一种基于无人机的多角度地表光谱自动测量系统及方法与流程

文档序号:11261693阅读:817来源:国知局
一种基于无人机的多角度地表光谱自动测量系统及方法与流程

本发明涉及一种基于多旋翼无人机的多角度地表光谱自动测量系统及方法,用于遥感器场地定标及真实性检验等的野外地物光谱自动化快速测量。



背景技术:

长期以来,进行卫星传感器野外星地同步定标时,定标场的地物光谱测量都是采用人工背负光谱测量仪器跑场测量的方式,这种方式不仅测量时间较长,而且劳动强度较大。而卫星过境时间极短,只有在尽可能短的时间内完成整个场地的测量,才能真正实现“星地同步”。为提高场地光谱测量效率,本发明将光谱测量仪搭载在旋翼无人机上进行场地反射特性的测量。

近年来,随着无人机技术飞速发展,多旋翼无人机广泛应用于航空摄影、测绘遥感、电力巡检、空中检测、石油管道巡检、空中护林、空中安防、喷洒农药等领域。多旋翼无人机具有航线和航点规划和自主飞行、航点自动悬停、航点自动拍照等功能,将这些技术有效应用于地物光谱测量,可以实现地物光谱的全自动化的测量,极大地提高了光谱测量效率。

同时,根据光谱测量自身特点要求,设计了光谱测量云台,主要实现两种功能:一是保证光谱仪光纤探头在测量过程中始终垂直向下;二是将小型测量参考板集成到云台上,使参考板始终保持水平,并根据需要随时控制参考板移动到光谱仪光纤探头下,进行参考板测量。



技术实现要素:

本发明的技术解决问题是:克服现有技术的不足,提供了一种基于多旋翼无人机的多角度地表光谱自动测量系统及方法。

本发明的技术解决方案是:

一种基于无人机的多角度地表光谱自动测量系统,包括:无人机、光谱云台、光谱仪、gps和触发装置;无人机又包括飞控系统;

光谱仪固定安装在无人机底部,光谱云台安装在光谱仪侧面,用于保证无人机飞行过程中光纤探头始终竖直向下或者与竖直方向保持固定夹角;触发装置安装在光谱仪的测量开关上,根据飞控系统的指令,触发装置对测量开关进行触发,令光谱仪工作;gps装在无人机上,用于无人机的定位和导航。

所述光谱云台包括翻滚控制舵机、俯仰控制舵机、白板控制舵机、姿态传感器、白板、光纤插孔、安装架、第一连接件、第二连接件和第三连接件;

安装架的顶部固定在光谱仪侧面上,安装架的底部悬空,翻滚控制舵机安装在安装架的底部,俯仰控制舵机通过第一连接件与翻滚控制舵机连接,白板控制舵机安装在第二连接件的一端,姿态传感器和光纤插孔安装在第二连接件的另一端,第二连接件的中间部位与俯仰控制舵机连接在一起,白板控制舵机通过第三连接件与白板连接;光谱仪上引出的光纤探头固定在光纤插孔上,用于测量地表光谱;光纤插孔可在第二连接件上进行测量角度调整。

翻滚控制舵机用于控制光纤探头在垂直于无人机飞行方向的平面上的姿态;俯仰控制舵机用于控制光纤探头在无人机飞行方向上的俯仰姿态;白板控制舵机用于控制白板位于光纤探头下方或者与光纤探头位置错开;姿态传感器用于测量实时姿态。

所述光纤探头实现0-360度方位角和0-60度观测角的方向性测量。

所述光纤探头实现0-360度方位角和0-60度观测角的方向性测量,具体为:

(a)计算飞行悬停航点:将方位角0-360按预设角度间隔进行均匀划分,将观测角度0-60度按预设角度间隔进行均匀划分,给定测量原点的经纬度坐标,根据飞行高度、测量角度,计算围绕测量原点360度方位角的各测量点的经纬度坐标;

