一种基于自适应微透镜阵列传感器的数字变焦光谱成像仪的制作方法

文档序号:10986883阅读:307来源:国知局
一种基于自适应微透镜阵列传感器的数字变焦光谱成像仪的制作方法
【专利摘要】本实用新型公布了一种基于自适应微透镜阵列传感器的数字变焦光谱成像仪,包括电控带通滤光片、光学成像镜头、自适应微透镜阵列传感器、色散自适应成像控制器、图像采集与处理终端。本实用新型可以在光谱成像系统光谱图像时序扫描的同时,获取每个光谱图像的空间频率光场信息,实现先曝光成像后对焦的数字变焦功能、并进行自适应消色散提高数字变焦性能,最大程度上消除了大范围光谱扫描带来的色散影响,最大限度上保证了复杂地形地貌光谱图像信息的获取,在对复杂地形地貌进行遥感探测时,可以获得更加清晰和图像信息和更加准确的光谱信息,拓展现有光谱成像仪的主要功能与应用范围。
【专利说明】
一种基于自适应微透镜阵列传感器的数字变焦光谱成像仪
技术领域
[0001] 本实用新型涉及光谱成像技术领域,具体是指一种基于自适应微透镜阵列传感器 的数字变焦光谱成像仪。
【背景技术】
[0002] 光谱成像系统可同时获取目标的图像和光谱信息,是一种"性能完备"、图谱合一 的光学传感器,目前的光谱成像仪已经可以实现可调波段多、光谱分辨率强和空间分辨率 高等优点,适宜应用于凝视成像的机载、星载等遥感领域,为相关部门提供矿产资源勘察、 生物医学诊断、农业病虫害监测等的新型技术手段。然而在实际的遥感应用中,由于遥感对 象的地形地貌分布不均匀,为了获得清晰的遥感图像,需要根据地形地貌进行变焦操控。在 基于带通滤光片的光谱成像技术中,光谱信息是通过带通滤光片进行时序扫描,与需要时 间控制的变焦操控存在较大的冲突。
[0003] 目前的光谱成像系统在对复杂地形地貌进行遥感时,存在清晰度低、失真、以及大 范围光谱成像带来的色散影响的问题。 【实用新型内容】
[0004] 本实用新型的目的在于提供一种基于自适应微透镜阵列传感器的数字变焦光谱 成像仪,实现先曝光成像后对焦、并消色散的光谱成像功能,达到在对复杂地形地貌进行遥 感探测时,可以获得更加清晰和图像信息和更加准确的光谱信息,拓展现有光谱成像仪的 主要功能与应用范围的目的。
[0005] 本实用新型的目的通过下述技术方案实现:
[0006] -种基于自适应微透镜阵列传感器的数字变焦光谱成像仪,其特征在于包括:
[0007] 电控带通滤光片:待测物体的光线经过电控带通滤光片的滤光作用后,送入到光 学成像镜头;
[0008] 光学成像镜头:用于将接收到的目标光源转换成光学图像并输送到自适应微透镜 阵列传感器;
[0009] 自适应微透镜阵列传感器:来自待测物体的光线依次经过电控带通滤光片、光学 成像镜头到达自适应微透镜阵列传感器的焦平面,自适应微透镜阵列传感器采集最终光谱 图像对应的空间像素提供对应的空间频率光场信息,并传输给图像采集与处理终端;
[0010] 色散自适应成像控制器:实时采集电控带通滤光片的扫描谱段,通过电控方式调 整自适应微透镜阵列传感器的焦距,然后持续输出序列光谱图像至图像采集与处理终端;
[0011] 图像采集与处理终端:在保持时序光谱图像记录与处理的同时,提取每个光谱图 像像素的所有空间频率光场信息,通过优化整合每个光谱图像像素中的不同空间频率的光 场信息,并进行计算获得光谱图像的数字变焦功能,最终对时序光谱图像进行处理以及三 维空间显示。
[0012] 本实用新型的光谱成像仪,待测物体发出的光线经过电控带通滤光片的滤光作用 后,送入到光学成像镜头进行光学成像,然后将光学成像的图像经过自适应微透镜阵列传 感器进行图像信息的采集,同时获得待测物体的空间图像信息和每个像素的光场信息,传 输给图像采集与处理终端,图像处理终端利用每个像素的光场信息进行数字变焦操控,可 以在一次曝光采集的光谱成像数据中实现对不同距离处物体清晰图像的提取。这种方法在 不影响时序光谱成像功能的同时,利用简单的数字图像处理功能和微透镜阵列传感器提供 的光场光谱图像信息,实现了一次曝光成像后的数字变焦操控,提升了光谱成像系统对复 杂地貌、远近物体清晰光谱成像的功能;同时由于采用了自适应微透镜阵列传感器,在大光 谱范围的光谱成像应用中,由于采用色散校正,从而可以对不同距离处物体通过数字变焦 获取清晰图像。