一种高温压力传感器的制造方法

文档序号:10973997阅读:619来源:国知局
一种高温压力传感器的制造方法
【专利摘要】本实用新型公开了一种高温压力传感器,包括传感头、光纤、玻璃管,所述传感头包括玻璃基底、单抛硅片和硅膜片,玻璃基底底面设有一空腔,单抛硅片安装在空腔内,且底面与硅膜片的上顶面相连,硅膜片下端设有一深腔,所述传感头为方形,所述玻璃基底顶面中部设有一圆形凸台,所述圆形凸台的中心处设有一通孔,所述玻璃管套接在光纤外,且玻璃管的一端插入通孔与传感器、光纤实现固接,确保腔体处于密封真空环境。本实用新型耐高温、成本低廉,结构微小,并具有光纤珐珀传感器精度高,抗电磁干扰等的优点。
【专利说明】
一种高温压力传感器
技术领域
[0001]本实用新型涉及压力传感器领域,具体涉及一种高温压力传感器。
【背景技术】
[0002]作为各类控制装置及系统信息获取与传输的核心器件,压力传感器及其相关技术的迅速发展,使得各个领域的自动化程度越来越高。与传统的电学压力传感器相比,光纤压力传感器具有抗干扰能力强、动态测试范围宽、高分辨率、体积小且易于多路复用或分路感应等优点,因而在航空、航天、电子等领域中都得到了广泛使用。同时,随着以微电子、微机械加工与封装技术巧妙结合的MEMS技术不断发展,利用MEMS技术制造的光纤压力传感器以其重量轻、功能强,具有频带宽和灵敏度高的特性,并且与集成电路工艺兼容能够批量生产,更是成为了当下研究和开发的热点。其中,光纤法珀传感器具备结构简单紧凑、受环境波动影响不大、对感应信号衰落不敏感、分辨率高和灵敏度高等优点,已广泛应用于各种物理、化学和生物医学参数的检测及对于压力、温度、流速等的实时系统监测。
[0003]高温压力的测量在航空航天、汽车、石油等领域都有广泛应用。例如实时监测航天器发动机燃烧室中的压力,可以帮助分析发动机的工作性能,及时避免发动机喘振等不良问题。目前,多数发动机内温度在300°C-1000°C,甚至高于1000°C,这对压力传感器提出了更高的温度要求。
【实用新型内容】
[0004]为解决上述问题,本实用新型提供了一种高温压力传感器,成本低廉,结构微小,并具有光纤珐珀传感器精度高,抗电磁干扰等的优点。
[0005]为实现上述目的,本实用新型采取的技术方案为:
[0006]—种高温压力传感器,包括传感头、光纤、玻璃管,所述传感头包括玻璃基底、单抛硅片和硅膜片,玻璃基底底面设有一空腔,单抛硅片安装在空腔内,且底面与硅膜片的上顶面相连,硅膜片下端设有一深腔,所述传感头为方形,所述玻璃基底顶面中部设有一圆形凸台,所述圆形凸台的中心处设有一通孔,所述玻璃管套接在光纤外,且玻璃管的一端插入通孔与传感器、光纤实现固接,确保腔体处于密封真空环境。
[0007]其中,所用光纤为单模光纤或多模光纤。
[0008]其中,光纤可由带有布拉格光栅的单模光纤代替,光纤布拉格光栅段固定
[0009]在玻璃管内。
[0010]其中,所述玻璃基底(5)上带有小孔。
[0011]其中,玻璃管与传感器之间,玻璃管与光纤的之间采用激光或电极焊接的方法实现固接。
[0012]其中,所述玻璃管和玻璃基底为Pyrex玻璃材料。
[0013]其中,所述高温压力传感器为全玻璃结构。
[0014]其中,所述单抛硅片上表面可镀高反膜。
[0015]本实用新型具有以下有益效果:
[0016]整体的全玻璃材料可以保证传感器在高温环境下的正常工作,相同材料特性有助于实现传感器的密封性、可靠性,并保证了传感器的敏感度和精度,单模光纤中的布拉格光栅结构,可使传感器在测量环境中,同时进行温度的测量,进而可以减小传感器在高温环境下温度其对压力测量准确度的影响。
【附图说明】
[0017]图1为本实用新型实施例一种高温压力传感器一个具体实施例的结构示意图。
[0018]图2为本实用新型实施例一种高温压力传感器另一个具体实施例的结构示意图。
[0019]图3为本实用新型实施例一种高温压力传感器中传感头的制备流程图;
[0020]图中,(a)为一次光刻;(b)溅射;(C)剥离;(d)二次光刻;(e)刻蚀;(f)去胶;(g)阳极键合;(h)铣凸台;1-硅片;2-光刻胶;3-多层金属;4-玻璃基底。
[0021]图4为本实用新型实施例一种高温压力传感另一个具体实施例的结构示意图
[0022]图5为本实用新型实施例一种高温压力传感的光谱图。
[0023]图6为本实用新型实施例一种高温压力传感360°C下的压力响应示意图。
