一种内置式液位测量装置的制造方法

文档序号:10405626阅读:442来源:国知局
一种内置式液位测量装置的制造方法
【技术领域】
[0001]本实用新型涉及液位测量技术领域,具体是一种内置式液位测量装置。
【背景技术】
[0002]在液位检测方面都采用的是接触式浮子测试和绝对式电子压力传感器测试。接触式浮子测试精度和可靠性均不高,在精密测试中无法满足需要。
[0003]绝对式电子压力传感器测试,如在车辆运输过程中移动到不同的海拔下或是密闭的条件下,无法精确测试液位的高度,大气或气体的压力变化造成液位高度测试的不准确。虽然有采用两个绝对压力传感器的使用案例,即使用一个气体压力传感器和一个液位绝对式电子压力传感器测试到的压力进行差值计算的到相对比较准确的液位高度,但还是会因为系统内精度、故障原因造成不准确或是不可靠,系统比较复杂,成本较高,使用寿命低等缺点。根据液体内压力公式:Ph=Pg h+PO,P为液体的密度,g为重力加速度,h为液体内到液面测量点的高度,PO为液面的气体压力,Ph为液体内部的压力;一般条件下液体密度和重力加速度为常数,则液体内高度和压力差(Ph- PO)成正比。
[0004]一般液面上有一个大气压的压力约为10kPa,而水基或有机液体的密度和重力加速度一定的情况下液体的深度在I米时也就1kPa左右,当精密测量液体深度相对应的压力时必然要除去液面的压力才能和液位高度成正比。
[0005]中国专利CN200710199215.0、差压液位计内置式取压方法公布了一种可以克服容器内有蒸汽或介质温度变化对测量产生影响的液位检测方法,它至少包括储液罐、差压式液位计、正相引压管、负相引压管,正相引压管和负相引压管分别与差压式液位计的正相端(高压输入端)和负相端(低压输入端)连接,它的负相引压管垂直段设在容器内,负相引压管内预先注入容器内所装液体。在实际应用中,介质温度是经常会发生很大变化的,影响测量精度;该装置在使用时容器外的一小段水平引压管需要伴热,使用时较为麻烦。
【实用新型内容】
[0006]本实用新型所要解决的技术问题是提供一种结构简单、易于维护、测量精度高的内置式液位测量装置。
[0007]为了解决上述问题,本实用新型提供了一种内置式液位测量装置,所述内置式液位测量装置包括差压传感装置、通气平衡管、进液口,通气平衡管和进液口分别与差压传感装置的低压输入端和高压输入端连接,所述差压传感装置设置在待测量的储液罐内的液体的底部,通气平衡管的进气口高于储液罐内的液体的顶面,用于将待测液体表面的空气传送到差压传感装置的低压输入端;所述进液口设置在储液罐的底壁,以使待测液体进入差压传感装置的高压输入端;所述差压传感装置通过导线与外接的电源、控制器相连,用于对差压传感装置提供电源并完成数据计算;该差压传感装置的高压输入端和低压输入端感受到液体深度压力和液面上导入的气体压力的压力差变形后电学特性发生变化,通过对微弱电信号的放大、温度补偿相关电路转化为可采集应用的电压或电流信号,经导线传输至外接的控制器进行计算,完成液位测量。
[0008]所述差压传感装置包括电路板和差压传感器芯片,该电路板的中心设有通孔,该电路板通过导线与外接的电源、控制器相连,该电路板的下方固定设置差压传感器芯片,该差压传感器芯片具有相对应的上侧和下侧,其上侧为差压传感装置的低压输入端,所述通气平衡管穿过所述电路板的通孔与该低压输入端相连,该差压传感器芯片的下侧为高压输入端与进液口相连,以使过滤后的待测液体直接进入差压传感装置的高压输入端。
[0009]进一步,所述差压传感器芯片的下方设有波纹膜片,该波纹膜片焊接在壳体上;所述电路板与波纹膜片之间形成密封腔体,该密封腔体内充满可传导压力的硅油,该差压传感器芯片的下侧与硅油相接触;所述波纹膜片的下侧作为该差压传感装置的高压输入端,与进液口相连,液体通过波纹膜片、硅油传导到该差压传感器芯片的下侧。