(b)规划无人机的飞行路线并进行测量:无人机在设定高度从测量原点飞到方位角的某测量点的坐标位置进行悬停测量,然后返回测量原点,接着飞向下一个方位角的测量点进行测量,然后返回测量原点,依此类推,直到测量完方位角上的所有测量点;

(c)当无人机飞行结束之后,完成0-360度方位角和0-60度观测角的方向性测量。

一种基于地表光谱自动测量系统实现的场地地表光谱自动测量方法,步骤如下:

(1)安装无人机:将无人机由折叠状态变为伸展状态,拧紧支腿螺丝和机臂螺丝,安装桨片,对无人机进行磁力线校正;

(2)将光谱仪安装在无人机上,并且将触发装置和光谱云台固定在光谱仪上;

(3)将触发装置、姿态传感器、翻滚控制舵机(1)、俯仰控制舵机(2)、白板控制舵机(3)与无人机飞控系统连接;

(4)规划无人机的飞行路线、飞行悬停航点以及白板测量航点,上传到飞控系统中;

(5)令无人机起飞,调整无人机姿态,令白板(5)被太阳照射,不被遮挡,之后令无人机按照设定飞行路线开始自主飞行;

(6)无人机飞行过程中,飞控系统根据姿态传感器采集的实时姿态信息,控制翻滚控制舵机(1)和俯仰控制舵机(2),使得光纤探头始终竖直向下或者与竖直方向保持固定角度;

(7)在飞行悬停航点的位置,无人机悬停,飞控系统控制触发装置进行触发,令光谱仪工作,采集和存储地表光谱数据;

(8)在白板测量航点位置,无人机悬停,飞控系统通过白板控制舵机(3)对白板位置进行调整,令白板(5)移动到光纤探头下方,光谱仪测量白板的反射光谱;

(9)当无人机飞行结束之后,完成地表光谱的自动测量。

本发明与现有技术相比的有益效果是:

(1)极大提高了光谱测量精度。与手动测量相比,利用旋翼无人机光谱测量系统测量的光谱曲线一致性更好,变异系数在1%以内,而手动测量数据变异系数超过了2%。

(2)大大提高了光谱测量效率。测量400米*400米场地的光谱数据,人工测量需要约1.5个小时,而利用无人机测量仅需要20分钟,测量效率大大提高。

(3)多角度光谱测量提高了卫星辐射定标精度。通过该系统对场地不同方位角和天顶角的方向性光谱测量,构建了场地多角度光谱测量模型,全面阐述了方向性测量随太阳高度角和方位角的变化规律。将该模型应用于卫星观测方位角和天顶角的校正,提高了卫星辐射定标精度。

附图说明

图1为本发明系统框图;

图2为本发明云台结构俯视示意图。

图3为本发明云台结构侧视示意图。

具体实施方式

下面结合附图对本发明的具体实施方式进行进一步的详细描述。

为提高场地光谱测量效率和测量精度,本发明将光谱测量仪搭载在旋翼无人机上进行场地反射特性的测量,并设计了光谱测量云台,使无人机在任何飞行姿态下都能保持测量光纤竖直向下或与竖直向下保持特定角度。本发明克服了以往采用人工背负光谱测量仪器跑场测量效率低、测量精度较差的缺点,实现了卫星传感器野外星地同步定标的场地光谱的高效测量。

如图1所示,本发明提出的一种基于无人机的多角度地表光谱自动测量系统,包括:无人机、光谱云台、光谱仪、gps和触发装置;无人机又包括飞控系统;

光谱仪固定安装在无人机底部,光谱云台安装在光谱仪侧面,用于保证无人机飞行过程中光纤探头始终竖直向下或者与竖直方向保持固定夹角;触发装置安装在光谱仪的测量开关上,根据飞控系统的指令,触发装置对测量开关进行触发,令光谱仪工作;gps装在无人机上,用于无人机的定位和导航。

如图2、3所示,光谱云台包括翻滚控制舵机1、俯仰控制舵机2、白板控制舵机3、姿态传感器4、白板5、光纤插孔6、安装架7、第一连接件8、第二连接件9和第三连接件10;

