无源无线控制模组的制作方法

文档序号:11153161阅读:298来源:国知局
无源无线控制模组的制造方法与工艺

本发明涉及无线控制领域,尤其涉及一种无源无线控制模组。



背景技术:

自爱迪生发明电灯130多年来,控制电灯一直是用有线开关的方法来控制电灯电源的通与断。布线开关被广泛采用,在建筑中普遍采用这种预先埋线的方法。但是这种需要预埋线的开关及埋线的措施是有害的,尽管他延续了一百多年。

在建筑中预埋开关控制电线害处很多,首先,会浪费铜线及保护铜线的管道;其次,施工的效率会很低,复杂的布线会使施工周期变长;再其次,布线之后随着时间的推移,线路老化,容易发生电线漏电、短路等现象,但是很难去查找发生故障的具体位置。

显然,用有线的开关控制电灯是一件费时又费力的事情。用无线遥控的方式来控制电灯会简单得多,上述问题似乎可以全部解决。

可是,用传统的无线遥控器并不能满意的解决电灯控制的问题,主要原因是,遥控器需要用到电池,这是个致命的弱点,定期更换电池会带来一系列的问题,如管理上的困难、得重复投入费用、废旧电池易污染环境等问题。

给遥控电路装个发电机,使无线遥控器无需电池供应,而成为无源无线的遥控开关,可以解决上述问题;当然,不可能去加装一个体积庞大、数瓦功率的发电机为无线遥控电路供电,会丧失使用上的价值。

此外,现有技术的无源无线开关只能实现单路或者最多4路控制,多了由于机械设计复杂,设计难以实现,再加上模组的有限空间的限制,目前世界上还没有多于4路独立控制信号模组。



技术实现要素:

本发明的目的在于提供一种无源无线控制模组,包括模组化的至少一无源无线发射组件,能够被组装于各种规格和标准的外壳组件内。

本发明的另一目的在于提供一种无源无线控制模组,模组化的所述无源无线发射组件能够被集成融入到很多电气系统当中,成为一个标准的控制部件。

本发明的另一目的在于提供一种无源无线控制模组,能够融入智能家居系统、呼叫系统、安防系统、建筑系统等多个领域,为这系统提供免维护的、寿命持久的控制解决方案。

本发明的另一目的在于提供一种无源无线控制模组,还包括至少一接收模组,所述接收模组体积小巧,可嵌入在终端控制设备的控制电路板上,为终端控制设备提供解码数据,例如可以嵌入在智能家居系统的网关内,为智能家居系统提供发射端产生的控制指令。

本发明的另一目的在于提供一种无源无线控制模组,包括至少一按键信息组件,所述按键信息组件包括多个微动开关,每一个微动开关的导通都可使所述通信电路板产生相应的编码,可独立产生多路不同的控制编码信息。

本发明的另一目的在于提供一种无源无线控制模组,所述微动开关为无线通信电路提供按键信息,相比于传统的用导电橡胶产生按键信息的方式,所述微动开关提高了所述无源无线控制模组发射开关控制信号的可靠性。

本发明的另一目的在于提供一种无源无线控制模组,能够实现多路独立的控制信号,为智能控制系统实现无源无线控制提供了完整的解决方案。

本发明的另一目的在于提供一种无源无线控制模组,所述无源无线发射组件包括至少一自生电装置以及至少一通信电路板,所述自生电装置能够提供电能为所述通信电路板供电,所述通信电路板发射至少一开关控制信号。

本发明的另一目的在于提供一种无源无线控制模组,将所述自生电装置、所述通信电路板、至少一杠杆组件以及至少一弹片集合于至少一无源无线模块之中,构成一个完整的无源的发射所述开关控制信号的装置,缩小了装置的体积。

本发明的另一目的在于提供一种无源无线控制模组,各所述自生电装置交替工作,来产生电能为所述通信电路板供电,提高了装置的使用寿命。

本发明的另一目的在于提供一种无源无线控制模组,各所述自生电装置能够独立工作,互不干扰。

本发明的另一目的在于提供一种无源无线控制模组,所述杠杆组件包括相互独立的至少一制动杠杆以及至少一被动杠杆,所述复位元件的两端分别连接于所述制动杠杆以及所述被动杠杆。

本发明的另一目的在于提供一种无源无线控制模组,所述无源无线控制模组包括至少一被动盖,所述被动盖驱动所述无源无线发射组件的至少一杠杆装置,从而所述杠杆装置通过抵接所述弹片,使所述弹片带动各所述自生电装置产生电能。

本发明的另一目的在于提供一种无源无线控制模组,所述被动盖包括多个能够相互独立的按键,能够通过分别地独立地响应外力而能够使所述通信电路板发射出组合式的所述开关控制信号,所述按键也具有良好的按压触感。

本发明的另一目的在于提供一种无源无线控制模组,所述杠杆组件包括至少一杠杆主体以及至少一杠杆凸条,所述杠杆凸条向上地延伸于所述杠杆主体的外边缘,减少了所述杠杆组件与所述被动盖之间的接触面积从而能够减少所述杠杆组件与所述被动盖之间的摩擦,延长所述无源无线控制模组的使用寿命。