[0010]进一步,所述差压传感器芯片为机械式压力传感器芯片、弹性膜片式压力传感器芯片、半导体娃压力式传感器芯片、陶瓷电容式压力传感器芯片、膜片电容式压力传感器芯片、陶瓷压电式压力传感器芯片中的至少一种。
[0011 ]进一步,所述储液罐内设有安装座,用于固定所述差压传感装置。
[0012]进一步,所述安装座通过安装支架设置在储液罐的底壁上方,所述安装支架与所述液体顶面垂直设置,所述导线、通气平衡管固定在安装支架上,便于安装。
[0013]进一步,所述进液口设有滤网,防止异物堵塞进液口,影响测量结果。
[0014]进一步,所述通气平衡管的进气口设有只能通过气体分子而阻止液体分子进入的过滤膜装置,防止通气平衡管内进入液体,影响测量结果。
[0015]上述内置式液位测量装置的工作方法,包括如下步骤:
[0016]A、将导线、通气平衡管的一端采用密封胶与差压传感装置的电路板、低压输入端分别密封相连,导线的另一端与外接的电源、控制器相连;将进液口与差压传感装置的高压输入端相连。
[0017]B、将差压传感装置固定在安装座内,并将安装座与安装支架固定相连,所述导线、通气平衡管同样固定在安装支架上。
[0018]C、将固定后的安装座置入盛有待检测液体的储液罐内,通气平衡管的另一端作为进气口高于储液罐内的液体的顶面设置;通气平衡管通过进气口将液面上方的气体压力导入该差压传感装置上侧的低压输入端,通过进液口将储液罐底部的液体深度压力导入该差压传感装置下侧的高压输入端,该差压传感装置的差压传感器芯片感受到高压输入端和低压输入端的压力差后发生形变,其电学特性发生变化,通过电路板对微弱电信号进行放大、温度补偿后转化为可采集应用的电压或电流信号,经导线传输至外接的控制器进行计算,完成液位测量。
[0019]实用新型的技术效果:(I)本实用新型的内置式液位测量装置,相对于现有技术,差压传感装置设置在储液罐内的液体内部,使差压传感装置处在被测液体内,避免了因温度不同产生误差的缺陷,测量精度大幅提高;(2)通气平衡管的进气口设有只能通过气体分子而阻止液体分子进入的过滤膜装置,更好的保护了通气平衡管内不直接进入液体,或是因为液体蒸发冷却导致通气平衡管内聚集液体,使通气平衡管不会进入液体保障测量精度;(3)通过安装座和安装支架将差压传感装置设置在储液罐内,安装方便,适用范围广。
【附图说明】
[0020]下面结合说明书附图对本实用新型作进一步详细说明:
[0021]图1是本实用新型实施例1的内置式液位测量装置的结构示意图;
[0022]图2是图1中A区域的局部放大图;
[0023]图3是本实用新型实施例2的的差压传感装置的结构示意图。
[0024]图中:储液罐I,液体2,液体膨胀空间3,差压传感装置4,低压输入端41,高压输入端42,滤网43,壳体44,密封胶45,电路板46,差压传感器芯片47,硅油48,波纹膜片49,通气平衡管5,导线6,安装座7,安装支架8,进液口 9。
【具体实施方式】
[0025]实施例1
[0026]如图1至图2所示,本实施例的内置式液位测量装置,包括储液罐I和差压传感装置4,储液罐I内装有一定量已知密度的待监测液体2(可以是汽油、柴油、水、酒精等),且储液罐I内预留有一定的液体膨胀空间3,差压传感装置4包括电路板46,该电路板46的中心设有通孔,该电路板46通过导线6与外接的电源、控制器相连,该电路板46的下方固定设置差压传感器芯片47(可选用机械式压力传感器芯片、弹性膜片式压力传感器芯片、半导体硅压力式传感器芯片、陶瓷电容式压力传感器芯片、膜片电容式压力传感器芯片、陶瓷压电式压力传感器芯片等作为差压传感器芯片),该差压传感器芯片47具有相对应的上侧和下侧,其上侧作为差压传感装置的低压输入端41,通气平衡管5穿过电路板46的通孔与该
当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1