一种基于tmr磁场传感器阵列的涡流检测探头的制作方法

文档序号:8579497阅读:1448来源:国知局
一种基于tmr磁场传感器阵列的涡流检测探头的制作方法
【技术领域】
[0001]本实用新型涉及一种基于TMR磁场传感器阵列的涡流检测探头,属于电磁检测装置领域。
【背景技术】
[0002]电涡流检测是建立在电磁感应原理基础上的一种常规无损检测方法。电涡流检测的原理是:当导体处于变化的磁场中或相对于磁场运动时,导体内部会产生感应电流,电流的流通路径往往犹如水中的漩涡,因此称为涡电流或者电涡流,简称涡流。涡流的大小、相位及分布受试件的影响,反作用于线圈,使检测线圈阻抗发生变化,通过测定检测线圈阻抗变化,就可以获得被测试件的内部结构、材质分布、是否存在缺陷以及试件与线圈的耦合情况等信息。若保持系统的若干参数不变,就可以对另外一些参数做出评估。常规涡流检测一般使用线圈式检测探头,线圈式探头适合检测导体材料中深度较浅、尺寸较大的缺陷,缺点是低频性能较差,降低激励频率会导致探头灵敏度大幅减弱,这意味着线圈式探头不适合检测深层微小缺陷。另外,在常规涡流检测中,线圈式探头一般在沿着能明显切断涡流流通路径的方向上扫描时才可以有效检出缺陷,而且通常只使用单个探头进行检测,这些因素都不同程度地制约了涡流检测系统效率的提高。
[0003]本实用新型选用最新一代磁场传感器--隧穿磁阻(Tunneling
Magnetoresistance, TMR)传感器作为检测探头阵列单元。TMR磁场传感器与巨磁电阻(Giant Magneto Resistance, GMR)传感器相比,在更微弱的磁场下就能获得显著的电阻改变,可以利用其研制和开发更多适用于各种场合的高性能新式探头。

