目标值加工装置、温度调节器、控制过程执行系统和方法

文档序号:6265162阅读:160来源:国知局
专利名称:目标值加工装置、温度调节器、控制过程执行系统和方法
技术领域
本发明涉及使用表示控制过程的控制目标值的目标值信号,通过调节器实施控制过程的技术。
背景技术
作为调节器的一种,有安装于加热系统的温度调节器。温度调节器测定加热系统的加热温度,控制加热系统的运作,以便该测定温度成为预先设定的目标值。
从前,在提高温度调节器的控制精度的情况下,对在温度调节器中整形了输入到温度调节器中的目标值的基础上,执行控制过程(参照专利文献1)。
专利文献1为专利公报第2861276号。
就现有的调节器的结构来说,为了使控制精度提高,需要改造调节器的装置结构(包括软件结构),从前的装置结构不可能使控制精度提高。
还有,即使加以改良,在控制管理对象(温度维持系统等)产生复杂干扰的情况下,不仅每种调节器都需要适应其设置环境的改良,在该改良工作方面也需要熟练技术。例如,即使是同一种类的温度调节器也有多种各样的机种、功能,为了高精度地实施适应了这些机种、功能的装置构成的改良,需要非常高的熟练技术。
还有,即使完成了上述改良,该改良也只不过是个别适用于其设置环境的改良。因此,即使改良后的调节器发生故障,也不可能把发生故障的装置迅速地换成相同功能的装置。

发明内容
本发明就是鉴于上述状况而成的,其目的在于使调节器以现有的装置结构就能够提高控制精度。
在本发明中,为了达成上述目的,其构成如下。
本发明的目标值加工装置具备输入部,其输入表示控制过程的目标值的目标值信号;目标值整形器,其将输入到上述输入部中的上述目标值信号整形为适于执行上述控制过程的调节器的控制处理的信号形状;输出部,其将由上述目标值整形器整形的整形目标值信号输出到上述调节器中。
在这里,目标值信号的输入,不需要经常输入,根据需要输入即可,或者,通过输入设定保持目标值信号也可以。
而且,所谓适于控制过程的信号形状,是适于进行希望的控制的信号形状,例如是适于抑制过冲和下冲的控制、响应快速的控制、抑制摆动的控制、抑制多通道间的偏差的控制等的希望的控制的信号形状。
整形目标值信号,可以是预先整形存储的目标值信号,或者,也可以是以加工用的信号加工目标值信号、例如把加工用的信号与目标值信号相加、相减或相乘这样的目标值信号,或者,也可以是转换目标值信号和预先整形存储的目标值信号而得到的目标值信号,还有,也可以是使用模型等而生成的这样的目标值信号。
调节器可以是执行多通道的控制、即所谓的多通道的调节器,或者,也可以是进行仅单通道的控制的一个或多个调节器。
就是说,目标值加工装置,仅对一个通道的目标值信号进行整形也可以,对多个通道的目标值信号进行整形也行。
根据本发明,在调节器的前级,借助于目标值加工装置,把目标值信号整形为适于控制处理的信号形状以后,作为整形目标值信号而提供给上述调节器,因而对调节器没有加以任何改良,现有的调节器原样就能提高控制精度。
在一实施形式中,还具备将该目标值加工装置装卸自如地连接于上述调节器的连接器、或者可通信地连接该目标值加工装置和上述调节器的通信装置。
在这里,连接器不限于连接器(connector),也可以是电缆等。
而且,所谓通信装置,例如是分别在目标值加工装置和调节器上设置的无线通信部等。
根据该实施形式,可以使該目标值加工装置和调节器一体化,或者能够无线通信,从而提高方便性。
这种情况下,优选上述输出部具有随着通过上述连接器进行的该目标值加工装置和上述调节器的装卸操作,装卸自如地电连接于上述调节器的目标值输入部的构造,这样,输出部的连接也就变得容易,进一步提高方便性。
在优选实施形式中,还具有预先存储上述目标值的整形图案的存储器,上述目标值整形器根据存储在上述存储器中的上述整形图案,对输入到上述输入部中的上述目标值信号进行整形。
在这里,所谓整形图案,是对目标值信号进行整形用的图案,例如可以是时间上变化的波形图案、表示时间和目标值(或者校正目标值用的校正值)的关系的表等的数据。
根据该实施形式,基于存储到存储器中的同一整形图案,就能够精度高地反复执行目标值信号的整形操作。
在一实施形式中,上述目标值整形器对输入到上述输入部中的上述目标值信号进行整形,使得由上述调节器控制的控制对象的观测量迅速达到上述目标值。
在这里,所谓观测量,就是在对控制对象进行控制的调节器中,从上述控制对象反馈的反馈量,是在从检测出控制对象的物理状态的传感器控制检出信号、例如控制对象的温度的情况下,来自检测出控制对象的温度的温度传感器的检出信号等。
而且,所谓迅速,就是与不整形目标值信号的情况相比,观测量达到目标值的速度快。
根据该实施形式,以现有的调节器原样就能进行响应快速的控制。
在其他的实施形式中,在上述观测量过冲或下冲的期间,对上述目标值信号进行整形,使得上述过冲或下冲产生的观测量的峰值成为上述目标值。
根据该实施形式,在未整形目标值信号的情况下,过冲和下冲产生时,以该目标值加工装置整形目标值信号,因而现有的调节器原样能够进行抑制过冲和下冲的控制。
在一实施形式中,上述目标值整形器预先取入在将未整形目标值信号供给到上述调节器的状态下由該调节器控制的控制对象的观测量,以所取入的观测量迅速达到上述目标值的形式作成上述目标值的整形图案并存储到上述存储器中,而且,该目标值整形器在目标值整形控制时,从上述存储器读出整形图案而进行上述目标值信号的整形。
根据该实施形式,以现有的调节器原样能进行响应快速的控制。
还有,作为其他的实施形式,不是以该目标值加工装置作成整形图案,另外以使观测量迅速达到目标值的形式预先作成目标值的上述整形图案,存储到该目标值加工装置的存储器中也可以。
在其他的实施形式中,上述目标值整形器预先取入施加了扰动时的上述观测量,以从所取入的观测量迅速消灭由扰动造成的影响的形式作成上述目标值的整形图案并存储到上述存储器中。
根据该实施形式,以现有的调节器原样就能进行改善扰动响应的控制。
在优选实施形式中,上述调节器具有限制控制过程操作量而向控制对象输出的限制器,上述目标值整形器取入输入到上述限制器中的控制过程操作量与从該限制器输出的控制过程操作量的差分输出,以迅速消灭所取入的差分输出的形式对上述目标值信号进行整形。
