性。
[0010] 本发明所涉及的YSZ基混成电位型NH3传感器是基于构筑有金纳米颗粒阵列结构 的YSZ基板及以Sn0 2作为敏感电极材料所构筑的新型氨气传 stabilized-zirconia,纪稳定氧化错)作为离子导电层。
[0011]本发明所述的YSZ基混成电位型NH3传感器,结构如图1所示,依次由带有Pt加热电 极的Al2〇3陶瓷板、YSZ基板、条状结构的Pt参考电极和Sn02敏感电极组成;在YSZ基板上表面 的部分区域构筑有金纳米颗粒阵列结构,在该阵列结构上制备Sn〇2敏感电极;在YSZ基板上 表面没有构筑金纳米颗粒阵列结构的区域上制备Pt参考电极;YSZ基板下表面与带有Pt加 热电极的Al 2〇3陶瓷板粘结在一起。本发明以YSZ基板作为离子导电层,利用敏感电极材料 Sn02与金纳米颗粒结合以提高敏感电极的催化活性,达到提高敏感特性的目的。
[0012] 本发明所述的YSZ基混成电位型NH3传感器的制备方法,其步骤如下:
[0013] A.在YSZ基板上构筑纳米碗状阵列结构:
[0014] 将乙醇、去离子水、聚苯乙烯微球(球直径为900nm~lOOOnm)以0.5~1.5mL:0.5~ 1.5mL: 0.5~1.5g的比例混合后配制成悬浊液,将该悬浊液沿玻璃片注入到含有30yL~40μ L表面活性剂的90mL~110mL的去离子水中,静置1~2小时,从而在去离子水/空气界面形成 排列整齐的聚苯乙烯微球模板;使用清洗干净的硅片将该模板从去离子水中缓慢捞出,之 后将该硅片缓慢水平放入由Zr0(N0 3)2和Y(N03)3组成的盐溶液中,由于表面张力的作用,覆 盖在硅片表面的聚苯乙烯微球模板会整体脱落下来,从而漂浮在盐溶液表面进行溶液浸 渍,浸渍时间为30~60分钟,其中Zr 4+的浓度为0.1~0.2mol/L,Zr4+与Y3+的浓度比为20~ 25:3~5;之后用YSZ基板将浸渍后的聚苯乙烯微球模板捞出,使聚苯乙烯微球覆盖YSZ基板 上表面大部分区域,此时,在YSZ基板和聚苯乙烯微球模板之间填充有浸渍的盐溶液;再将 该基板在900°C~1100°C的条件下烧结1~2小时,去除聚苯乙烯微球模板,从而在YSZ基板 表面形成了由Zr0 2和Y2〇3组成的纳米碗状阵列结构,其直径在900~1100nm,结构高度在350 ~400nm;
[00?5] B.在纳米碗状阵列结构上构筑金纳米颗粒阵列结构:
[0016]向构筑有纳米碗状阵列结构的YSZ基板表面以0.03~0.07nm/s的速率蒸镀厚度为 40nm~60nm的金层;将蒸镀金层后的YSZ基板在1000°C~1200°C的条件下烧结1~2小时,从 而在每个纳米碗状阵列结构中形成了直径为500~700nm的金纳米颗粒;
[0017] C.敏感电极材料的制备:
[0018] 将SnCl4于700°C~900°C的条件下烧结1~3小时,得到颗粒直径为10nm~50nm的 Sn02敏感电极材料;
[0019] D.传感器的制作
[0020] (1)制作Pt参考电极:将Pt粉用去离子水调成浆料,质量浓度为2~20%,在YSZ基 板上表面没有构筑金纳米颗粒阵列结构的区域使用Pt浆制作15~20μπι厚的Pt参考电极,同 时将一根Pt丝对折后粘在参考电极的中间位置上作为电极引线,将YSZ基板放置于红外灯 下高温处理2~3小时,从而排除铂浆中的松油醇,最后降至室温;
[0021] (2)制作Sn02敏感电极,将步骤C得到的Sn02敏感电极材料用去离子水调成浆料,质 量浓度为2~20 %;使用Sn02浆料在YSZ基板上表面构筑有金纳米阵列结构的一侧制备20~ 30μπι厚的敏感电极,同样将一根铂丝对折后黏在敏感电极上作为电极引线;
[0022] (3)将上述制备有参考电极和敏感电极的YSZ基板在800°C~1000 °C的条件下烧结 1~3小时,此过程的升温速率为1~2 °C/分钟;