【发明内容】

[0004]针对上述现有技术,为解决探头不适合检测深层微小缺陷、传统的单一涡流检测探头检测效率较低、常规线圈式探头在检测深层缺陷时灵敏度与空间分辨率无法兼得、常规线圈式探头对缺陷方向的依赖性的问题,本实用新型提供了一种基于TMR磁场传感器阵列的涡流检测探头。
[0005]本实用新型的技术方案是:一种基于TMR磁场传感器阵列的涡流检测探头,包括矩形双层印刷电路板1、平面直角螺旋线圈I 2、平面直角螺旋线圈II 3、平面直角螺旋线圈III4、平面直角螺旋线圈IV 5、TMR磁场传感器组I 6、TMR磁场传感器组II 7、TMR磁场传感器组III 8、TMR磁场传感器组IV 9、一维线形传感器阵列10、跳线I 11、跳线II 12、跳线III 13 ;
[0006]所述矩形双层印刷电路板I为检测探头的基底,利用其上、下两层的外表面和两层间的接合面布置检测探头的部件;
[0007]所述矩形双层印刷电路板I上层外表面:使用印刷电路板制作工艺,按照四象限的分布形式将平面直角螺旋线圈I 2、平面直角螺旋线圈II 3、平面直角螺旋线圈III 4、平面直角螺旋线圈IV 5等间隔地印刷在矩形双层印刷电路板I上层外表面;其中,平面直角螺旋线圈每匝导线线宽相等,相邻平面直角螺旋线圈间距相同,相邻两个平面直角螺旋线圈导线绕行方向相反,对角两个平面直角螺旋线圈导线绕行方向相同,4个平面直角螺旋线圈的内外端点各有一个焊点,分别为a、b, C、d,e、f,g、h,并引出抽头;
[0008]所述矩形双层印刷电路板I下层外表面:矩形双层印刷电路板I下层外表面在对应基底上层外表面4个平面直角螺旋线圈各自中心位置分别放置TMR磁场传感器组I 6、TMR磁场传感器组II 7、TMR磁场传感器组III 8、TMR磁场传感器组IV 9 ;其中,每组TMR磁场传感器包含3枚两两相互垂直且感应轴方向与激励磁场方向垂直的TMR磁场传感器,共需12枚TMR磁场传感器;在中心轴上放置一组5枚TMR磁场传感器组成的一维线形传感器阵列10 ;其中,5枚TMR磁场传感器间距相等,感应轴方向相同且垂直于线圈对称轴,几何中心成一条直线且与线圈对称轴重合,中间一枚位于基底几何中心;
[0009]所述矩形双层印刷电路板I两层接合面上层:设置跳线I 11、跳线II 12、跳线III 13,分别连接焊点a和h、d和e、g和f ;
[0010]每个平面直角螺旋线圈的内外端点处的焊点,分别引出抽头,并行连接到逻辑开关电路,再与激励信号源相连;4个平面直角螺旋线圈中心位置对应的4组TMR磁场传感器组输出信号引脚并行连接到逻辑开关电路,再与信号采集装置的低通滤波器相连;组成一维线形阵列的5枚TMR磁场传感器输出信号引脚并行连接到逻辑开关电路,再与信号采集装置的低通滤波器相连;检测探头各部件的连接线全部集成在矩形双层印刷电路板I上;TMR磁场传感器电源引脚Vcc与3V稳压直流电源相连,接地引脚GND与检测系统公共接地端相连。
[0011]所述信号采集装置包括低通滤波器、功率放大器、数据采集卡三部分,三者依次连接,数据采集卡的输出端与上位机连接,激励信号源、逻辑开关电路、数据采集卡、上位机分别与控制器相连。
[0012]当3条跳线将焊点a和h、d和e、g和f断开后,则可分别对任何一个平面直角螺旋线圈加载激励型号,此时相当于探头包含4个激励线圈;当3条跳线将焊点a和h、d和e、g和f连接后,4个平面直角螺旋线圈可构成一个统一激励线圈。所谓统一激励线圈,就是当激励线圈通入交变激励信号时,激励线圈可产生统一的时变磁场。当激励信号源在b和c两焊点给激励线圈加载激励信号时,激励信号流经全部4个平面直角螺旋线圈,产生一个统一的时变激励磁场。
[0013]本实用新型的工作原理是:
[0014]选用多维科技生产的MMLH45F型TMR磁场传感器作为阵列探头检测单元,其芯片引脚如图8所示,使用3V稳压直流电源供电,单片MMLH45F的尺寸为6mmX 5mmX 1.7mm,采用SOP8封装形式;MMLH45F型TMR磁场传感器中封装了 4枚非屏蔽磁敏感元件,构成推挽式惠斯通电桥,当外加磁场沿平行于磁敏感元件方向变化时,惠斯通电桥有差分电压输出。
[0015]实际使用本实用新型涡流检测探头进行缺陷检测之前,按照如图7所示连接方法将本实用新型与相关涡流检测系统进行连接。涡流检测探头通过逻辑开关电路与激励信号源和信号采集装置进行连接,具体连接方法是:4个平面直角螺旋线圈的8个焊点a?h分别引出抽头,并行连接到逻辑开关电路,然后将逻辑开关电路与激励信号源输出端相连;4个平面直角螺旋线圈中心位置对应的4组TMR磁场传感器输出信号引脚并行连接到逻辑开关电路,然后将逻辑开关电路与信号采集装置的低通滤波器相连;组成一维线形阵列的5枚TMR磁场传感器输出信号引脚并行连接到逻辑开关电路,然后将逻辑开关电路与信号采集装置的低通滤波器相连。涡流检测探头与3V稳压直流电源输出端直接相连,即将3V稳压直流电源输出端直接连接到TMR磁场传感器的电源引脚Vcc。TMR磁场传感器的接地弓I脚GND与涡流检测系统的公共接地端连接。激励信号源通过逻辑开关电路连接涡流检测探头的平面直角螺旋线圈,后者加载激励信号产生空间激励磁场。信号采集装置包括低通滤波器、功率放大器、数据采集卡三部分,三者依次连接,数据采集卡的输出端与上位机连接,信号采集装置采集TMR磁场传感器输出信号并输送给上位机,上位机对采集到的输出信号进行分析得到检测结果。控制器分别与激励信号源、逻辑开关电路、数据采集卡、上位机相连,控制、协调检测系统中各个部分的运行与通讯。
[0016]使用一定占空比的脉冲方波作为激励信号,可以使用数字频率合成(DDS)电路作为脉冲激励信号源;脉冲涡流检测技术可对被测试件大面积不同深度缺陷进行扫描检测,操作简单,可以大大提高检测速度和效率。为实现不同的“激励一检测”方式,逻辑开关电路在控制器控制下导通或断开某些支路,给相应的平面直角螺旋线圈加载激励信号、采集加载激励信号的平面直角螺旋线圈对应的TMR磁场传感器输出信号。默认情况下,逻辑开关电路均为断开状态,需要产生特定的激励磁场时对应的平面直角螺旋线圈才会被选中并通入激励信号,不参与测量磁场的TMR磁场传感器不会将输出信号传输给信号采集装置。逻辑开关电路使用高速模拟开关芯片ADG1414搭建,ADG1414是一组独立八通道单刀单掷(SPST)开关,通过一个三线式串行接口进行控制,能够以最高50MHz的时钟速率工作,与DSP接口标准兼容。数据以8位形式写入ADG1414,每一位对应一个通道,利用移位寄存器的输出,可以将若干ADG1414以菊花链形式相连扩展。
[0017]由于输出信号幅值较弱且含有噪声,通常先将输出信号经低通滤波和信号放大处理后再由数据采集卡进行采集,所以信号采集装置包括低通滤波器、功率放大器和数据采集卡三部分。数据采集卡可以使用NI的PCIe-6343型数据采集卡,它提供32路模拟量输入和4路模拟量输出,使用PCI Express总线与PC上位机交换数据。数据采集卡将采集到的输出信号经过A/D转换后输送给上位机,上位机对输出信号进行分析,得到检测结果。其中,低通滤波器使用MAX275有源滤波器芯片搭建;功率放大器采用甲乙类推挽放大电路;上位机对信号采集装置采集的TMR磁场传感器信号进行分析处理,得到检测结果并由显示器显示。可以使用Labview软件编写的涡流检测程序,先通过对TMR磁场传感器的信号进行处理和计算得到涡流信号的幅值、相位等信息,再由涡流检测程序进一步分析涡流信号得到被测对象中缺陷的相关参数等信息。
[0018]控制器用
当前第1页1 2 3 4 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1