为了实现上述至少一个目的,本发明提供了一种无源控制模组,包括:模组化的至少一无源无线发射组件以及至少一接收模组,所述无源无线发射组件包括至少一自生电装置、至少一通信电路板、至少一杠杆组件、至少一按键信息组件、至少一复位元件以及至少一弹片,所述杠杆组件带动所述弹片,所述弹片带动所述自生电装置,使所述自生电装置将机械能转化为电能为所述通信电路板供电,所述杠杆组件带动所述按键信息组件使所述通信电路板产生编码信息,所述通信电路板发射至少一开关控制信号,所述接收模组接收所述开关控制信号传输给至少一终端控制设备。

在一些实施例中,所述杠杆组件包括至少一杠杆主体以及至少一杠杆凸条,所述杠杆凸条向上地延伸于所述杠杆主体的外边缘。

在一些实施例中,各所述杠杆组件还包括两个杠杆摆臂以及两个杠杆轴,各所述杠杆摆臂分别垂直地一体延伸于各所述杠杆主体的两端,两个所述杠杆轴分别被设置于相应的所述杠杆摆臂的内侧,所述杠杆摆臂以所述杠杆轴为轴做枢转运动。

在一些实施例中,所述无源无线发射组件还包括至少一顶壳以及至少一基壳,所述基壳被连接于所述顶壳,所述无源无线发射组件的所述基壳设置有至少一侧板,所述侧板上形成有至少一轴孔,所述杠杆轴被设置于所述轴孔,所述杠杆摆臂被所述被动壳带动以所述杠杆轴为轴做枢转运动。

在一些实施例中,所述复位元件被连接于各所述杠杆组件之间,所述复位元件能够复位各所述杠杆组件。

在一些实施例中,所述杠杆组件包括至少一杠杆主体,所述杠杆主体的内侧壁的中部设置有凸出地向内延伸出的至少一复位元件卡位,所述复位元件的两端分别设置于两个所述杠杆组件的两个所述复位元件卡位的底部。

在一些实施例中,所述杠杆组件包括至少一制动杠杆以及至少一被动杠杆,所述复位元件的两端分别连接于所述制动杠杆以及所述被动杠杆,当所述被动杠杆运动被带动时,所述复位元件的一端随着所述被动杠杆运动,另一端被所述制动杠杆制动,在所述被动杠杆运动的过程中储蓄弹性势能,以便于当施加的外力消失时快速使所述被动杠杆复位。

在一些实施例中,所述无源无线发射组件的所述按键信息组件包括至少一微动开关,所述微动开关被电气性连接于所述通信电路板,所述通信电路板的电路中的MCU或者编码电路的I/O端口被所述微动开关预先电性接通。

在一些实施例中,所述无源无线发射组件还包括至少一动壳以及至少一基壳,所述基壳被连接于所述动壳,所述自生电装置与所述基壳为卡扣式连接方式。

在一些实施例中,所述自生电装置包括至少一磁组,至少一线圈,以及至少一中柱,其中所述线圈设置在所述中柱周围,所述磁组包括至少一永磁体和位于所述永磁体相反两侧的至少一顶导磁体和至少一底导磁体,其中所述弹片被连接于所述中柱,且能够驱动所述中柱同步交替地接触所述顶导磁体和所述底导磁体,从而穿过所述线圈的磁感线方向发生改变,使所述线圈中产生至少一感生电流。

在一些实施例中,所述中柱具有至少一第一抵接端和至少一第二抵接端,所述第一抵接端和所述第二抵接端被同步交替地接触所述顶导磁体和所述底导磁体,各所述弹片被分别地连接于相邻的两个所述自生电装置的所述第一抵接端或所述第二抵接端。

在一些实施例中,所述自生电装置响应于外力产生一次电流脉冲,当外力消失时,所述自生电装置再次产生电流脉冲。

在一些实施例中,所述自生电装置在每次响应一次外力的过程中产生的两个所述电流脉冲的方向相反。

在一些实施例中,所述无源控制模组还包括至少一被动壳,所述被动壳响应外力而带动所述无源无线发射组件的所述杠杆组件。

在一些实施例中,所述杠杆组件包括至少一杠杆主体以及至少一杠杆凸条,所述杠杆凸条向上地延伸于所述杠杆主体的外边缘,所述被动壳能够抵接所述杠杆凸条,从而所述杠杆组件被所述被动壳带动。

在一些实施例中,所述被动壳的内侧面还设置有至少一杠杆抵压件,当所述被动壳响应外力的施加而运动,所述杠杆抵压件抵压所述杠杆组件的所述杠杆凸条。

在一些实施例中,所述被动壳通过至少一动轴以及设置于所述被动壳的至少一动轴支点和所述无源无线发射组件的至少一顶壳连接,所述动轴穿过所述顶壳,且被卡设于所述动轴支点,从而所述被动壳能够以所述动轴为轴作轴转运动。

在一些实施例中,所述无源控制模组还包括至少一基座壳,所述无源无线发射组件被设置于所述基座壳与所述被动壳形成的容纳腔内,所述基座壳包括至少一基座壳主体以及延伸于所述基座壳主体的至少一基座壳周壁,所述基座壳主体的中心位置形成有至少一基座壳孔,所述基座壳还包括至少一卡钩,所述卡钩被设置于所述基座壳主体的内边缘,用于固定所述无源无线发射组件。

在一些实施例中,所述基座壳主体还设置有一动轴支架以及一动轴接点,所述动轴支架向上延伸于所述基座壳主体的内侧面,所述动轴接点被设置于所述动轴支架的内侧,所述动轴的两端分别穿过所述顶壳之后分别卡接于所述动轴接点,且被所述动轴支架所支撑。