[0023] (4)制备无机粘合剂:取水玻璃(Na2Si03 · 9H20)2~4mL,并称取Al2〇3粉体0.7~ l.〇g,将得到的水玻璃与Al2〇3粉体在小离心管内混合并搅拌均匀,制得本实验中所需无机 粘合剂;
[0024] (5)使用无机粘合剂将YSZ基板下表面和带有Pt加热电极的Al2〇3陶瓷板粘结在一 起;
[0025]其中,带有Pt加热电极的Al2〇3陶瓷板是在Al2〇3陶瓷板上通过丝网印刷Pt加热器 得到,一体作为器件的加热板使用。
[0026] (6)将粘合好的器件进行焊接、封装,从而制作得到本发明所述的以Sn02为敏感电 极的混成电位型传感器。
[0027]本发明的优点:
[0028] (1)传感器利用典型的固体电解质一一稳定氧化锆(YSZ)具有良好的热稳定性和 化学稳定性,可在高温下(汽车尾气中)检测NH3;
[0029] (2)使用的敏感电极材料为单一金属氧化物,制备方法简单易行,生产成本较低。 利于批量大规模生产。
[0030] (3)通过YSZ基板上构筑金纳米颗粒阵列结构,提高了器件对NH3传感器灵敏度,选 择性。
【附图说明】
[0031] 图1:本发明所述的YSZ基混成电位型NH3传感器的结构示意图。
[0032]各部分名称:1、六角管座2、Al2〇3陶瓷板3、铂加热丝4、YSZ基板5、Sn02敏感电极6、 Pt参考电极7、Pt丝。
[0033]图2:本发明所述的表面构筑有金纳米颗粒阵列结构的YSZ基板表面的SEM图。从图 中可以看出在每个纳米碗状阵列结构(9)中都形成了一个直径在600nm左右的金纳米颗粒 ⑶。
[0034]图3: Sn02敏感电极材料的XRD谱图(a)和填充有Sn02敏感电极材料阵列结构的SEM 图(b)。通过对比标准Sn〇2的XRD谱图可以发现所得的Sn〇2颗粒敏感电极材料与标准卡相吻 合。通过SEM可以得知所得的Sn〇2敏感电极材料可以填充到构筑的结构中。
[0035] 图4:传感器1、2、3对lOppm~400ppm响应浓度对数曲线。
[0036]如图4所示,从图中可以看出三种器件对于不同浓度的NH3的响应值与气体浓度的 对数有着很好的线性关系,将斜率定义为灵敏度。通过实施例1(传感器1)和对比例1(传感 器2)对NH3响应值的对比可以发现金纳米颗粒阵列结构的构筑对传感器灵敏度有较大提 升,通过对比例1(传感器2)和对比例2(传感器3)对NH 3响应值的对比可以发现纳米碗状阵 列结构的构筑对灵敏度同样有较大提升。
【具体实施方式】 [0037] 实施例1
[0038]使用聚苯乙烯微球模板法制备出表面构筑有纳米碗状阵列结构的YSZ基板,并在 此基板的一侧蒸镀金层,于1100 °C的条件下烧结3小时,在每一个纳米碗状阵列结构中都形 成了 一个直径约为600nm的金颗粒,并以Sn02为敏感电极材料制备出YSZ基混成电位型NH3传 感器并测试其性能。具体的实施过程如下:
[0039] 1.制作表面构筑有纳米碗状阵列结构的YSZ基板:将乙醇、去离子水、聚苯乙烯微 球(微球的直径为Ιμπι) = lmL: lmL: lg配制成悬浊液,将该悬浊液沿玻璃片注入到含有35yL 表面活性剂(质量分数为1 %的十二烷基硫酸钠的水溶液)的1 OOmL去离子水中,静置1小时, 在去离子水/空气界面形成排列整齐的聚苯乙烯微球模板;使用清洗干净的硅片将该模板 从去离子水中缓慢捞出,再缓慢水平放入由ZrO (N〇3) 2和Y(N〇3) 3组成的盐溶液中(其中Zr4+ 的浓度〇.2mol/L,Zr4+与Y3+的浓度比为23:4),由于表面张力的作用,覆盖在硅片表面的聚 苯乙烯微球模板会整体脱落下来,漂浮在溶液表面进行溶液浸渍,在该盐溶液中浸渍30分 钟之后使用YSZ基板(长宽2 X2mm、厚度0.2mm)将浸渍后的聚苯乙烯微球模板捞出,使聚苯 乙烯微球覆盖YSZ基板上表面靠近一侧的3/4区域,此时,在YSZ基板和聚苯乙烯微球模板之 间填充有浸渍的盐溶液。将基板在11 〇〇 °C的条件下烧结1小时,去除聚苯乙烯微球模板。在 YSZ基板表面形成了需要的纳米碗状阵列结构其直径为980nm,结构高度在380nm〇 [0040] 2.金纳米颗粒阵列结构的构筑:向步骤(1)中得到的YSZ基板具有纳米碗状阵列结 构的表面蒸镀50nm厚的金层,蒸镀速率为0.05nm/s,蒸镀完成后,将该YSZ基板置于1100°C 的条件下烧结3小时,烧结完成后在每一个纳米碗状阵列结构中均形成了一个颗粒直径为 600nm左右的金纳米颗粒。