在这里,所谓迅速,就是与未整形目标值信号的情况相比要快。
根据该实施形式,因为以消除控制过程操作量的饱和量的形式整形目标值信号,所以以现有的调节器原样就能进行重置结束对策。
在优选实施形式中,包括波形产生器,其基于所设定的参数产生波形;加工器,其基于由該波形产生器产生的波形加工上述目标值信号,作为上述整形目标值信号而输出。
在这里,所谓参数,就是由波形产生器产生波形用的数据,例如是表示时间和目标值的关系的数据、规定ARX模型等的模型的参数、目标值的变化幅度等的数据。
该参数是预先确定的,以便能得到希望的整形目标值信号,所谓该希望的整形目标值信号,例如是适合于抑制了过冲和下冲的控制、响应快速的控制、抑制了摆动的控制,抑制多个通道间的偏差的控制等的希望的控制的整形目标值信号。因为预先确定该参数,所以优选计测在预先把未整形目标值信号供给调节器的状态下由該调节器控制的控制对象的观测量。
参数的设定,例如也可以从个人计算机和PLC(可编程逻辑控制器)等通过通信来设定,也可以是工作人员直接设定输入。
波形产生器是依照所设定的参数产生波形的,依照参数,例如生成时间上变化的目标值的波形,或者用ARX模型等的模型生成波形,或者生成在预先设定的规定期间内以所设定的幅度变化这样的波形也行。
在该波形产生器中,输入规定波形产生的定时的定时信号也可以,或者提供来自控制对象的观测量,根据该观测量的变化,规定波形产生的定时也可以。
所谓加工,就是按照来自波形产生器的波形而整形加工目标值信号,例如运算处理目标值信号和来自波形产生器的波形,例如进行加法、减法、或乘法计算,或转换选择目标值信号和来自波形产生器的波形。
根据该实施形式,通过设定预先确定的参数,通过来自波形产生器的波形而整形加工目标值信号之后作为整形目标值信号而提供给调节器,因此,以现有的调节器原样能够进行例如抑制了过冲和下冲的控制、响应快速的控制、抑制摆动的控制、抑制多通道间偏差的控制等的希望的控制,提高控制精度。
在其他的实施形式中,是包括参数生成器,其预先取入在将未整形目标值信号供给到上述调节器的状态下由該调节器控制的控制对象的观测量,和在将规定的目标值信号供给到上述调节器的状态下由該调节器控制的控制对象的观测量,而生成参数;波形产生器,其基于由该参数生成器生成的参数产生波形;加工器,其基于由該波形产生器产生的波形加工上述目标值信号,作为上述整形目标值信号而输出。
在这里,所谓规定的目标值信号,就是用于生成参数的预先确定的目标值信号,例如是呈阶梯状定量变化的目标值信号,或者呈脉冲状定量变化的目标值信号等,例如在温度控制的情况下,例如是呈阶梯状变化1℃的目标值信号等。
通过取入在将规定的目标值信号供给调节器的状态下由該调节器控制的控制对象的观测量,例如当使目标值信号呈阶梯状变化1℃时,以使该目标值信号变化的时刻为基准,就可以求出观测量在哪个时刻变化几度。
另一方面,通过预先取入在将未整形目标值信号供给上述调节器的状态下由該调节器控制的控制对象的观测量,在不整形目标值信号的情况下,就能把握观测量哪个时刻进行哪种程度的不希望的变化,例如,可以求出因扰动,观测量在哪个时刻发生几次不希望的变化。
所以,根据相对于规定的目标值信号的观测量的变化和未整形目标值时的观测量的变化,抑制观测量的不希望的变化,即,为了进行希望的控制,能求出需要在哪个时刻加工哪种程度的目标值信号。因此,能够生成使得在要求的定时变化要求量的参数、例如表示上述的时间和目标值的关系的数据。
参数生成器,这样一来,基于在将未整形目标值信号供给调节器的状态下由該调节器控制的控制对象的观测量,和在将规定的目标值信号供给上述调节器的状态下由該调节器控制的控制对象的观测量,生成加工目标值用的参数。
还有,在将未整形目标值信号供给上述调节器的状态下由該调节器控制的控制对象的观测量,或者在将规定的目标值信号供给上述调节器的状态下由該调节器控制的控制对象的观测量,不需要一定实际计测,例如,也可以使用模型等推定观测量。
按照该实施形式,以现有的调节器原样就能进行希望的控制。
在一实施形式中,是包括;饱和量预测器,其预测上述调节器的控制过程操作量的饱和量;加工器,其基于由该饱和量预测器所预测的预测饱和量,以消除該预测饱和量的形式加工目标值信号,作为上述整形目标值信号而输出。
优选预测饱和量经过增益可变设定可能的反馈元件反馈到加工器中。
按照该实施形式,调节器在进行为了重置结束对策的处理之前,借助于该目标值加工装置,根据预测饱和量,就能进行为了重置结束对策的处理。所以,与现有的调节器相比,能够以该目标值加工装置进行更加优选的重置结束对策。
本发明的温度调节器具有目标值输入部,其输入从本发明的目标值加工装置的上述输出部输出的上述整形目标值信号。
按照本发明,以现有的温度调节器原样能使温度控制的精度提高。
本发明的控制过程执行系统具备生成表示控制过程的目标值的目标值信号的目标值供给装置;对上述目标值供给装置生成的目标值信号进行整形的上述任一项所述的目标值加工装置;基于由上述目标值加工装置整形后的整形目标值信号而执行控制过程的调节器。
目标值供给装置,或设定上述的参数,或产生該参数,或者向目标值加工装置提供目标值加工用的定时信号也可以。
按照本发明,以现有的调节器原样能使控制精度提高。
本发明的过程控制方法是包括生成表示控制过程的目标值的目标值信号的目标值供给步骤;把所生成的上述目标值信号整形为适于执行上述控制过程时的控制处理的信号形状的目标值加工步骤;基于整形后的整形目标值信号而执行控制过程的控制过程执行步骤。
按照本发明,执行控制过程的调节器,以现有的原样能使控制精度提高。
本发明的目标值加工程序,将表示控制过程的目标值的目标值信号整形加工成适于执行上述控制过程的调节器的控制处理的信号形状,其特征是使计算机执行基于所设定的参数产生波形的步骤;基于所产生的波形加工上述目标值信号而输出到上述调节器中的步骤。
按照本发明,通过计算机执行该目标值加工程序,以现有的调节器原样能使控制精度提高。
本发明的记录媒体是记录了本发明所述的目标值加工程序的计算机可读取的记录媒体。
在这里,所谓记录媒体,例如就是软盘、硬盘、光盘、光磁盘、CD-ROM、磁带、非易失性存储卡、ROM等。