【具体实施方式】
[0024]为了使本实用新型的目的及优点更加清楚明白,以下结合实施例对本实用新型进行进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本实用新型,并不用于限定本实用新型。
[0025]实施例1
[0026]如图1所示,本实用新型实施例公开了一种高温压力传感器,包括传感头、光纤1、玻璃管2,所述传感头包括玻璃基底5、单抛硅片6和硅膜片7,玻璃基底5底面设有一空腔,单抛硅片6安装在空腔内,且底面与硅膜片7的上顶面相连,硅膜片7下端设有一深腔,所述传感头为方形,所述玻璃基底5顶面中部设有一圆形凸台4,所述圆形凸台4的中心处设有一通孔,所述玻璃管2套接在光纤I外,且玻璃管2的一端插入通孔与传感器、光纤实现固接,确保腔体处于密封真空环境。
[0027]所述玻璃基底5上带有小孔,玻璃管与传感器之间,玻璃管与光纤的之间采用激光或电极焊接的方法实现固接,所述玻璃管和玻璃基底为Pyrex玻璃材料,所述高温压力传感器为全玻璃结构。
[0028]所用光纤类型可为单模光纤或多模光纤。
[0029]实施例2
[0030]如图2所示,所述高温压力传感,光纤I由带有布拉格光栅3的单模光纤代替,光纤布拉格光栅段固定在玻璃管内,固接点的位置在凸台的上部以及玻璃管的上端面附近并远离布拉格光栅结构的位置。
[0031]如图3所示,所述传感头通过以下步骤制备所得:
[0032]S1、将硅片经标准的RCA清洗流程后,表面涂覆光刻胶作为掩膜,进行第一次光刻,形成正面图形;
[0033]S2、在硅片表面溅射金属膜层,并剥离与光刻胶粘连的多余金属;
[0034]S3、在所得硅片背面涂光刻胶,进行二次光刻,形成圆腔图案;
[0035]S4、干法刻蚀未被光刻胶保护的硅片并达到所需的膜片厚度,在硅片背面形成深腔,去I父,得娃膜片;
[0036]S5、玻璃基座和凸台采用机械加工方法实现;
[0037]S6、将所得硅膜片与玻璃基座进行阳极键合
[0038]硅膜片的灵敏度与膜片的半径成正比关系,而与膜片厚度成反比关系,即若要取得较高的膜片灵敏度,应适当的增加膜片半径,同时减小膜片厚度,只有设计出合适的尺寸并确定恰当的参数,才能得到良好的传感器性能。最终得到所需硅膜片,并在玻璃基底中部铣出一个圆形凸台,并在圆形凸台加工一个通孔,最后利用划片机进行划片处理,分成单个的敏感单元。
[0039]传感器头结构的凸台部分是玻璃管与传感器头固接的重要结构,通过激光或电极的方法加热凸台部分使其融化与玻璃管实现熔接,由于材料相同,热膨胀系数相差不多,对于两种结构的熔接影响最小,保证了压力传感器在高温环境下的整体性、密封性、敏感性和精度。
[0040]光源发出的入射光通过光纤耦合进入传感器内,其中,硅膜片表面涂覆的金属层作为法珀腔的一个反射面,玻璃管中内插光纤的端面作为另一个反射面,光线在F-P腔体的上下表面来回反射,形成多光束干涉,部分反射光沿着原路返回,相遇后再次发生干涉。干涉信号与腔长L有关,当膜片受到外界压力时会沿着轴向产生形变,导致法珀腔腔长变化,从而引起干涉信号发生变化。通过测量干涉信号的变化则可推导出腔长变化,最终进行解调得到压力信息变化数值,实现压力传感。
[0041 ] 实施例3
[0042]如图3所示,本实用新型实施例公开了一种高温压力传感器,包括传感头、光纤1、玻璃管2,所述传感头包括玻璃基底5、单抛硅片6和硅膜片7,玻璃基底5底面设有一空腔,单抛硅片6安装在空腔内,且底面与硅膜片7的上顶面相连,硅膜片7下端设有一深腔,所述传感头为方形,所述玻璃基底5顶面中部设有一圆形凸台4,所述圆形凸台4的中心处设有一通孔,所述玻璃管2套接在单模光纤或多模光纤I外,且玻璃管2的一端插入通孔,将玻璃管与传感器以及玻璃管与光纤实现固接,并在玻璃基底打有一个小孔8,使整个传感器内部处在差压环境下。
[0043]所述高温压力传感,光纤可由带有布拉格光栅3的单模光纤代替,并将布拉格光栅外固定在玻璃管内,固接点的位置在凸台的上部以及玻璃管的上端面附近并远离布拉格光栅结构的位置。
[0044]所述高温压力传感器,所用光纤类型可为单模光纤或多模光纤。
[0045]所述通过激光或电极的方法将玻璃管与传感器以及玻璃管与单模光纤进行固接。
[0046]所述玻璃管和玻璃基底可以为Pyrex玻璃等材料。
[0047]所述高温压力传感器为全玻璃结构。