在一些实施例中,所述无源无线发射组件的所述按键信息组件包括至少一微动开关,所述微动开关被电气性连接于所述通信电路板,所述通信电路板的电路中的MCU或者编码电路的I/O端口被所述微动开关预先电性接通,所述被动壳的内侧面设置有至少一微动开关顶件,当所述被动壳产生运动的时候,所述杠杆组件被带动的同时,所述被动壳带动所述微动开关顶件抵触所述微动开关,使所述微动开关被导通。

在一些实施例中,所述杠杆组件包括至少一杠杆主体,所述被动壳能够抵接所述杠杆主体的至少一外边缘,所述杠杆主体上形成至少一过孔,所述微动开关顶件穿过所述过孔抵触所述微动开关。

在一些实施例中,所述被动壳的内侧面还设置有至少一杠杆抵压件,当所述被动壳响应外力的施加而运动,所述被动壳首先带动所述微动开关顶件抵触所述微动开关之后,所述杠杆抵压件抵压所述杠杆组件。

在一些实施例中,所述无源控制模组还包括至少一基座壳,所述基座壳包括至少一基座壳主体以及延伸于所述基座壳主体的至少一基座壳周壁,所述基座壳主体的中心位置形成有至少一基座壳孔,所述基座壳还包括至少一卡钩,所述卡钩被设置于所述基座壳主体的内边缘,用于固定所述无源无线发射组件。

在一些实施例中,所述复位元件为至少一弹簧。

在一些实施例中,所述接收模组包括电气性连接的至少一接收模组主板、至少一电源接口、至少一接收及解码芯片以及至少一I/O接口,所述电源接口、所述接收及解码芯片以及所述I/O接口被设置于所述接收模组主板。

在一些实施例中,所述无源无线模组的所述按键信息组件包括多个微动开关,每一个微动开关的导通都可使所述通信电路板产生相应的编码,可独立产生多路不同的控制编码信息。

根据本发明的另一方面,本发明还提供了一种无源无线控制模组,包括:模组化的至少一无源无线发射组件,所述无源无线发射组件包括至少一自生电装置、至少一通信电路板、至少一杠杆组件以及至少一弹片,所述杠杆组件带动所述弹片,所述弹片带动所述自生电装置,使所述自生电装置将机械能转化为电能为所述通信电路板供电,所述通信电路板发射至少一开关控制信号。

附图说明

图1是根据本发明的一个优选实施例的一无源无线控制模组的立体示意图。

图2是根据本发明的上述优选实施例的所述无源无线控制模组的立体示意图。

图3是根据本发明的上述优选实施例的所述无源无线控制模组的立体分解示意图。

图4是根据本发明的上述优选实施例的所述无源无线控制模组的立体分解示意图。

图5是根据本发明的上述优选实施例的所述无源无线控制模组的一无源无线发射组件的立体示意图。

图6是根据本发明的上述优选实施例的所述无源无线控制模组的所述无源无线发射组件的立体示意图。

图7是根据本发明的上述优选实施例的所述无源无线控制模组的所述无源无线发射组件的立体示意图。

图8是根据本发明的上述优选实施例的所述无源无线控制模组的所述无源无线发射组件的立体示意图。

图9是根据本发明的上述优选实施例的所述无源无线控制模组的所述无源无线发射组件的立体分解示意图。

图10是根据本发明的上述优选实施例的所述无源无线控制模组的所述无源无线发射组件的立体分解示意图。

图11是根据本发明的上述优选实施例的所述无源无线控制模组的所述无源无线发射组件的立体分解示意图。

图12是根据本发明的上述优选实施例的所述无源无线控制模组的所述无源无线发射组件的立体分解示意图。

图13是根据本发明的上述优选实施例的所述无源无线控制模组的部分立体分解示意图。

图14是根据本发明的上述优选实施例的所述无源无线控制模组的部分立体分解示意图。

图15是根据本发明的上述优选实施例的所述无源无线控制模组的部分示意图。

图16是根据本发明的上述优选实施例的所述无源无线控制模组的部分剖视图。

图17是根据本发明的上述优选实施例的所述无源无线控制模组的部分剖视图。

图18是根据本发明的上述优选实施例的所述无源无线控制模组的部分剖视图。

图19是根据本发明的上述优选实施例的所述无源无线控制模组的部分分解示意图。

图20是根据本发明的上述优选实施例的所述无源无线控制模组的部分示意图。

图21是根据本发明的上述优选实施例的所述无源无线控制模组的部分示意图。

图22是根据本发明的上述优选实施例的所述无源无线控制模组的部分剖视图。

图23是根据本发明的上述优选实施例的所述无源无线控制模组的一自生电装置的一实施方式的立体示意图。

图24和图25是根据本发明的上述优选实施例的所述无源无线控制模组的所述自生电装置在上述实施方式中的生电示意图。

图26是根据本发明的上述优选实施例的所述无源无线控制模组的一接收模组的立体示意图。

具体实施方式

以下描述用于揭露本发明以使本领域技术人员能够实现本发明。以下描述中的优选实施例只作为举例,本领域技术人员可以想到其他显而易见的变型。在以下描述中界定的本发明的基本原理可以应用于其他实施方案、变形方案、改进方案、等同方案以及没有背离本发明的精神和范围的其他技术方案。

本领域技术人员应理解的是,在本发明的揭露中,术语“纵向”、“横向”、“上”、“下”、“前”、“后”、“左”、“右”、“竖直”、“水平”、“顶”、“底”“内”、“外”等指示的方位或位置关系是基于附图所示的方位或位置关系,其仅是为了便于描述本发明和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此上述术语不能理解为对本发明的限制。