本实用新型采用自适应微透镜阵列传感器来进行图像信息的分解,将光学 镜头对焦范围外的图像信息进行了像素的提升,可以在光谱成像系统光谱图像时序扫描的 同时,获取每个光谱图像的空间频率光场信息,实现先曝光成像后对焦的数字变焦功能、并 进行自适应消色散提高数字变焦性能,这种基于微透镜阵列传感器的光谱成像仪在遥感应 用时不需要进行光学镜头变焦操控、同时在大范围光谱扫描时消除色散对数字变焦的影 响;克服了现有技术中的操控矛盾,而且基于自适应微透镜阵列传感器的数字变焦型光谱 成像系统,可以应用于复杂地形地貌的光谱成像遥感应用,最大程度上消除了大范围光谱 扫描带来的色散影响,最大限度上保证了复杂地形地貌光谱图像信息的获取,既保障了光 学镜头对焦区域外图像信息的清晰度,又保障了光谱信息的准确性,可以实现先曝光成像 后对焦、并消色散的光谱成像功能,在对复杂地形地貌进行遥感探测时,可以获得更加清晰 和图像信息和更加准确的光谱信息,拓展现有光谱成像仪的主要功能与应用范围。
[0013] 所述自适应微透镜阵列传感器包括自适应微透镜阵列和面成像探测器,光学成像 镜头与面成像探测器相对于自适应微透镜阵列形成共辄。具体的讲,通过将光学成像镜头 与面成像探测器相对于自适应微透镜阵列形成共辄,即光学成像镜头位于自适应微透镜阵 列的物平面上,面成像探测器位于自适应微透镜阵列的像平面上;自适应微透镜阵列上单 元微透镜的尺寸与分布,将面成像探测器分割为与单元自适应微透镜一一对应的区域,接 收最终通过带通滤光片和自适应微透镜阵列的成像光线;与单元自适应微透镜一一对应的 探测器子区域构成最终图像的一个像素,同时该子区域记录该位置的所有空间频率光场信 息;所述的色散自适应成像控制器,实时采集电控带通滤光片的扫描谱段,通过电控方式调 整自适应微透镜阵列的焦距,然后持续输出序列光谱图像至图像采集与处理终端;所述的 图像采集与处理终端在记录时序光谱图像的同时,记录每个物空间的光场信息,根据光场 信息可以对记录的时序光谱图像进行数字变焦,从而获得清晰的复杂地形地貌图像,并实 现更加准确的光谱信。
[0014] 所述其中自适应微透镜阵列的微透镜单元数目为M*N,M与N均为自然数。将自适应 微透镜阵列其微透镜单元数目为M*N,和传统面成像探测器其像素数目为KM*KN,结合形成 新型面成像探测器,该面成像探测器在记录原有光谱图像信息的同时,其光谱图像空间分 辨率为M*N,还可以记录每个光谱图像像素的空间频率光场信息,即该光场信息由面成像探 测器的每个K*K阵列的子区记录,利用这种新型传感器可以实现数字变焦功能;利用自适应 微透镜阵列的电控可变焦性能,可以在大范围光谱扫描的光谱成像时,消除微透镜阵列传 感器的带来的色散影响。
[0015] 所述的自适应微透镜阵列为液晶自适应微透镜阵列。
[0016] 本实用新型与现有技术相比,具有如下的优点和有益效果:
[0017] 1本实用新型一种基于自适应微透镜阵列传感器的数字变焦光谱成像仪,采用自 适应微透镜阵列传感器来进行图像信息的分解,同时获得空间图像信息和每个像素的光场 信息,实现不同距离处物体的清晰数字成像;可以在光谱成像系统光谱图像时序扫描的同 时,获取每个光谱图像的空间频率光场信息,实现先曝光成像后对焦的数字变焦功能、并进 行自适应消色散提高数字变焦性能,这种基于微透镜阵列传感器的光谱成像仪在遥感应用 时不需要进行变焦操控、同时在大范围光谱扫描时消除色散对数字变焦的影响;克服了现 有技术中的操控矛盾,而且基于自适应微透镜阵列传感器的数字变焦型光谱成像系统,可 以应用于复杂地形地貌的光谱成像遥感应用,最大程度上消除了大范围光谱扫描带来的色 散影响,最大限度上保证了复杂地形地貌光谱图像信息的获取,既保障了图像信息的清晰 度,又保障了光谱信息的准确性,可以实现先曝光成像后对焦、并消色散的光谱成像功能, 在对复杂地形地貌进行遥感探测时,可以获得更加清晰和图像信息和更加准确的光谱信 息,拓展现有光谱成像仪的主要功能与应用范围;
[0018] 2本实用新型一种基于自适应微透镜阵列传感器的数字变焦光谱成像仪,光学成 像镜头与面成像探测器相对于自适应微透镜阵列形成共辄,即光学成像镜头位于自适应微 透镜阵列的物平面上,面成像探测器位于自适应微透镜阵列的像平面上;面成像探测器被 自适应微透镜阵列分割为与单元微透镜一一对应的子区域,最终图像的空间分辨率与自适 应微透镜阵列的单元数目一致;被单元微透镜分割的面成像探测器子区域为最终光谱图像 对应的空间像素提供对应的空间频率光场信息。