[0048]所述单抛硅片6,可以在其上表面镀高反膜
[0049 ] 如图2所示,所述传感头通过以下步骤制备所得:
[0050] S1、将硅片经标准的RCA清洗流程后,表面涂覆光刻胶作为掩膜,进行第一次光刻,形成正面图形;
[0051]S2、在硅片表面溅射金属膜层,并剥离与光刻胶粘连的多余金属;
[0052]S3、在所得硅片背面涂光刻胶,进行二次光刻,形成圆腔图案;
[0053]S4、干法刻蚀未被光刻胶保护的硅片并达到所需的膜片厚度,在硅片背面形成深腔,去I父,得娃膜片;
[0054]S5、将所得硅膜片与玻璃基座进行阳极键合后,铣出凸台。
[0055]硅膜片的灵敏度与膜片的半径成正比关系,而与膜片厚度成反比关系,即若要取得较高的膜片灵敏度,应适当的增加膜片半径,同时减小膜片厚度,只有设计出合适的尺寸并确定恰当的参数,才能得到良好的传感器性能。最终得到所需硅膜片,并在玻璃基底中部铣出一个圆形凸台,并在圆形凸台加工一个通孔,最后利用划片机进行划片处理,分成单个的敏感单元。
[0056]传感器头结构的凸台部分是玻璃管与传感器头固接的重要结构,通过激光或电极的方法加热凸台部分使其融化与玻璃管实现熔接,由于材料相同,热膨胀系数相差不多,对于两种结构的熔接影响最小,保证了压力传感器在高温环境下的整体性、密封性、敏感性和精度。
[0057]光源发出的入射光通过光纤耦合进入传感器内,其中,硅膜片表面涂覆的金属层作为法珀腔的一个反射面,玻璃管中内插光纤的端面作为另一个反射面,光线在F-P腔体的上下表面来回反射,形成多光束干涉,部分反射光沿着原路返回,相遇后再次发生干涉。干涉信号与腔长L有关,当膜片受到外界压力时会沿着轴向产生形变,导致法珀腔腔长变化,从而引起干涉信号发生变化。通过测量干涉信号的变化则可推导出腔长变化,最终进行解调得到压力信息变化数值,实现压力传感。
[0058]实验结果表明:常温下,本实施例所得传感器在压力测量范围内,实验曲线的线性度良好,其灵敏度较高,温度敏感系数较低,测量分辨率较高,同时,该传感器在高温环境下对压力也有良好的线性响应,实现了高温压力传感器的小型化而且成本低廉,在高温压力测试领域具有一定的应用潜力和竞争力。经检测所得高温压力传感器的光谱图如图5所示,所得高温压力传感器360°C下的压力响应示意图如图6所示。
[0059]以上所述仅是本实用新型的优选实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本实用新型原理的前提下,还可以作出若干改进和润饰,这些改进和润饰也应视为本实用新型的保护范围。
【主权项】
1.一种高温压力传感器,其特征在于,包括传感头、光纤(I)、玻璃管(2),所述传感头包括玻璃基底(5)、单抛硅片(6)和硅膜片(7),玻璃基底(5)底面设有一空腔,单抛硅片(6)安装在空腔内,且底面与硅膜片(7)的上顶面相连,硅膜片(7)下端设有一深腔,所述传感头为方形,所述玻璃基底(5)顶面中部设有一圆形凸台(4),所述圆形凸台(4)的中心处设有一通孔,所述玻璃管(2)套接在光纤(I)外,且玻璃管(2)的一端插入通孔与传感器、光纤实现固接。2.如权利要求1所述的一种高温压力传感器,其特征在于,所用光纤(I)为单模光纤或多模光纤。3.如权利要求1所述的一种高温压力传感器,其特征在于,光纤(I)可由带有布拉格光栅(3)的单模光纤代替,光纤布拉格光栅段固定在玻璃管内。4.如权利要求1所述的一种高温压力传感器,其特征在于,所述玻璃基底(5)上带有小孔。5.如权利要求1所述的一种高温压力传感器,其特征在于,玻璃管与传感器之间,玻璃管与光纤的之间采用激光或电极焊接的方法实现固接。6.如权利要求1所述的一种高温压力传感器,其特征在于,所述玻璃管和玻璃基底为Pyr ex玻璃材料。7.如权利要求1所述的一种高温压力传感器,其特征在于,所述高温压力传感器为全玻璃结构。8.如权利要求1所述的一种高温压力传感器,其特征在于,所述单抛硅片(6)上表面可镀高反膜。
【文档编号】G01L11/02GK205664972SQ201620436519
【公开日】2016年10月26日
【申请日】2016年5月16日
【发明人】贾平岗, 房国成, 梁昊, 曹群, 熊继军
【申请人】中北大学
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1