就是说,可以把起本发明的目标值加工装置功能的目标值加工程序可以作为所谓软件包而构成。
从记录媒体读出本发明的目标值加工程序使其在计算机里执行,从而以现有的调节器原样就能使控制精度提高。
根据本发明,以现有的装置构成原样、例如通用比较便宜的调节器原样,通过仅添加本发明的目标值加工装置,就能使控制精度提高,能把改良系统所需的工夫和成本降到最低限度。
针对调节器,完全不需要对其每个装置施行适于其设置环境的改进。对调节器的改进工作虽然需要熟练技术的情况很多,但是不需要熟练技术的部分,能进一步降低系统改进所需的工夫和成本。
即使目标值加工装置出了故障,只要把出故障的目标值加工装置更换为同功能的装置即可,调节器可原样继续使用。故此,能迅速且便宜地实施从故障中的恢复。


图1是表示本发明一实施形式的包括目标值加工装置、温度调节器、目标值信号供给装置和加热器的全体结构的框图。
图2是表示经过端子板而连接实施形式的目标值加工装置和温度调节器的状态的外观立体图。
图3是表示经过端子板而连接实施形式的目标值加工装置和温度调节器的状态的分解立体图。
图4是表示实施形式的目标值加工装置的结构的框图。
图5是目标值加工装置的功能框图。
图6是表示模型参数的一例的视图。
图7是表示多通道的结构的视图。
图8是表示模型参数的其他例子的视图。
图9是表示模型参数的其他例子的视图。
图10是表示模型参数的其他例子的视图。
图11是用于说明模型参数的决定手法的视图。
图12是其他实施形式的目标值加工装置的框图。
图13是提供了实施形式的目标值加工装置的目标值整形动作的说明的视图。
图14是用于说明图13的目标值的整形的视图。
图15是提供了实施形式的目标值加工装置的目标值整形动作的说明的视图。
图16是用于说明指令整形控制的视图。
图17是其他实施形式的功能框图。
图18是又一其他实施形式的功能框图。
图19是用于说明对目标值加工装置的设定方法的视图。
具体实施例方式
以下,参照在对供给到温度调节器的目标值进行整形的目标值加工装置中实施了本发明的实施形式而说明本发明。
作为温度调节器,例如,用CVD(Chemical Vapor Deposition化学气相沉积)法,在半导体晶片上形成各种功能膜的CVD装置中,作为例子而可以列举出将CVD处理中的半导体晶片的温度加热到规定温度的加热器温度控制用的温度调节器。
图1是记录包括本实施形式的目标值加工装置的控制过程执行系统的全体结构的框图,图2是表示把目标值加工装置连接于温度调节器的状态的外观立体图,图3是表示目标值加工装置和温度调节器的连接构造的分解立体图。
在这些图中,附图标记1是目标值加工装置,2是目标值信号供给装置,3是温度调节器,4是端子板,5是连接导轨,H是加热器,W是加热对象,10是温度传感器(检出器)。
首先,说明目标值加工装置1、目标值信号供给装置2和温度调节器3的功能结构。
目标值信号供给装置2,具备有输出部2a,具有从输出部2a输出目标值信号的功能,该目标值信号表示在温度调节器3中成为控制目标值的设定温度。
还有,该目标值信号供给装置2,例如,由个人计算机和PLC(可编程逻辑控制器)等构成,根据需要,除了与温度调节器3的设定温度相对应的目标值信号外,例如,还将目标值加工控制用的定时信号等输出到目标值加工装置1。
目标值加工装置1,具备目标值整形器6、输入部1a和输出部1b,具有如下功能把从输入部1a输入的目标值信号,在目标值整形器6整形成适于温度调节器3的控制处理的信号形状,从输出部1b作为整形目标值信号而输出。输入部1a经过连接电缆9电连接到目标值信号供给装置2的输出部2a。
温度调节器3,具备目标值输入部3a,具有根据从目标值输入部3a输入的整形目标值信号控制加热器H的加热温度的功能。即,温度调节器3,把整形目标值信号作为目标值(设定温度)而进行温度控制。
加热对象W是用加热器H加热的加热对象(半导体晶片)。温度传感器10检测出加热器H的温度状态,更具体而言,检测出配设有加热器的作为控制对象的热处理盘的温度状态,并将检出结果(温度信息)供给到温度调节器3和目标值整形器6。
其次,说明目标值加工装置1、目标值信号供给装置2和温度调节器3的构造。
目标值加工装置1具有箱型的外形形状,其前面设置有输入部1a,其背面设置有输出部1b。输入部1a和输出部1b作成为端子形状。在目标值加工装置1的内部容纳有目标值整形器6。目标值加工装置1内的目标值整形器6和目标值加工装置1前面的输入部1a,经由目标值加工装置1的内部配线(图中省略)而电连接起来。同样,目标值整形器6和输出部1b经由目标值加工装置1的内部配线(图中省略)而电连接起来。
温度调节器3具有与目标值加工装置1同样的箱型的外形形状。在温度调节器3的背面设置有作成为端子形状的目标值输入部3a。温度调节器3内的温度调节器3主体和温度调节器3背面的目标值输入部3a,经由温度调节器3的内部配线(图中省略)而电连接起来。
端子板4具有目标值加工装置1用的端子板部4a和温度调节器3用的端子板部4b。这些端子板部4a、4b具有相互的侧面面接触并装卸自如地连接在一起的下述的构造。
在端子板部4a、4b的侧面分别设置有侧连接器7a、7b。这些侧连接器7a、7b具有相互装卸自由地电连接起来的端子构造。在端子板部4a、4b的前面设置台座4c、4c。台座4c、4c具有装卸自如地安装目标值加工装置1的背面部和温度调节器3的背面部的构造。在台座4c的底部设置有连接端子8a、8b。连接端子8a、8b具有与目标值加工装置1、温度调节器3连接的电连接用端子的功能。在端子板部4a,连接端子8a和侧连接器7a,借助于端子板部4a的图中未示出的内部配线电连接起来。同样,在端子板部4b,连接端子8b和侧连接器7b,借助端子板部4b的图中未示出的内部配线电连接起来。
端子板部4a、4b的背面设置有导轨配合槽8、8。导轨配合槽8分别形成在直到端子板部4a、4b背面的左右两端处。导轨配合槽8具有与导轨5配合的形状。端子板部4a、4b,通过将同一连接导轨5插入到导轨配合槽8中,而经由连接导轨5互相机械式连接起来。还有,端子板部4a、4b,以经由连接导轨5连接起来的状态将相互的侧面面连接起来,使侧连接器7a、7b之间连接,因此,连接端子8a、8b经由被连接了的侧连接器7a、7b而互相电连接。这样一来,由连接在一起的端子板部4a、4b构成的端子板4具有目标值加工装置1和温度调节器3的连接器的功能。