可以理解的是,术语“一”应理解为“至少一”或“一个或多个”,即在一个实施例中,一个元件的数量可以为一个,而在另外的实施例中,该元件的数量可以为多个,术语“一”不能理解为对数量的限制。

参照本发明的附图中图1至图26,基于本发明的一优选实施例的一无源无线控制模组被阐释,其中所述无源无线控制模组包括一无源无线发射组件1000以及一外壳组件2000。所述无源无线发射组件1000被容纳于所述外壳组件2000形成的一容纳腔3000内。所述外壳组件2000进一步包括一被动壳2100以及一基座壳2200。所述无源无线发射组件1000进一步包括一自生电装置1100以及一通信电路板1200。所述外壳组件2000的所述被动壳2100能够被驱动发生相对运动而带动所述自生电装置1100,所述自生电装置1100将动能形式的机械能转化为电能,为自身的所述通信电路板1200供电,所述通信电路板1200被供电后能够向其他被控设备例如照明设备发出无线通信信号,实现控制其他被控设备例如照明设备的开关功能。所述无源无线发射组件1000把能够将机械能转换为电能的所述自生电装置1100、带有无线发射与接收电路的所述通信电路板1200以及其他需要的操纵组件集合于一个模块之中,构成一个完整的无源的收发信号的无线模块。也就是说,所述无源无线发射组件1000构成了一个无源无线的微型发射与接收信号模块,实现本发明的无源无线控制模组的控制其他被控设备的开关功能。所述外壳组件2000便于操作,所述基座壳2200能够被安装于固定表面或者直接被置于平面,当有外力作用于所述被动壳2100时,所述被动壳2100相对于所述基座壳2200发生相对运动。

可以理解的是,本发明的所述外壳组件2000的所述被动壳2100以及所述基座壳2200是相对而言的。所述被动壳2100为外力提供一个施力点,能够响应施加的外力而被驱动产生机械能。所述基座壳2200能够被安装于墙壁上,从而本发明的所述无源无线控制模组能够被作为壁式开关。在其他实施例中,所述基座壳2200也可以没有被固定于平面,而是直接被置于平面或者操作者的手中,从而本发明的所述无源无线控制模组可以作为移动式开关装置。在本发明的优选实施例中,所述被动壳2100被实施为布置有三个按键的按键盖组合作为所述无源无线控制模组的顶盖,所述基座壳2200被实施为所述无源无线控制模组的底盖,形成所述容纳腔3000,所述无源无线发射组件1000被安装于所述基座壳2200形成的所述容纳腔3000内。当操作者需要使用本发明的所述无源无线控制模组进行对被控设备例如照明设备开关操作时,推动或者按动被实施为按键的所述被动壳2100。但是,可以理解的是,本发明的优先实施例中前述按键的数量仅仅作为举例,在其他实施例中可以根据实际情况作相应的调整,本发明在一方面并不受此限制。

本领域的技术人员可以理解的是,在本发明的优选实施例中,是以设置两个所述自生电装置1100为例进行揭露,但是这里所述自生电装置1100的数量的设置仅仅作为举例,还可以根据实际需要设置所述自生电装置1100的数量,本发明在这一方面并不受此限制。

如图1至图4所示,所述外壳组件2000的所述基座壳2200包括一基座壳主体2210以及延伸于所述基座壳主体2210的一基座壳周壁2220。所述外壳组件2000的所述被动壳2100包括一被动壳主体2110以及延伸于所述被动壳主体2110的一被动壳周壁2120。所述被动壳2100通过一动轴2130以及设置于所述被动壳2100的所述被动壳主体2110的一动轴支点2131和所述无源无线发射组件1000的一顶壳1321连接起来。具体地,所述动轴2130穿过所述顶壳1321,且被卡设于所述动轴支点2131,从而所述被动壳2100能够以所述动轴2130为轴作轴转运动,当所述被动壳2100被实施为多个按键的时候,各个按键都能够各自单独地以所述动轴2130为转轴,以各所述动轴支点2131为支点作轴转运动,进而所述被动壳2100能够响应外力的施加,而发生相对运动,进而带动所述自生电装置1100。

在本发明的这个优选实施例中,所述顶壳1321优选地被实施为呈一定角度的房顶面,但这里的形状仅仅作为举例,例如在其他实施例中也可设计为平面,本发明在这一方面并不受此限制。

进一步地,如图3和图4所示,所述外壳组件2000的所述基座壳2200的所述基座壳主体2210的中心位置形成有一基座壳孔2240,所述基座壳2200还包括一卡钩2230,所述卡钩2230被设置于所述基座壳主体2210的内边缘,用于固定所述无源无线发射组件1000。所述无源无线发射组件1000还包括一基壳1322,所述基壳1322被连接于所述顶壳1321,所述基壳1322的底部设置有一定位槽1323(图8中所示),所述定位槽1323匹配所述基座壳主体2210的内边缘。因此,通过所述卡钩2230以及所述无源无线发射组件1000的所述基壳1322的所述定位槽1323,所述无源无线发射组件1000能够被稳固地连接于所述外壳组件2000的所述基座壳2200。此外,在本发明的这个优选实施例中,所述无源无线发射组件1000和所述外壳组件2000的所述基座壳2200之间采用卡扣式组装方式,结构紧凑,易于拆卸安装。