【附图说明】
[0019] 此处所说明的附图用来提供对本实用新型实施例的进一步理解,构成本申请的一 部分,并不构成对本实用新型实施例的限定。在附图中:
[0020] 图1为本实用新型的原理框架结构示意图;
[0021 ]图2为本实用新型的单点像素光场信息记录原理示意图;
[0022]图3为本实用新型的数字变焦工作原理示意图;
[0023]图4为本实用新型进行空间频率光场提取时的色散影响原理图;
[0024]图5为本实用新型消色散原理图。
[0025] 附图中标记及相应的零部件名称:
[0026] 1-待测物体,2-电控带通滤光片,3-光学成像镜头,4-自适应微透镜阵列传感器, 401-自适应微透镜阵列,402-面成像探测器,5-图像采集与处理终端,6-红色待测物点,7-绿色待测物点,8-蓝色待测物点。
【具体实施方式】
[0027] 为使本实用新型的目的、技术方案和优点更加清楚明白,下面结合实施例和附图, 对本实用新型作进一步的详细说明,本实用新型的示意性实施方式及其说明仅用于解释本 实用新型,并不作为对本实用新型的限定。 实施例
[0028] 如图1所示,本实用新型一种基于自适应微透镜阵列传感器的数字变焦光谱成像 仪,包括电控带通滤光片2、光学成像镜头3、自适应微透镜阵列传感器4、以及图像采集与处 理终端5,其中自适应微透镜阵列传感器4由自适应微透镜阵列401和面成像探测器402组 成,自适应微透镜阵列401的微透镜单元数目为M*N,自适应微透镜阵列401和传统的面成像 探测器402结合形成新型面成像探测器,面成像探测器402的像素数目为KM*KN,该面成像探 测器在记录原有光谱图像信息的同时,光谱图像空间分辨率为M*N,还可以记录每个光谱图 像像素的空间频率光场信息,该光场信息由面成像探测器的每个K*K阵列的子区记录;其 中,来自待测物体1的光线依次经过电控带通滤光片2、光学成像镜头3到达自适应微透镜阵 列传感器4的焦平面,如图1中的光线所示,待测物体经过光学成像镜头成像在自适应微透 镜阵列的位置处,即自适应微透镜阵列处于光学成像镜头的像平面上;成像镜头与面成像 探测器相对于自适应微透镜阵列形成共辄,即成像镜头位于微透镜阵列的物平面上,面成 像探测器位于自适应微透镜阵列的像平面上;面成像探测器被自适应微透镜阵列分割为与 单元微透镜一一对应的子区域,最终图像的空间分辨率与自适应微透镜阵列的单元数目一 致;被单元自适应微透镜分割的面成像探测器子区域为最终光谱图像对应的空间像素提供 对应的空间频率光场信息,子区域的阵列为Κ*Κ,根据光谱图像的空间分辨率要求,Κ取值范 围在5至20之间较为适宜。
[0029] 如图2是本实用新型基于自适应微透镜阵列传感器的光谱成像仪的单点像素光场 信息记录原理示意图,如图2中所示,物方Α处红色待测物点的光线经过电控带通滤光片2、 光学成像镜头3成像在自适应微透镜阵列传感器4中,自适应微透镜阵列传感器4中的面成 像探测器在以自适应微透镜阵列分辨率记录光谱图像信息的同时,记录每个光谱图像像素 的空间频率光场信息;同理,数字变焦工作的原理如图3中所示,物方A处红色待测物点6、绿 色待测物点7、蓝色待测物点8三处分别成像在自适应微透镜阵列传感器4上的三个单元微 透镜处,自适应微透镜阵列传感器4中的面成像探测器在记录红色待测物点6、绿色待测物 点7、蓝色待测物点8的光谱图像信息的同时,根据单元微透镜的位置同时以K*K阵列记录其 空间频率光场信息,这个Κ*Κ阵列子区域中每个像素都对应待测物点不同的空间频率光场 信息,通过为每个待测物点数字选取如图3中所示的特定空间频率光场,同时摈弃掉其它光 场信息,再组合成新的自适应微透镜阵列分辨率的光谱图像,可以获得物方Β处待测物体清 晰的像,这对于复杂地形地貌的遥感测量清晰度具有重大前景,同时这种更加精确的数字 变焦方式可以获取待测物体更为准确的光谱信息。