还有,不限于侧连接器等的连接器,以通信用的电缆连接也可以,或者,分别设置可使目标值加工装置1和温度调节器3无线通信的无线通信部也可以。
目标值加工装置1,其背面装卸自如地安装在端子板部4a的台座4c上。在安装的状态下,目标值加工装置1的输出部1b与台座4c底部的连接端子8a嵌合,由此两端子1b、8a电连接在一起。同样,温度调节器3,其背面装卸自如地安装在端子板4b的台座4c上。在安装的状态下,温度调节器3的目标值输入部3a与台座4c底部的连接端子8b嵌合在一起,由此两端子3a、8b电连接在一起。由于具备这样的连接构造,目标值加工装置1和温度调节器3就经由端子板4而机械地连接在一起,并电连接起来。
接着,参照图4,说明目标值加工装置1和设于目标值加工装置1的目标值整形器6结构的细节的一个例子。
在该实施形式中,目标值整形器6具备A/D转换电路20、定时检出电路21、定时器22、第1存储器23、检出电路24、计算电路25、第2存储器26、输出转换电路27、D/A转换电路28、解码电路29、存取控制电路30、第3存储器31、比较电路32、第1输出电路33、输入电路34、判定电路35、第2输出电路36。
A/D转换电路20把经由输入部1a而从目标值信号供给装置2输入的目标值信号(模拟)转换成数字信号,输出到定时检出电路21和第1存储器23和判定电路35。
定时检出电路21,检测出输入目标值信号的定时(目标值响应控制开始的定时)。第1存储器23在从定时器22将存储定时指令供给到第1存储器23的时刻,存储经由输入电路34而由温度传感器10供给的加热器H的加热温度检出信号和从A/D转换电路20输出的目标值信号(数字)。判定电路35,比较在第1存储器23中存储的温度检出信号与目标值信号(数字),判断加热器H的温度与目标值相比是否为异常高/低。判定电路35在判断结果表示为“异常”的情况下,产生切断对加热器H通电的异常时切断信号。第2输出电路36,把异常时切断信号输出给温度调节器3。接到异常时切断信号的温度调节器3停止对加热器H的通电。
检出电路24根据存储在第1存储器23中的温度检出信号和目标值信号(数字),检测出温度检出信号的时序变化的信号电平变化的发生周期、发生定时,发生振幅等的信号变化形式。
计算电路95,根据由检出电路24检测出的信号变化形式,对目标值信号进行整形。
这里,所谓整形目标值信号,是例如作为依照时序电平变化的信号图案(整形图案)而形成。整形目标值信号经由第2存储器26而存储到第3存储器31的一个存储区域。在这里,产生与根据大小、材质等而相互热容量不同的多个加热对象W分别对应的整形目标值信号,存储到第3存储器31的各个存储区域。可预先产生整形目标值信号并存储到第3存储器31的存储区域中。
还有,作为其他的实施形式,不是存储整形目标值信号,而可以事先存储用于把目标值信号加工成整形目标值信号的加工用的信号,由该加工用的信号和所输入的目标值信号加工成整形目标值信号,例如将加工用的信号和目标值信号相加而作为整形目标值信号输出。
输出转换电路27,将存储到第2存储器26中的整形目标值信号、和经由A/D转换电路20而由目标值信号供给装置2供给的目标值信号(数字)转换后输出。D/A转换电路28,模拟转换从输出转换电路27输出的(目标值信号/整形目标值信号)并输出到温度调节器3。
解码电路29,从由目标值信号供给装置2等供给的多个指令信号之中提取特定任意的整形目标值信号的特定指令。
存取控制电路30进行如下控制从第3存储器31读出由解码电路29提取的特定信号(Load指令)所特定的整形目标值信号,写入到第2存储器26。比较电路32对存储到第3存储器31中的各整形目标值信号与预先设定的比较值进行比较,当各整形目标值信号超过比较值时,判断该整形目标值信号发生异常的特性变动,产生特性变动通知信号。特性变动通知信号从第1输出电路33输出到温度调节器3中。接到特性变动通知信号的温度调节器3发出表示整形目标值信号产生了异常的特性变动的变动警报。变动警报可以是显示形式,也可以是产生声音形式。
图5是表示目标值加工装置1的基本结构的功能框图。
本实施形式的目标值加工装置1,基本上具备产生加工用的波形的波形产生器50;按照来自该波形产生器50的加工用的波形,加工由目标值信号供给装置2输入的目标值信号的目标值加工器51。
波形产生器50根据加工用的波形的产生所需要的信息(以下称作“模型参数”)和根据需要,基于来自温度传感器10的检出温度和定时信号,产生加工用的波形并供给到目标值加工器51,目标值加工器51,以来自波形产生器50的波形对从目标值信号供给装置2输入了的目标值信号进行加工,例如进行加法或其他的运算,作为整形目标值信号而对温度调节器3输出。
作为在波形产生器50中产生加工用的波形用的模型参数,例如有如下这样的模型参数。
即,作为模型参数,可以列举出图6所示的表示时间与温度的关系的温度表。这种温度表,例如,是在图7示出的多通道的温度控制中,表示与各个通道(ch0~chn)的温度调节器31~3n各自对应的时间和温度的对应关系的表。
或者,模型参数,如图8所示,是表示有关各个通道(ch0~chn),相对于时间的温度变化的波形(曲线)也可以。
还有,将有关的波形,例如预先存储到上述图4的第2、第3存储器26、31等中也可以。
而且,如图9所示,把与各通道(ch0~chn)各自对应的ARX模型的分母a1~am、分子b1~bm的参数,用作模型参数也可以。
还有,如图10所示,把包括时间常数T和空耗时间L的各个通道(ch0~chn)的模型的时间常数T1~Tm和空耗时间L1~Lm作为模型参数也可以。
使用图9和图10的模型的情况下, 响应脉冲信号等的输入,用由模型参数限定的模型而输出波形。
有关的模型参数,例如如下这样进行,就能预先决定。
即,在预先没有加工目标值的状态下,进行温度控制而计测控制对象的检出温度如何变化,进而,计测例如使目标值呈脉冲状基准量变化时的控制对象的温度变化。