进一步地,所述外壳组件2000的所述基座壳2200的所述基座壳主体2210还设置有一动轴支架2132以及一动轴接点2133,所述动轴支架2132向上延伸于所述基座壳主体2210的内侧面,所述动轴接点2133被设置于所述动轴支架2132的内侧。所述动轴2130的两端分别穿过所述顶壳1321之后分别卡接于所述顶壳1321的内侧壁,且被所述动轴支点2131所支撑。所述外壳组件2000的所述被动壳2100与所述基座壳2200通过所述动轴支架2132以及所述动轴接点2133连接起来,所述无源无线发射组件1000以及所述被动壳2100通过所述动轴2130、所述动轴支点2131被连接起来,并且,所述无源无线发射组件1000被稳固地连接于所述基座壳2200,所述被动壳2100能够以所述动轴2130为轴作小幅度的轴转运动。

也就是说,所述动轴2130被连接于所述被动壳2100并且被卡设于所述动轴支点2131,优选地,所述动轴2130与所述顶壳1321为一体式注塑成型。本领域的技术人员可以理解的是,本发明的所述动轴2130于所述顶壳1321也可以是分注成型连接,本发明在这一方面并不受此限制。

本领域的技术人员可以理解的是,所述被动壳2100被实施为三个独立按键,所述无源无线控制模组在本发明的这个实施例中设置有六个动轴支点2131、一对动轴支架2132和相应的所述动轴接点2133以及四个所述卡钩2230,但是,前述这些数量仅仅是作为举例,在其他实施例中还可以相应调整,本发明在这一方面并不受此限制。同样地,在本发明的这个优选实施例中,设置有四个所述定位槽1323以及所述基座壳孔2240为方形也是仅仅作为举例,在其他实施例中还有其他合理的调整,本发明在这一方面并不受此限制。

本领域的技术人员可以理解的是,所述无源无线发射组件1000为模组化,因此能够被组装于各种规格和标准的所述外壳组件2000,也就是说,本发明的所述被动壳2100以及所述基座壳2200仅仅作为举例,本发明在这一方面并不受此限制。

进一步地,如图5至图12所示,所述无源无线发射组件1000的具体结构被详细阐释。其中所述无源无线发射组件1000还包括一杠杆组件1310以及一弹片1410,当所述被动壳2100产生运动的时候,会带动所述杠杆组件1310,所述杠杆组件1310的运动会带动所述弹片1410,而所述弹片1410是被连接于所述自生电装置1100,所述弹片1410的运动带动所述自生电装置1100,所述自生电装置1100将机械能转化为电能为所述通信电路板1200供电。

值得一提的是,所述无源无线发射组件1000还包括一复位元件1600,所述复位元件1600被连接于各所述杠杆组件1310之间,所述复位元件1600能够积蓄势能复位各所述杠杆组件1310并且能够带动各所述弹片1410复位,进而各所述自生电装置1100和相互独立的各所述杠杆组件1310的配合实现被实施为多个按键的所述被动壳2100的相互独立,互不干扰,从而能够实现更多的组合命令。同时极大改善了按压触感,提高了稳定性。在本发明的这个优选实施例中,所述复位元件1600被实施为一扭簧,所述扭簧的两端被分别连接于两个所述杠杆组件1310。当然,本领域的技术人员可以理解的是,被实施为扭簧的所述复位元件1600在这里仅仅作为举例,在其他实施例中还可以被实施为弹簧或其他弹性部件,只要能够积蓄势能实现各所述杠杆组件1310以及各所述弹片1410的复位,还可以有其他合理的结构,本发明在这一方面并不受此限制。

在本发明的这个优选实施例中,是以设置有两个所述自生电装置1100,因此相应地设置有两个所述杠杆组件1310以及两个弹片1410。但是本领域的技术人员可以理解的是,前述的数量仅仅为举例,在其他实施例中还有其他合理调整,本发明在这一方面并不受此限制。

具体地,各所述杠杆组件1310包括一杠杆主体1311、一杠杆摆臂1312、一杠杆轴1313以及一杠杆凸条1315,并且在所述杠杆主体1311上形成一过孔1314。两个所述杠杆摆臂1312分别垂直地延伸于所述杠杆主体1311的两端,两个所述杠杆轴1313分别被设置于相应的所述杠杆摆臂1312的内侧,所述杠杆凸条1315向上地延伸于所述杠杆主体1311的外边缘。在本发明的这个优选实施例中,每个所述杠杆组件1310设置有两个所述杠杆摆臂1312以及相应的两个所述杠杆轴1313。相应地,所述无源无线发射组件1000的所述基壳1322设置有一侧板1326,所述侧板1326用于固定所述杠杆轴1313。在本发明的这个优选实施例中设置有两个所述侧板1326,两个所述侧板1326分别向上地延伸于所述基壳1322的两个端部,所述侧板1326穿孔形成有一轴孔1329,所述杠杆轴1313被设置于所述轴孔1329内。在本发明的这个优选实施例中,设置有和所述杠杆轴1313的数量相匹配的所述轴孔1329,也就是说,每个所述侧板1326上形成有两个所述轴孔1329。所述杠杆摆臂1312能够以所述杠杆轴1313为轴运动。