[00411 3.制作Pt参考电极:在YSZ基板上表面未构筑金纳米阵列结构的一端使用Pt浆制 作一层0.5mmX 2mm大小、15μηι厚的Pt参考电极,同时用一根Pt丝对折后粘在构筑有金纳米 阵列结构的Y S Z基板的一侧的中间位置上引出电极引线制作参考电极;
[0042] 4.制作Sn02敏感电极:首先使用直接烧结的方法制备出Sn02粉末,取10g SnCl4于 800°C的条件下烧结3小时,得到所需要的Sn02敏感电极材料,其颗粒直径在25nm左右,可以 很好地填充进入纳米碗状阵列结构中,取5mg Sn〇2粉末用100mg去离子水调成衆料,将Sn〇2 浆料在与参考电极对称的YSZ基板上表面的另一端构筑有金纳米阵列结构的表面涂覆一层 0.5mm X 2mm大小、2 Ομπι厚的敏感电极,同样用一根钼丝对折后粘在敏感电极上引出电极引 线。
[0043]将制作好的带有参考电极和敏感电极的YSZ基板以2°C/min的升温速率升温至800 °C并保持2h后降至室温。
[0044] 5.粘结具有加热电极的陶瓷板。使用无机粘合剂(Al2〇3和水玻璃Na 2Si03 · 9H20,质 量约比5:1配制)将YSZ基板的下表面(未涂覆电极的一侧)与同样尺寸的带有Pt加热电极的 Al2〇3陶瓷板(长宽2 X 2mm、厚度0.2mm)进行粘结;
[0045] 6.器件焊接、封装。将器件焊接在六角管座上,套上防护罩,制作完成混成电位型 NH 3传感器。
[0046] 7.传感器性能的测试,采用静态测试的方法,将传感器连接在Rigol信号测试仪 上,将Rigol信号测试仪与电脑相连接,将传感器置于空气和各待测气体中中进行电压信号 测试。
[0047] 对比例1:
[0048]使用已构筑有纳米碗状阵列结构的YSZ基板,并以Sn02作为敏感电极材料制作NH3 传感器。
[0049] 以实施例1步骤(1)中得到的构筑有纳米碗状阵列结构的YSZ基板作为基板但并未 构筑金纳米阵列结构,器件制作过程与实施例1中步骤3~6相同。
[0050] 对比例2:
[00511使用表面未改性的YSZ基板,以Sn02作为敏感电极材料制作NH3传感器。以普通的 YSZ基板作为基板,器件的制作过程与实施例1中步骤3~6相同。
[0052]表1:以构筑有纳米碗状阵列结构且构筑有金纳米颗粒阵列结构的YSZ为基板的传 感器1,以构筑有纳米碗状阵列结构的YSZ为基板的传感器2,以普通YSZ为基板的传感器3, 敏感电极与参考电极的电势差A V随NH3浓度的变化数据
[0055]表2:以构筑有纳米碗状阵列结构且构筑有金纳米阵列结构的YSZ为基板的传感器 1,以构筑有纳米碗状阵列结构的YSZ为基板的传感器2对lOOppm气体选择性的对比数据
[0057] 通过表一中三种传感器对不同浓度的氨气响应值的对比,可以发现金纳米颗粒阵 列结构的引入可以极大的提高传感器对氨气的响应值,通过表二中两种传感器对lOOppm不 同气体响应值的对比可知金纳米颗粒碗状阵列结构的引入同样可以提高传感器的选择性。
【主权项】