例如如图11(b)所示计测如图11(a)所示使目标值(设定温度)呈脉冲状变化了1℃时的控制对象的检出温度。
根据该图11的计测数据,可以求出从使目标值变化了的时刻起控制对象的温度例如直到成为峰值时刻的时间t1、和相对于目标值的1℃的温度变化的控制对象的峰值时刻的温度变化、例如0.6度的比率。
所以,基于该温度变化的定时和温度变化的比率,就能够计算出在没有加工目标值的状态下,为了在希望的定时使进行温度控制而计测的控制对象的检出温度成为希望的温度,使目标值按哪个定时变化多少摄氏度即可,能够决定上述的模型参数。
这样,使用模型参数产生波形,通过加工目标值,即通过使目标值在所要求的定时变化所要求的温度,从而控制对象的检出温度,在希望的定时被校正到希望的温度,所以就能够例如抑制过冲和下冲,或者抑制各通道间的温度的偏差,从而实现均匀化。
图12是其他实施形式的目标值加工装置1的功能框图。
在上述图5的实施形式中,是预先决定模型参数,把该模型参数设定于目标值加工装置1的结构,相对于此,本实施形式中,目标值加工装置1具备参数生成器52,其根据对象信息、例如在未进行目标值加工的温度控制状态下计测的控制对象的检出温度、和使目标值例如呈阶梯状基准量变化时计测的控制对象的检出温度,如上所述那样产生模型参数;波形产生器50,其基于来自该参数生成器52的模型参数,和上述同样地产生加工用的波形;目标值加工器51,其以来自波形产生器50的加工用的波形,加工由目标值信号供给装置2设定的目标值信号。在上述的图4中,参数生成器52可由检出电路24和计算电路25等构成。
在该实施形式中,例如通过输入未进行目标值加工的温度控制状态的控制对象的检出温度的计测数据、和使目标值例如呈阶梯状变化1℃温度时的控制对象的检出温度的计测数据,同时输入例如未进行目标值加工的状态的检出温度的计测数据中应校正的定时和应校正的温度等数据,从而计算出用于产生加工用的波形的模型参数,并提供给波形产生器50。
参数生成器52、波形产生器50和目标值加工器51,例如由计算机构成。
接着,详细说明由具有上述结构的控制过程执行系统实施的过程控制方法。首先,说明作为目标值响应控制的一例的正计算(ポジカスト)控制。
由温度调节器3进行温度控制的情况下,如图13(a)所示,从温度控制开始时起直至检出温度到达目标值温度α而在该温度稳定为止,有时一次性超过目标值温度,产生所谓过冲。在温度过程控制中产生过冲时,因为谋求其聚束,存在温度控制的响应时间变长的问题。
在目标值加工装置1中,为了不使这样的过冲发生,对由目标值信号供给装置2供给的目标值信号接着实施加工。即,过冲发生以后,在显示温度向目标值聚束的过程的控制曲线中,存在多个正的温度变化量转向负的温度变化量的峰值时刻(温度变化量变成0的时刻)。在这些峰值时刻之中,最初的峰值时刻的过冲最厉害。
设这样的温度控制时刻为T1,将此时的到达温度规定为β时,如图13(b)所示,设定暂定目标值α′,使得时刻T1的检出温度β与目标值温度α一致。
具体而言,加工整形成比所输入的目标值信号所示的目标值温度α低一些的目标值温度α′,使得时刻T1的检出温度β与目标值温度α一致。
还有,时刻T1以后,整形目标值信号,使得目标值温度返回到原来的目标值温度α,即,在时刻T1以后,不进行目标值信号的加工。
将这样整形后的整形目标值信号的信号图案预先存储到第3存储器31中。对多个加热对象W的每个分别作成整形目标值信号,并存储到第3存储器31中。
实施正计算控制时,首先,表示通过正计算控制而实施任意的加热对象W的温度控制的特定信号(Load指令)从目标值信号供给装置2等向目标值加工装置1输出。该特定信号由解码电路29检测出。根据由解码电路29进行的该特定信号的检出,存取控制电路30读出在这次温度控制中对加热器H的加热对象W(半导体晶片等)的正计算控制实施时使用的整形目标值信号,把写入第2存储器26的指令输出到第3存储器31。接到该指令的第3存储器31,读出所指定的整形目标值信号并存储到第2存储器26中。
在进行了以上的准备工作之后,目标值加工装置1进行目标值的加工操作。具体而言,在由加热器H进行的加热对象W的温度控制开始时,输出转换电路27,从第2存储器26中有选择地读出正计算控制用的整形目标值信号。所读出的整形目标值信号由D/A转换电路28转换成模拟信号以后,输出到温度调节器3。在温度调节器3,根据所供给的整形目标值信号,实施加热器H的温度控制。
在这里,温度调节器3本身,依照所输入的目标值信号实施现有的控制运作。但是,输入到温度调节器3的目标值信号是被整形为正计算控制用的整形目标值信号。因此,温度调节器3尽管进行与现有的控制操作相同的控制,可是从结果看,温度调节器3实施正计算控制。
还有,正计算控制只是在过冲发生的加热控制开始最初的期间中实施的控制。因此,过冲产生的加热控制开始最初的期间结束时,检测该情况的定时检出电路21就向输出转换电路27输出控制转换指令。接到控制转换指令的输出转换电路27,停止从第2存储器26供给的整形目标值信号的选择操作,转而选择从A/D转换电路20通过定时检出电路21供给的未加工目标值信号(数字),并输出到D/A转换电路28。目标值信号由D/A转换电路28转换为模拟信号以后供给到温度调节器3。
在温度调节器3,根据所供给的未整形目标值信号,实施加热器H的加热控制。所以,温度调节器3依照输入的目标值信号实施控制动作。这时,需要正计算控制的加热温度控制开始最初的期间结束。因此,即使实施使用了目标值信号的现有的温度控制,也没有任何问题。这样,在目标值加工装置1中,通过在各个期间转换整形目标值信号和未整形目标值信号,进行最终的目标值信号的整形。
通过实施以上的控制,并没有产生过冲,能够迅速地使控制对象的温度到达目标值温度并使其在该温度下稳定。
这种正计算控制,例如,按照图5的功能框图进行说明,则波形产生器50如图14(b)所示,从温度控制开始时刻到时刻T1的期间,使目标温度值α为α’,所以-Δ=α-α’,时刻T1以后,产生作为0℃的加工用的波形,在目标值加工器51,将该加工用的信号波形和图14(a)所示的目标值信号相加并作为整形目标值信号而输出。
所以,只要设定用于表示图14(b)所示的加工用的波形的模型参数即可,例如,设定表示时间和温度的对应关系的上述温度表也可以。