[0030] 图4是大范围光谱扫描中的色散效应对空间频率光场信息以及数字变焦的影响, 电控带通滤光片2电控设置扫描谱段分别为4和:?时,由于普通的微透镜阵列没有进行消色 差工作,不同谱段的光线对应的微透镜阵列焦距不同,光学成像镜头3?谱段的光线可以经 过微透镜阵列成功聚焦在面成像探测器上,光学成像镜头3?谱段的光线经过微透镜阵列 无法聚焦在面成像探测器上,因此在离焦谱段无法完整获取光谱图像的空间频率光场信 息,进而影响大范围光谱扫描时的数字变焦性能与光谱图像处理效果。
[0031] 图5中是采用消色散自适应成像控制器和自适应微透镜阵列进行消色散的工作原 理示意图4时刻,当电控带通滤光片2的谱段设置为為时,通过消色散自适应成像控制器9 实时采集电控带通滤光片2的光谱谱段,设置自适应微透镜阵列4的加载电压为将自适 应微透镜阵列的焦距设置为f〇,此时光学成像镜头3?谱段的光线可以经过微透镜阵列成 功聚焦在面成像探测器402上;时刻,当电控带通滤光片2的谱段设置为馬时,通过消色散 自适应成像控制器9实时采集电控带通滤光片2的光谱谱段,设置自适应微透镜阵列401的 加载电压为巧,由于自适应微透镜阵列41焦距的电控可调特征,此时自适应微透镜阵列401 的焦距也可以调整为名,此时光学成像镜头%谱段的光线可以经过微透镜阵列成功聚焦在 面成像探测器上,进而消除了大范围光谱成像中色散效应对数字变焦和成像清晰度的影 响。
[0032]以上所述的【具体实施方式】,对本实用新型的目的、技术方案和有益效果进行了进 一步详细说明,所应理解的是,以上所述仅为本实用新型的【具体实施方式】而已,并不用于限 定本实用新型的保护范围,凡在本实用新型的精神和原则之内,所做的任何修改、等同替 换、改进等,均应包含在本实用新型的保护范围之内。
【主权项】
1. 一种基于自适应微透镜阵列传感器的数字变焦光谱成像仪,其特征在于包括: 电控带通滤光片(2):待测物体(1)的光线经过电控带通滤光片(2)的滤光作用后,送入 到光学成像镜头(3); 光学成像镜头(3):用于将接收到的目标光源转换成光学图像并输送到自适应微透镜 阵列传感器(4); 自适应微透镜阵列传感器(4):来自待测物体(1)的光线依次经过电控带通滤光片(2)、 光学成像镜头(3)到达自适应微透镜阵列传感器(4)的焦平面,自适应微透镜阵列传感器 (4) 采集最终光谱图像对应的空间像素提供对应的空间频率光场信息,并传输给图像采集 与处理终端(5); 色散自适应成像控制器(9):实时采集电控带通滤光片的扫描谱段,通过电控方式调整 自适应微透镜阵列传感器(4)的焦距,然后持续输出序列光谱图像至图像采集与处理终端 (5) ; 图像采集与处理终端(5):在保持时序光谱图像记录与处理的同时,提取每个光谱图像 像素的所有空间频率光场信息,通过优化整合每个光谱图像像素中的不同空间频率的光场 信息,并进行计算获得光谱图像的数字变焦功能,最终对时序光谱图像进行处理以及三维 空间显示。2. 根据权利要求1所述的一种基于自适应微透镜阵列传感器的数字变焦光谱成像仪, 其特征在于:所述自适应微透镜阵列传感器(4)包括自适应微透镜阵列(401)和面成像探测 器(402),光学成像镜头(3)与面成像探测器(402)相对于自适应微透镜阵列(401)形成共 辄。3. 根据权利要求2所述的一种基于自适应微透镜阵列传感器的数字变焦光谱成像仪, 其特征在于:所述其中自适应微透镜阵列(401)的微透镜单元数目为M*N,Μ与N均为自然数。4. 根据权利要求1所述的一种基于自适应微透镜阵列传感器的数字变焦光谱成像仪, 其特征在于:所述的自适应微透镜阵列(401)为液晶自适应微透镜阵列。
【文档编号】G01J3/28GK205679316SQ201620413613
【公开日】2016年11月9日
【申请日】2016年5月10日 公开号201620413613.2, CN 201620413613, CN 205679316 U, CN 205679316U, CN-U-205679316, CN201620413613, CN201620413613.2, CN205679316 U, CN205679316U
【发明人】赵祥杰, 沈志学, 段佳著, 曾建成, 乔冉, 黄立贤, 骆永全, 王海峰, 刘海涛
【申请人】中国工程物理研究院流体物理研究所
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1