1. 一种以Sn02为敏感电极的YSZ基混成电位型NH3传感器,其特征在于:依次由带有Pt加 热电极的Al 2〇3陶瓷板、YSZ基板、条状结构的Pt参考电极和Sn02敏感电极组成;在YSZ基板上 表面的部分区域构筑有金纳米颗粒阵列结构,在该阵列结构上制备Sn〇2敏感电极;在YSZ基 板上表面没有构筑金纳米颗粒阵列结构的区域上制备Pt参考电极;YSZ基板下表面与带有 Pt加热电极的Al2〇3陶瓷板粘结在一起;其中,在YSZ基板上表面的部分区域构筑的金纳米颗 粒阵列结构是由如下步骤制备得到, (1) 将乙醇、去离子水、聚苯乙烯微球以0.5~1.51^:0.5~1.51^:0.5~1.5 8的比例混 合后配制成悬浊液,将该悬浊液沿玻璃片注入到含有30yL~40yL表面活性剂的90mL~ llOmL的去离子水中,静置1~2小时,从而在去离子水/空气界面形成排列整齐的聚苯乙烯 微球模板;使用清洗干净的硅片将该模板从去离子水中缓慢捞出,之后将该硅片缓慢水平 放入由Zr0(N0 3)2和Y(N03)3组成的盐溶液中,由于表面张力的作用,覆盖在硅片表面的聚苯 乙烯微球模板会整体脱落下来,从而漂浮在盐溶液表面进行溶液浸渍,浸渍时间为30~60 分钟,其中Zr 4+的浓度为0.1~0.2mol/L,Zr4+与Y3+的浓度比为20~25:3~5;之后用YSZ基板 将浸渍后的聚苯乙烯微球模板捞出,使聚苯乙烯微球覆盖YSZ基板上表面大部分区域,此 时,在YSZ基板和聚苯乙烯微球模板之间填充有浸渍的盐溶液;再将该基板在900°C~1100 °C的条件下烧结1~2小时,去除聚苯乙烯微球模板,从而在YSZ基板表面形成了由Zr0 2和 Υ2〇3组成的纳米碗状阵列结构,其直径在900~llOOnm,结构高度在350~400nm; (2) 向构筑有纳米碗状阵列结构的YSZ基板表面以0.03~0.07nm/s的速率蒸镀厚度为 40nm~60nm的金层;将蒸镀金层后的YSZ基板在1000°C~1200°C的条件下烧结1~2小时,从 而在每个纳米碗状阵列结构中形成了直径为500~700nm的金颗粒,从而在YSZ基板上表面 的部分区域构筑的金纳米颗粒阵列结构。2. 权利要求1所述的一种以Sn02为敏感电极的YSZ基混成电位型NH3传感器的制备方法, 其步骤如下: (1) 制作Pt参考电极:将Pt粉用去离子水调成浆料,质量浓度为2~20%,在YSZ基板上 表面没有构筑金纳米颗粒阵列结构的区域使用Pt浆制作15~20μπι厚的Pt参考电极,同时将 一根Pt丝对折后粘在参考电极的中间位置上作为电极引线,将YSZ基板放置于红外灯下高 温处理2~3小时,从而排除铂浆中的松油醇,最后降至室温; (2) 制作Sn02敏感电极,将Sn02敏感电极材料用去离子水调成浆料,质量浓度为2~ 20%;使用Sn0 2浆料在YSZ基板上表面构筑有金纳米阵列结构的一侧制备20~30μπι厚的敏 感电极,同样将一根铂丝对折后黏在敏感电极上作为电极引线; (3) 将制备有参考电极和敏感电极的YSZ基板在800 °C~1000 °C的条件下烧结1~3小 时; (4) 使用无机粘合剂将YSZ基板下表面和带有Pt加热电极的Al2〇3陶瓷板粘结在一起; (5) 将粘合好的器件进行焊接、封装,从而制作得到以Sn02为敏感电极的混成电位型传 感器。3. 如权利要求2所述的一种以Sn02为敏感电极的YSZ基混成电位型NH3传感器的制备方 法,其特征在于:是将SnCl4于700 °C~900 °C的条件下烧结1~3小时,从而得到颗粒直径为 1 Onm~50nm的Sn〇2敏感电极材料。4. 如权利要求2所述的一种以Sn02为敏感电极的YSZ基混成电位型NH3传感器的制备方 法,其特征在于:步骤(3)烧结的升温速率为1~2 °C /分钟。5.如权利要求2所述的一种以Sn02为敏感电极的YSZ基混成电位型NH3传感器的制备方 法,其特征在于:步骤(4)是取水玻璃2~4mL,Al2〇3粉体0.7~l.Og,将水玻璃与Al 2〇3粉体混 合并搅拌均匀,制得无机粘合剂。
【文档编号】G01N27/12GK106093142SQ201610718419
【公开日】2016年11月9日
【申请日】2016年8月25日
【发明人】卢革宇, 王斌, 梁喜双, 孙鹏, 刘凤敏, 孙彦峰, 高原, 揣晓红, 马健, 王庆凤
【申请人】吉林大学
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1