接着,说明有关由具有上述结构的目标值加工装置1所实施的扰动响应控制。
如图15(a)所示,在进行加热器H的温度控制的情况下,在加热器H的加热面上装载了新的加热对象W的情况下,加热器H温度发生变化。这样的温度变化在温度控制时成为扰乱控制的扰动。产生扰动的情况下,温度传感器10的检出温度,依照时序周期性地发生下降、上升、过冲、下降这样的变动,同时向目标值聚束。在产生起因于扰动的这样的控制变动时,目标值加工装置1为了加快目标值的响应速度,实施如下这样的目标值整形。
首先,在未实施目标值加工的温度控制状态下,在维持着目标值温度的加热器H上装载加热对象W而准备性发生扰动。在此状态下以温度传感器10检测出加热器H的温度变化,以检出电路24计测该检出结果,进而根据所计测的扰动,用计算电路25计算出消灭图15(b)所示的扰动(温度变动)的扰动消灭用目标值的形态。
该扰动消灭用的目标值的形态的确定就是在未施行目标值加工的温度控制状态下,根据准备性发生扰动时计测的检出温度,和如上述图11所示使目标值呈阶梯状基准量变化时计测的检出温度,如上所述,计算出用于抑制过冲的波形的定时和大小。
这里,尤其是,计算出消除因扰动而产生的过冲的目标值的形态。即,进行整形,使得目标值在一定期间降低,从而抑制图15(a)所示的过冲。然后,把根据计算而作成的目标值信号的整形图案,作为整形目标值信号而存储到第3存储器31中。
在实际的扰动响应控制时,用传感器检测出在加热器H上装载了加热对象W,将该检出信号向目标值加工装置1输出。在目标值加工装置1,当解码电路29检测到收到了传感器检出信号时,存取控制电路30就把读出扰动消灭用的整形目标值信号的指令输出到第3存储器31。由此,扰动响应用的整形目标值信号从第3存储器31被读出,经由输出转换电路27、D/A转换电路28而供给到温度调节器3。在温度调节器3,根据所供给的整形目标值信号,执行扰动响应控制。
在这里,温度调节器3本身依照所输入的目标值信号,实施现有的控制运作。但是,输入到温度调节器3的目标值信号是为了扰动响应用而整形了的整形目标值信号。因此,温度调节器3尽管进行与现有的控制操作同样的控制,可是从结果看,温度调节器3变成实施扰动响应消灭控制。
还有,这样的扰动响应控制是只有在扰动产生最初的期间实施的控制。因此,扰动产生最初的期间结束时,检测到该情况的定时检出电路21,向输出转换电路27输出控制转换指令。接到了控制转换指令的输出转换电路27,停止从第2存储器26供给的整形目标值信号的选择操作,转而选择从A/D转换电路20通过定时检出电路21而供给的未整形的目标值信号(数字)并向D/A转换电路28输出。未整形目标值信号由D/A转换电路28转换为模拟信号以后,供给到温度调节器3。在温度调节器3,根据供给的整形目标值信号,实施加热器H的加热控制。所以,温度调节器3依照输入的目标值信号而实施现有的控制运作。这时,扰动产生最初的期间结束。因此,尽管实施使用了目标值信号的现有的温度控制也没有任何问题。这样,在目标值加工装置1中,通过在每个期间内转换整形目标值信号和未整形目标值信号,进行最终的目标值信号的整形而作为整形目标值信号。
还有,因装载了新的加热对象W而引起的扰动的产生定时,例如,通过检测到把加热对象W装载到加热器H上的升降器(装载装置)启动开始定时而检测出。这种情况下,检测出的升降器的启动开始定时,时间上是比实际的扰动产生定时要早一些的定时。因此,需要使开始扰动响应控制的定时比升降器的启动开始检出定时延迟。延迟控制开始的处理,例如可通过定时器22来实施。
接着,说明有关能适合用作上述扰动响应控制的指令整形控制。
图16(a)表示因扰动而使温度传感器10的检出温度依照时序周期性变动的同时,具有向目标值聚束的残留振动的情况。还有,图16(b)表示此时的目标值。
因扰动等引起的控制变动产生时,为了加快向目标值聚束的响应速度而实施的是指令整形控制。在这种情况下,如图16(d)所示,施行加工,使得将与产生的图16(a)的温度变动的周期在同一周期中成为倒相的变动提供给目标值。
在扰动发生时,例如,在T时刻,如图16(d)所示,实施把与温度变动成反相的整形施加给目标值这样的指令整形控制,如图16(c)所示,能提高扰动发生时的目标值响应速度。在将半导体晶片这样的材质、形状、重量等预先已知的物品作为加热对象W的加热器H的温度控制中,发生的扰动能够预先测定。因此,在目标值加工装置1中,可以如下这样实施指令整形控制。
作为未施行目标值加工的温度控制状态,在维持目标值温度的状态下,将在加热器H上装载加热对象W而准备性发生扰动时计测的检出温度的残留振动作为扰动而由检出电路24计测,进而根据所计测的扰动,用计算电路25计算出按照指令整形控制的扰动聚束用的目标值的形态。然后,根据计算作成的目标值信号作为整形目标值信号,存储到第3存储器31中。
实际的指令整形控制时,以传感器检测出在加热器H上装载了加热对象W的情况,将该检出信号向目标值加工装置1输出。在目标值加工装置1,当解码电路29检测到收到了传感器检出信号的情况,存取控制电路30就把读出指令整形控制用的整形目标值信号的指令输出到第3存储器31。由此,指令整形控制用的整形目标值信号由第3存储器31读出,经由输出转换电路27、D/A转换电路28供给到温度调节器3。温度调节器3根据所供给的整形目标值信号,执行指令整形控制。
在这里,温度调节器3本身,依照所输入的目标值信号实施现有的控制运作。但是,输入到温度调节器3中的目标值信号,是加工成指令整形控制用的整形目标值信号。故此,温度调节器3尽管进行着与现有的控制操作一样的控制,可是从结果看,温度调节器3实施指令整形控制。
还有,指令整形控制,是只在扰动发生最初的期间实施的控制。因此,当扰动发生最初的期间结束时,检测到该情况的定时检出电路21就给输出转换电路27输出控制转换指令。接到控制转换指令的输出转换电路27停止从第2存储器26供给的整形目标值信号的选择操作,转而选择从A/D转换电路20通过定时检出电路21而供给的未加工的目标值信号(数字)并输出到D/A转换电路28。