所述复位元件1600在本发明的这个优选实施例中被实施为扭簧,被设置于两个所述杠杆组件1310之间。各所述杠杆组件1310的所述杠杆主体1311的内侧的中部设置有凸出地向内延伸出的一复位元件卡位1324。被实施为扭簧的所述复位元件1600的两端分别设置于所述复位元件卡位1324的底部,并且一端作为制动端,一端作为被动端积蓄弹性势能,以便于释放弹性势能用于所述杠杆组件1310的复位。举例来说,如图10中所示的位置,当右侧的所述杠杆组件1310被带动向下运动时,被实施为扭簧的所述复位元件1600的右侧端部随着右侧的所述杠杆组件1310向下产生位移,但是左侧的所述杠杆组件1310没有发生位移,被实施为扭簧的所述复位元件1600的左侧端部由于被图中左侧的所述杠杆组件1310所制动,因此被实施为扭簧的所述复位元件1600开始积蓄势能,为右侧的所述杠杆组件1310的复位做准备。本发明的两个所述杠杆组件1310也可以分别被定义为一制动杠杆以及一被动杠杆,所述复位元件1600的两端分别连接于所述制动杠杆以及所述被动杠杆。当所述被动杠杆运动的时候,所述复位元件1600的一端随着所述被动杠杆运动,另一端被所述制动杠杆制动,在所述被动杠杆运动的过程中储蓄弹性势能,以便于当施加的外力消失时快速使所述被动杠杆复位。本领域的技术人员可以理解的是,这里的所述制动杠杆和所述被动杠杆是相对而言的。

如图14至图16所示,所述被动壳2100的所述被动壳主体2110的内侧面还设置有一杠杆抵压件2150,当所述被动壳2100响应外力的施加而向下运动,设置于所述被动壳2100的所述杠杆抵压件2150抵压所述杠杆组件1310的所述杠杆凸条1315,所述杠杆摆臂1312能够以所述杠杆轴1313为轴运动,从而所述杠杆组件1310被所述被动壳2100带动。

值得一提的是,所述杠杆抵压件2150优选地被设置为长杆状结构。所述杠杆抵压件2150被设置于所述被动壳2100的所述被动壳主体2110的内侧面,减少了所述杠杆组件1310与所述被动壳2100之间的接触面积从而能够减少所述杠杆组件1310与所述被动壳2100之间的摩擦,本发明的所述无源无线控制模组的使用寿命更长。

本领域的技术人员可以理解的是,前述的所述杠杆摆臂1312、所述杠杆轴1313以及所述轴孔1329的数量仅仅作为举例,本发明在这一方面并不受此限制。

进一步地,如图19至图22以及图23所示,在本发明的这个优选实施例中,设置有两个所述自生电装置1100,所述基壳1322的底部设置有两组平行的自生电装置卡板1307(图12中所示),各所述自生电装置1100的周围贴合地设置有多个自生电装置卡块1327,进一步固定所述自身电装置1100在所述基壳1322的位置,所述自生电装置卡板1307以及所述自生电装置卡块1327被定义为两组固定所述自生电装置1100的自生电装置卡位的卡位组件,从而当所述弹片1410带动所述自生电装置1100的一中柱1110交替抵接所述自生电装置1100的一磁组1120的一顶导磁盖1121以及一底导磁盖1122时,所述磁组1120不会跟随一起运动。当然,本领域的技术人员可以理解的是,所述自生电装置卡板1307以及所述自生电装置卡块1327的数量以及形状在本发明的这个优选实施例中仅仅作为举例,本发明在这一方面并不受此限制。

所述自生电装置1100采用了封闭式导磁结构,来提高线圈的磁感密度。所述自生电装置1100包括所述中柱1110、所述磁组1120以及一线圈组1130。所述磁组1120包括所述顶导磁盖1121、所述底导磁盖1122、一永磁件1123以及一磁组夹片1124。所述磁组夹片1124固定所述顶导磁盖1121以及所述底导磁盖1122,所述顶导磁盖1121以及所述底导磁盖1122之间形成一导磁腔,且所述顶导磁盖1121以及所述底导磁盖1122的各端部之间都留有相对较小的间隙作为至少一磁隙,从而所述中柱1110的两端即一第一抵接端1111以及一第二抵接端1112(图24中所示)在所述磁隙内交替同步抵接所述顶导磁盖1121以及所述底导磁盖1122。所述永磁体1123被设置于所述导磁腔内以提供磁场,优选地,在本发明的这个优选实施例中所述永磁体1123被贴合地设置于所述顶导磁盖1121以及所述底导磁盖1122的一内侧壁,且不会影响所述中柱1110的运动。所述永磁体1123由永磁性材料制成,如磁铁、铝镍钴系永磁合金、铁铬钴系永磁合金、永磁铁氧体、稀土永磁材料和复合永磁材料等。所述线圈组1130包括一线圈1131以及一线圈骨架1132。所述线圈1131设置于所述导磁腔内,并环绕于所述中柱1110,在本发明的这个优选实施例中为所述线圈骨架1132设于所述中柱1110并且所述线圈骨架1132套设有所述线圈1131。

所述自生电装置1100采用导磁材料上下合盖式的方法,把导磁材料分别做成所述顶导磁盖1121以及所述底导磁盖1122,将所述永磁体1123、所述线圈组1130及所述中柱1110等发电部件包裹,以达到最大的磁能利用率及获得最小的体积。所述永磁体1123被所述顶导磁盖1121以及所述底导磁盖1122夹持,使所述顶导磁盖1121以及所述底导磁盖1122在所述永磁体1123的作用下形成N-S,或者S-N两磁极分布。