安装架7的顶部固定在光谱仪侧面上,安装架7的底部悬空,翻滚控制舵机1安装在安装架7的底部,俯仰控制舵机2通过第一连接件8与翻滚控制舵机1连接,白板控制舵机3安装在第二连接件9的一端,姿态传感器4和光纤插孔6安装在第二连接件9的另一端,第二连接件9的中间部位与俯仰控制舵机2连接在一起,白板控制舵机3通过第三连接件10与白板5连接;光谱仪上引出的光纤探头固定在光纤插孔6上,用于测量地表光谱;

翻滚控制舵机1用于控制光纤探头在垂直于无人机飞行方向的平面上的姿态;俯仰控制舵机2用于控制光纤探头在无人机飞行方向上的俯仰姿态;白板控制舵机3用于控制白板5位于光纤探头下方或者与光纤探头位置错开;姿态传感器4用于测量实时姿态。

所述光纤探头实现0-360度方位角和0-60度观测角的方向性测量。具体为:

(1)安装无人机:将无人机由折叠状态变为伸展状态,拧紧支腿螺丝和机臂螺丝,安装桨片,对无人机进行磁力线校正;

(2)将光谱仪安装在无人机上,并且将触发装置和光谱云台固定在光谱仪上,连接好光谱探头;

(3)将触发装置、姿态传感器、翻滚控制舵机1、俯仰控制舵机2、白板控制舵机3与无人机飞控系统连接;

(4)计算飞行悬停航点。将方位角0-360按一定角度间隔(如30度)进行划分,将观测角度0-60度按一定角度间隔(如10度)进行划分。给定测量原点的经纬度坐标,根据飞行高度、测量角度,计算围绕测量原点360度方位角的各测量点的经纬度坐标。

(5)规划无人机的飞行路线并进行测量。无人机在设定高度从测量原点飞到方位角的某测量点的坐标位置进行悬停测量,然后返回测量原点,接着飞向下一个方位角的测量点进行测量,然后返回测量原点,依此类推,直到测量完方位角上的所有测量点。这样通过无人机飞行方向的指向实现了方位角的精确定位,而观测角度通过手动调整光纤插孔6与竖直向下的角度实现。

(6)当无人机飞行结束之后,完成了通过光纤探头实现的0-360度方位角和0-60度观测角的方向性测量。

基于上述测量系统,本发明还提出了一种场地地表光谱自动测量方法和一种定点多角度光谱测量方法。

一种场地地表光谱自动测量方法,步骤如下:

(1)安装无人机:将无人机由折叠状态变为伸展状态,拧紧支腿螺丝和机臂螺丝,安装桨片,对无人机进行磁力线校正;

(2)将光谱仪安装在无人机上,并且将触发装置和光谱云台固定在光谱仪上。将光谱仪安装在无人机底部,通过四个螺钉将光谱仪固定到无人机上。安装无人机电池组。将光谱仪云台安装到光谱仪侧面。

(3)将触发装置、姿态传感器、翻滚控制舵机(1)、俯仰控制舵机(2)、白板控制舵机(3)与无人机飞控系统连接;

(4)规划无人机的飞行路线、飞行悬停航点以及白板测量航点,上传到飞控系统中。

(5)令无人机起飞,调整无人机姿态,令白板(5)被太阳照射,不被遮挡,之后令无人机按照设定飞行路线开始自主飞行;

(6)无人机飞行过程中,飞控系统根据姿态传感器采集的实时姿态信息,控制翻滚控制舵机(1)和俯仰控制舵机(2),使得光纤探头始终竖直向下或者与竖直方向保持固定角度;

(7)在飞行悬停航点的位置,无人机悬停,飞控系统控制触发装置进行触发,令光谱仪工作,采集和存储地表光谱数据;

(8)在白板测量航点位置,无人机悬停,飞控系统通过白板控制舵机(3)对白板位置进行调整,令白板(5)移动到光纤探头下方,光谱仪测量白板的反射光谱;

(9)当无人机飞行结束之后,完成地表光谱的自动测量。

本发明说明书中未作详细描述的内容属于本领域专业技术人员的公知技术。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1