未整形的目标值信号,借助于D/A转换电路28转换为模拟信号以后,供给到温度调节器3。在温度调节器3,根据所供给的未整形目标值信号,实施加热器H的加热控制。所以,温度调节器3依照输入的未整形目标值信号实施现有的控制运作。这时,需要指令整形控制的扰动发生最初的期间结束。故此,尽管实施使用了未整形目标值信号的现有的温度控制也没有什么问题。这样,在目标值加工装置1中,通过在每个期间转换整形目标值信号和未整形目标值信号,进行最终的目标值信号的整形。
目标值加工装置1能实施下面说明的防重置结束(アンチリセツトワインドアツプ)控制。
对实际的温度调节器3的控制对象来说,大多有加热器H的输出界限等饱和特性。在具有如PID控制那样的积分器的温度调节器3中,在偏差的积分示出超过该饱和特性的饱和量的情况下发生重置结束现象(积分器结束现象)。当发生重置结束现象时,在饱和了的积分值回到饱和界限内以前不能恢复原来的PID控制功能。这种状态下,变得更容易发生过冲,从而产生控制响应所需的时间延长等的问题。
作为抑制防重置结束现象的控制方法,公知有例如在积分器饱和期间停止积分的控制方法;偏差大的期间转换到PD控制以后,在饱和聚束的时刻再次转换到PID控制的控制方法;自动整合PI控制方法等。
在目标值加工装置1中,防重置结束控制如下实施。这种情况下,图1中如假设线所示,用减法器41计算出输入到内置于温度调节器3内而限制控制过程操作量的限制器40的控制过程操作量、和从上述限制器40输出的控制过程操作量之差,把该差分、即饱和量输入到目标值整形器6中。
目标值整形器6整形目标值信号以便迅速地消灭该差分。在目标值整形器6中,例如,按下面的(1)式,能产生进行了防重置结束控制的整形目标值信号。
SPr=SP+G(s)(ur-u)...(1)SPr整形目标值信号SP未加工目标值信号G(s)适于防重置结束控制的适当的传输函数矩阵ur输入到温度调节器3的限制器40内的控制过程操作量u从限制器40输出的控制过程操作量在由目标值加工装置1进行的防重置结束控制中,通过以最大限度取出由任意的温度调节器3控制的加热器H效率、特性的形式产生整形目标值信号而供给到温度调节器3,从而将加热器H的特性最大限度提高。这种情况下,温度调节器3等的操作对象一般是功率器件。因此,通过在目标值加工装置1中实施防重置结束控制,能避免将操作对象(功率器件)的功率100%使尽的控制动作。这与延长操作对象(功率器件)的寿命和改善能量息息相关。
图17是表示本发明其他实施形式的防重置结束控制的结构的目标值加工装置1的功能框图。
该实施形式的目标值加工装置1,在温度调节器3的控制过程操作量饱和之前,为了能够进行防重置结束控制,以饱和量预测器57预测温度调节器3的饱和操作量,按希望的反馈增益F从目标值信号SPp减去(加工)所预测的饱和量而作为整形目标值信号SP。
为了预测温度调节器3的饱和操作量,目标值加工装置1具备与温度调节器3同样的PID控制器53;比温度调节器3的限制器40限制稍严的限制器54;计算出供给温度调节器3的整形目标值信号SP与检出温度PV的偏差的第1减法器55;计算出作为限制器54的输入与输出的差的预测饱和量的第2减法器56;反馈元件58。
在PID控制器53中,设定与内置于温度调节器3的PID控制器相同的PID参数,作为模型参数。
所以,在温度调节器3发生控制过程操作量的饱和以前,在目标值加工装置1,输出预测饱和量。例如,在检出温度下降偏差变大的情况下,过程控制操作量饱和,饱和将要发生时,输出预测饱和量,用作为目标值加工器51的第3的减法器56从目标值信号中减去与预测饱和量成比例的值而作为整形目标值信号输出,所以输入到温度调节器3的目标值下降,其结果,在温度调节器3中,没产生控制过程操作量的饱和,温度调节器3不进行防重置结束控制,在目标值加工装置1中,能进行防重置结束控制。
上述反馈元件58的反馈增益F是能可变设定的,有关的结构,本案申请人提出了作为“控制装置、温度调节器和热处理装置”的日本专利申请特愿2003-122389号(特开2004-86858号)。
该反馈增益F根据反馈环的稳定条件被限定了可变设定范围。
还有,反馈元件58,也可以是P控制的、PI控制的或PID控制的元件。
图18是本发明其他实施形式目标值加工装置1的功能框图,与上述图5的结构同样。
该实施形式适合于抑制多通道温度的偏差而实现温度的均匀化。
在目标值加工装置1的波形产生器50中,在每个通道中设定抑制偏差用的模型参数、例如每个通道的温度变化宽度(振幅)。
波形产生器50,根据各通道的检出温度PV1~PVn,例如,根据其平均温度的变化,响应来自检测出启动定时的启动定时检出器60的启动信号,产生与模型参数对应的振幅的波形,通过目标值加工器51而与每个通道的目标值SPp1~SPpn相加,作为整形目标值信号SP1~SPn供给到各通道的温度调节器31~3n。
和上述同样,决定模型参数,使得抑制预先计测的各通道的温度的偏差。本实施形式适合于扰动响应控制和目标值响应控制。
图19是表示对目标值加工装置1进行设定输入的结构的一例的视图。
作为目标值信号供给装置的个人计算机61,安装CD等记录媒体62上记录的程序,对目标值加工装置1进行目标值、模型参数或对象信息等的设定输入。
还有,对象信息,例如在未进行目标值加工的温度控制状态下计测的控制对象的检出温度、和使目标值例如呈阶梯状基准量变化时计测的控制对象的检出温度,也可以预先记录在记录媒体62中,也可以连接个人计算机61的温度记录器等的计测装置而进行计测。
目标值加工装置1,根据设定的目标值、模型参数或对象信息等,进行如上述那样的各种目标值加工。
还有,也可以在个人计算机的屏幕上显示控制系统的框图等,或者能够进行各种编辑。
如以上那样,在目标值加工装置1,把目标值信号加工成整形目标值信号以后供给到温度调节器3。因此,完全没有改变温度调节器3的结构,也能实施更复杂的过程控制。而且,作为温度调节器3,通过更换软件,也能实施复杂的过程控制,然而即使在这种情况下,其过程控制的细微部的调整也非常麻烦。相对于此,在目标值加工装置1,因为完全不改变温度调节器3的结构,就能实施更复杂的过程控制,所以,仅该部分就使设置目标值加工装置1的效果就很大。
还有,目标值加工装置1只要是进行上述的正计算控制、扰动响应控制等各种的控制中的至少一种的控制即可。