如图24和图25所示揭露了所述自生电装置1100的工作原理。其中图中的带有箭头的虚线表示为磁感线的传导方向。如图24所示为假定的初始状态,所述中柱1110与所述顶导磁盖1121以及所述底导磁盖1122的抵接状态为:所述中柱1110左侧的所述第一抵接端1111与所述顶导磁盖1121抵接,所述中柱1110右侧的所述第二抵接端1112与所述底导磁盖1122抵接端抵接。此时,如图24中的箭头方向所示,磁感线的方向为由左至右穿过所述线圈1131,所述中柱1110为保持静止状态,所述线圈1131中没有产生感生电流。

进一步地,如图25所示,当所述被动壳2100的运动带动所述杠杆组件1310,所述杠杆组件1310带动所述弹片1410,从而所述弹片1410被沿箭头方向推动,使所述中柱1110与所述顶导磁盖1121以及所述底导磁盖1122的抵接状态发生改变,图25中的抵接状态为:所述中柱1110的左侧的所述第一抵接端1111与所述底导磁盖1122相抵接,所述中柱1110的右侧与的所述第二抵接端1112与所述顶导磁盖1121相抵接。如箭头方向,磁感线的方向变为由右至左穿过所述线圈1131,磁感线的方向发生反向,在磁感线突变的过程中使所述线圈1131产生感生电流。这里的所述弹片1410的还能够加速所述中柱1110的摆动速度,从而使感生能量更大些。可以理解的是,在这个过程中,所述复位元件1600积蓄弹性势能。

感生电动势的计算公式如下:

E=-n*ΔΦ/Δt

式中:E为感应电动势,n为线圈的匝数,ΔΦ/Δt为磁通量的变化率。

可以理解的是,当施加在所述被动壳2100的外力消失时,被实施为扭簧的所述复位元件1600释放积蓄的弹性势能,使所述杠杆组件1310以及所述弹片1410复位,所述中柱1110从图25的位置复位到图24的位置时,磁感线的方向再次产生改变,从而使所述线圈1131产生另外一次感生电流。

值得一提的是,如图22所示,所述中柱1110和所述弹片1410的一端通过一紧固件1430连接在一起,优选地,所述紧固件1430被实施为铆钉。所述弹片1410的另一端通过一弹片握套1420和所述杠杆组件1310连接。从而所述杠杆组件1310被所述被动壳2100驱动时,所述弹片1410随着所述杠杆组件1310运动,进而所述中柱1110被所述弹片1410所带动,在所述磁隙中运动,从而所述线圈1131产生感生电流,所述自生电装置1100能够将机械能转化为电能为所述通信电路板1200供电。所述自生电装置1100通过一电源引脚1328和所述通信电路板1200电气性连接。所述电源引脚1328被抵接于所述通信电路板1200。所述电源引脚1328具有弹性。

值得一提的是,两个所述自生电装置1100独立工作,互不干扰,所述被动壳2100能够被实施为多个相互独立的按键,其中任一按键都能独立响应外力的施加而运动,进而带动各所述杠杆组件1310的其中一个所述杠杆组件1310,从而所述弹片1410被带动以驱动所述中柱1110,从而所述自生电装置1100将电能转化为电能。传统的单独的生电装置为使按键两边按压的力度和触感相同,生电装置的弹片需位于开关中间,即生电装置相对于本发明的结构位置需旋转90°放置,其按压的实现需要较为复杂的结构,且难以达到理想的按压触感,因此,本发明相对于传统的单独的生电装置满足了多个按键供电的结构更加简单,稳定性更好,按压触感更均匀。

值得一提的是,所述被动壳2100能够被实施为多个相互独立的按键,其中任一按键都能独立响应外力的施加而运动,例如在86mm*86mm或120mm×70mm的制式开关上形成多个相互独立的开关,且任意两个之间可以同时组合产生不同的组合命令,适用于智能家居中多用电器控制或者需要复杂控制的场合。

值得一提的是,各所述杠杆组件1310相对独立,能够被定义为所述制动杠杆以及所述被动杠杆,所述被动壳2100的一侧的按压和松开并不会影响另一侧,同时,所述被动壳2100被实施为具有一定弹性的按键板时,能够实现各个按键的相互独立从而实现更多的按键组合产生不同的组合命令。

所述无源无线发射组件1000还包括一按键信息组件,所述杠杆组件1300带动所述按键信息组件使所述通信电路板1200产生编码信息。在本发明的这个实施例中,所述按键信息组件被实施为至少一微动开关1500构成的组件。具体地,如图16至图19所示,所述无源无线发射组件1000还包括所述微动开关1500,所述被动壳2100的内侧面设置有一微动开关顶件2140,当所述被动壳2100产生运动的时候,所述杠杆组件1310被带动的同时,所述被动壳2100带动所述微动开关顶件2140抵触所述微动开关1500,所述微动开关1500被所述微动开关顶件2140抵压后被导通,所述通信电路板1200的电路中的MCU的I/O端口被所述微动开关1500预先电性接通。也就是说,在所述自生电装置1100还未产生电能之前,所述通信电路板1200的电路中的MCU或者编码电路的I/O端口被所述微动开关1500预先电性接通。这样,当在所述自生电装置1100产生电能后,所述通信电路板1200的电路中的MCU或者编码芯片会根据I/O端口的所述微动开关1500的状态来产生预设的编码。