而且,上述的图2、图3中,是通过端子板4连接一台目标值加工装置1和一台温度调节器3的结构。但是,同时对多个过程控制对象(加热器H)进行过程控制的情况下,对这些的每个过程控制对象都能设定温度调节器3。这种情况下,在互相连接了设于每台温度调节器3的端子板部4b以后,经由连接了的端子板部4b实施温度调节器3彼此之间的相互连接。在这样的使用状态中,只要设于每台温度调节器3的目标值加工装置1用的端子板部4a也与端子板部4b连接即可。要是这样,就能够经由端子板4而使多台温度调节器3、...和多台目标值加工装置1一体化。
在上述的实施形式中,虽然把调节器作为控制加热器H等的温度的温度调节器3,但是本发明不限定于这样的调节器,即使在实施阀门的开闭控制的调节器这样的其他控制过程中也同样能够实施。
还有,对反射炉和连续炉等的多个连续区域的温度控制也能适于实施。
权利要求
1.一种目标值加工装置,其特征是具备输入部,其输入表示控制过程的目标值的目标值信号;目标值整形器,其将输入到上述输入部中的上述目标值信号整形为适于执行上述控制过程的调节器的控制处理的信号形状;输出部,其将由上述目标值整形器整形的整形目标值信号输出到上述调节器中。
2.按照权利要求1所述的目标值加工装置,其特征是还具备将该目标值加工装置装卸自如地连接于上述调节器的连接器、或者可通信地连接该目标值加工装置和上述调节器的通信装置。
3.按照权利要求2所述的目标值加工装置,其特征是上述输出部具有随着通过上述连接器进行的该目标值加工装置和上述调节器的装卸操作,装卸自如地电连接于上述调节器的目标值输入部的构造。
4.按照权利要求1到3中任一项所述的目标值加工装置,其特征是还具有预先存储上述目标值的整形图案的存储器,上述目标值整形器根据存储在上述存储器中的上述整形图案,对输入到上述输入部中的上述目标值信号进行整形。
5.按照权利要求4所述的目标值加工装置,其特征是上述目标值整形器对输入到上述输入部中的上述目标值信号进行整形,使得由上述调节器控制的控制对象的观测量迅速达到上述目标值。
6.按照权利要求5所述的目标值加工装置,其特征是在上述观测量过冲或下冲的期间,对上述目标值信号进行整形,使得上述过冲或下冲产生的观测量的峰值成为上述目标值。
7.按照权利要求4所述的目标值加工装置,其特征是上述目标值整形器预先取入在将未整形目标值信号供给到上述调节器的状态下由該调节器控制的控制对象的观测量,以所取入的观测量迅速达到上述目标值的形式作成上述目标值的整形图案并存储到上述存储器中,而且,该目标值整形器在目标值整形控制时,从上述存储器读出整形图案并进行上述目标值信号的整形。
8.按照权利要求7所述的目标值加工装置,其特征是上述目标值整形器预先取入施加了扰动时的上述观测量,以从所取入的观测量迅速消灭由扰动造成的影响的形式作成上述目标值的整形图案并存储到上述存储器中。
9.按照权利要求1到3中任一项所述的目标值加工装置,其特征是上述调节器具有限制控制过程操作量而向控制对象输出的限制器,上述目标值整形器取入输入到上述限制器中的控制过程操作量与从該限制器输出的控制过程操作量的差分输出,以迅速消灭所取入的差分输出的形式对上述目标值信号进行整形。
10.按照权利要求1到3中任一项所述的目标值加工装置,其特征是包括波形产生器,其基于所设定的参数产生波形;加工器,其基于由該波形产生器产生的波形加工上述目标值信号,作为上述整形目标值信号而输出。
11.按照权利要求1到3中任一项所述的目标值加工装置,其特征是包括参数生成器,其预先取入在将未整形目标值信号供给到上述调节器的状态下由該调节器控制的控制对象的观测量,和在将规定的目标值信号供给到上述调节器的状态下由該调节器控制的控制对象的观测量,而生成参数;波形产生器,其基于由该参数生成器生成的参数产生波形;加工器,其基于由該波形产生器产生的波形加工上述目标值信号,作为上述整形目标值信号而输出。
12.按照权利要求1到3中任一项所述的目标值加工装置,其特征是包括;饱和量预测器,其预测上述调节器的控制过程操作量的饱和量;加工器,其基于由该饱和量预测器所预测的预测饱和量,以消除該预测饱和量的形式加工目标值信号,作为上述整形目标值信号而输出。
13.一种温度调节器,其特征是具有目标值输入部,其输入从权利要求1到12中任一项所述的目标值加工装置的上述输出部输出的上述整形目标值信号。
14.一种控制过程执行系统,其特征是具备生成表示控制过程的目标值的目标值信号的目标值供给装置;对上述目标值供给装置生成的目标值信号进行整形的权利要求1到12中任一项所述的目标值加工装置;基于由上述目标值加工装置整形后的整形目标值信号而执行控制过程的调节器。
15.一种过程控制方法,其特征是包括生成表示控制过程的目标值的目标值信号的目标值供给步骤;把所生成的上述目标值信号整形为适于执行上述控制过程时的控制处理的信号形状的目标值加工步骤;基于整形后的整形目标值信号而执行控制过程的控制过程执行步骤。
16.一种目标值加工程序,将表示控制过程的目标值的目标值信号整形加工成适于执行上述控制过程的调节器的控制处理的信号形状,其特征是使计算机执行基于所设定的参数产生波形的步骤;基于所产生的波形加工上述目标值信号而输出到上述调节器中的步骤。
17.一种记录了上述权利要求16所述的目标值加工程序的计算机可读取的记录媒体。
全文摘要
一种目标值加工装置(1),具备输入表示控制过程的目标值的目标值信号的输入部(1a);将输入到输入部(1a)的目标值信号整形为适于执行控制过程的调节器(3)的控制处理的信号形状的目标值整形器(6);将由目标值整形器(6)整形的整形目标值信号输出到调节器(3)的输出部(1b),从而对调节器(3)丝毫不加改良就能实现复杂的控制过程。
文档编号G05B5/00GK1661642SQ20051005179
公开日2005年8月31日 申请日期2005年2月24日 优先权日2004年2月24日
发明者松永信智, 川路茂保, 南野郁夫, 田中政仁, 山田隆章, 岩井洋介, 若林武志, 坪井和生 申请人:欧姆龙株式会社
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1