值得一提的是,现有技术的无源无线开关只能实现单路或者最多4路控制,多了由于机械设计复杂,设计难以实现,再加上模组的有限空间的限制,目前世界上还没有多于4路独立控制信号模组。但本发明的所述无源无线模组可以实现多路独立的控制信号,在本发明的实施例中,所述无源无线模组具有6个微动开关,每一个微动开关的导通都可使通信电路产生相应的编码,可独立产生6路不同的控制编码信息,配合特别设计的机械能量产生机构因而可以实现独立的6个通道无源无线控制,从而为智能控制系统实现无源无线控制提供了完整的解决方案,智能家居系统或者一些电子控制系统需要的按键数较多,以实现不同的功能,本发明实现了这些功能需要,同时也减少了成本。本领域的技术人员可以理解的是,这里的6个微动开关的数量仅仅作为举例,在其他实施例中还有其他数量的设置,本发明在这一方面并不受此限制。

可以理解的是,在本发明的这个优选实施例中,在每个所述杠杆主体1311上穿孔形成有三个所述过孔1314。其中所述过孔1314的数量和设置于所述被动壳2100的所述微动开关顶件2140匹配,从而各所述微动开关顶件2140能够穿过各所述过孔1314抵触各所述微动开关1500。

本领域的技术人员可以理解的是,在本发明的这个优选实施例中,所述无源无线控制模组的两侧各设置有三个所述微动开关1500,但是这里的数量仅仅作为举例,本发明在这一方面并不受此限制。

值得一提的是,两个所述杠杆组件1310相对独立,在所述被动壳2100相应外力而运动的过程中,设置于被实施为多个独立按键的所述被动壳2100的内侧面的用于与所述微动开关1500相接触的所述微动开关顶件2140与所述微动开关1500接触,所述被动壳2100的其中响应外力的按键上用于与所述杠杆凸条1315接触的所述杠杆抵压件2150与所述杠杆凸条1315接触,当所述微动开关1500被接通后,仍能具有一定的行程,响应于外力的继续施加,所述杠杆抵压件2150继续顶压所述杠杆凸条1315,使得所述杠杆组件1310继续往下压从而带动卡于其上的所述复位元件1600继续往下压,在所述微动开关1500的达到最大的按压行程之前,所述复位元件1600随着所述杠杆组件1310的向下运动而积蓄的弹性势。所述自生电装置1100的所述中柱1110与其所述底导磁盖1122突然接触使穿过线圈的磁感线急剧变化从而生成电能,并通过接通的所述微动开关1500所对应的代码发射出相应的控制信号,与此同时,用于所述杠杆组件1310复位的被实施为扭簧的所述复位元件1600积蓄了可使所述杠杆组件1310复位且带动所述弹片1410复位的弹性势能;在松开按键过程中,在所述微动开关1500被断开之前,所述自生电装置1100的所述中柱1110与所述底导磁盖1122分离发生磁路的急剧变化从而再次产生电能,并可再次发出信号。

值得一提的是,所述无源无线控制模组采用所述微动开关1500,相比于传统的用导电橡胶触点接触产生信号的方法要可靠,而且寿命长久,按压触感更好。

值得一提的是,如图17所示,所述杠杆抵压件2150以及所述微动开关顶件2140被设置于所述被动壳2100的靠近内侧的位置,而相对于一般习惯性的外力施加位置来说,例如操作者使用所述无源无线控制模组时,往往施力于所述被动壳2100的外侧,按压点与所述动轴2130的距离大于所述杠杆抵压件2150以及所述微动开关顶件2140到所述动轴2130的距离,减小了操作者按压所需力度并适当放大了所述被动壳2100的行程,从而能够改善操作者的按压触感。

值得一提的是,本发明的所述无源无线控制模组响应外力的施加以及外力消失的过程中或产生两次电流脉冲,且产生的电流脉冲方向相反,可以通过电流脉冲的方向判断所述无源无线控制模组的开关状态按下或者松开,可以通过与接收器程序的配合实现连续变量控制,能够被应用于智能家居等需要复杂控制的场合。

值得一提的是,本发明的所述无源无线控制模组的所述被动壳2100响应外力而能够产生一按键信息,所述按键信息产生于所述被动壳2100带动所述杠杆组件1310的杠杆抵触机械式开关结构的过程,相比于传统的用导电橡胶触点接触产生信号的方法要可靠,因为导电橡胶接触产生信号的方式问题较多,例如触点接触不良、触点生霉,触点不防潮、橡胶易老化等问题。

如图26所示,所述无源无线控制模组还包括一接收模组30,所述接收模组30包括电气性连接的一接收模组主板34、一电源接口31、一接收及解码芯片以及一I/O接口33。所述杠杆组件1300带动所述按键信息组件使所述通信电路板1200产生编码信息,所述通信电路板1300发射至少一开关控制信号,所述接收模组30接收所述开关控制信号传输给至少一终端控制设备。这里的终端控制设备可以是智能家居系统的终端控制设备。

值得一提的是,所述接收模组30体积小巧,可嵌入在终端控制设备的控制电路板上,为终端控制设备提供解码数据,例如可以嵌入在智能家居系统的网关内,为智能家居系统提供发射端产生的控制指令。

本领域的技术人员应理解,上述描述及附图中所示的本发明的实施例只作为举例而并不限制本发明。本发明的目的已经完整并有效地实现。本发明的功能及结构原理已在实施例中展示和说明,在没有背离所述原理下,本发明的实施方式可以有任何变形或修改。

当前第1页1 2 3 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1