卫星非接触磁浮机构电流补偿控制方法与流程

文档序号:11250266阅读:559来源:国知局

本发明涉及航天飞行器结构,具体为一种卫星非接触磁浮机构电流补偿控制方法。



背景技术:

传统卫星的大型太阳帆板等挠性附件对卫星本体的耦合力矩是影响卫星载荷姿态指向精度和稳定度的一个重要因素,而卫星上的飞轮、陀螺、驱动机构等活动部件诱发的低频微振动,是降低姿态指向精度和稳定度的另一要因。未来高性能航天器对卫星姿态指向精度和姿态稳定度的要求必将越来越高,大挠性结构和活动部件振动引起的干扰和颤振问题已经成为制约卫星姿态控制精度的主要因素。

目前,针对卫星挠性附件抖动和活动部件振动主要有被动隔振、主动隔振和主被动混合隔振等三种抑制手段。被动隔振系统结构简单,稳定可靠,且不消耗能源,也不需要测量和驱动装置,在卫星工程上广泛应用,但其仅对高频振动有效,隔振性能有限;主动隔振系统理论上有更好的性能,但其需要额外增加测量和驱动装置,系统设计复杂,可靠性差,在卫星上尚无广泛应用;主被动隔振是综合主动和被动隔振优势的一种改良方法,不能从实质上解决主动隔振的应用难题。由于传统卫星采用载荷舱与平台舱固连、载荷舱从动平台舱的设计方法,因此不论是主动隔振、被动隔振还是混合型隔振手段,均存在局限性。



技术实现要素:

针对现有技术中的缺陷,本发明的目的是提供一种可有效解决载荷指向精度与稳定度难以大幅提升问题的卫星非接触磁浮机构电流补偿控制方法。

为解决上述技术问题,本发明提供的一种卫星非接触磁浮机构电流补偿控制方法,包括如下步骤:步骤1,将非接触磁浮机构的永磁体之间的空间进行细分选取采样点,并对采样点进行空间坐标定义;步骤2,对采样点处的磁场强度进行测量并记录;步骤3,对各个采样点磁场强度信息进行处理,得到不同坐标点位置电流的需补偿系数;步骤4,在进行输出力控制时,实时测得线圈中心点所处位置;步骤5,在进行输出力控制时,电流输出量根据线圈中心点所处位置和补偿系数进行补偿。

优选地,步骤1中,将非接触磁浮机构永磁体之间的空间进行细分选取采样点,并对采样点进行空间坐标定义;采样点的数量为100个,将每个采样点的位置分别定义为oxyz;其中x、y、z分别为正整数。

优选地,步骤2中,将非接触磁浮机构进行固定,高精度高斯计固定于可控高精度导轨上,通过控制导轨移动,读取高斯计系数,从而测得不同采样点处的磁场强度值,并记录测得的磁场强度值。

优选地,步骤3中,对100个采样点测得的磁场强度值取平均值,再依次将每个采样点的磁场强度值比上磁场强度值的平均值得,比值的倒数即为每个采样点的电流补偿系数。

优选地,步骤4中,通过三个正交的电涡流传感器可以测得线圈的空间位置信息,并确定线圈中心点所处位置。

优选地,步骤5中,根据实时测得的线圈中心点所处位置,调用数据库中补偿系数,在电流输出量中进行补偿。

与现有技术相比,本发明有以下创新设计:

1)以空间上动静隔离,控制上主从协同的全新思想和方法,采用完全位姿解耦控制思想,利用高精度、高带宽卫星非接触磁浮机构电流补偿控制方法,实现卫星姿态指向精度优于5×10-4度、姿态稳定度优于5×10-6度/秒的超高精度,彻底解决“双超”技术瓶颈,实现了载荷姿态的完全可测可控。

2)通过磁浮机构非接触连接,实现动静隔离,直接隔断平台舱活动和挠性部件向载荷舱的微振动传递,有效保障载荷的超精超稳工作状态,从而达到全频带隔振的效果,极大降低了对控制系统产品的带宽需求。

3)两舱空间隔离,有效避免了平台热变形对载荷指向的影响。

具体实施方式

下面结合具体实施例对本发明进行详细说明。以下实施例将有助于本领域的技术人员进一步理解本发明,但不以任何形式限制本发明。应当指出的是,对本领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干变化和改进。这些都属于本发明的保护范围。

本发明卫星非接触磁浮机构电流补偿控制方法,具体实施步骤如下:

将非接触磁浮机构永磁体之间空间进行细分选取采样点,并对采样点进行空间坐标定义。采样点选择100个为优,分别定义为oxyz,其中x、y、z分别为正整数,对100个空间采样点坐标定义。

采用高精度高斯计对采样点处的磁场强度进行测量,并记录。将非接触磁浮机构进行固定,高精度高斯计固定于可控高精度导轨上,通过控制导轨移动,读取高斯计系数,从而测得不同采样点处的磁场强度值;

对各个采样点磁场强度信息进行处理,得到不同坐标点位置电流需补偿系数。对100个点的磁场强度取平均值,再依次将每个点的磁场强度值比上磁场强度平均,该比值的倒数即为每个点的电流补偿系数。

将记录的坐标信息与电流需补偿量系数信息存入数据库中。

在进行输出力控制时,利用电涡流传感器实时测得线圈中心点所处位置。电涡流传感器传感头与永磁铁固定架固定,感应面与线圈固定架固定。电涡流测得的距离量即为线圈的位置。通过三个正交的电涡流传感器可以测得空间位置信息。

在进行输出力控制时,电流输出量根据线圈中心点所处位置和补偿系数进行补偿。根据实时测得的线圈中心点所处位置,调用数据库中补偿系数,在电流输出量中进行补偿。

本发明提出的卫星非接触磁浮机构电流补偿控制方法电流补偿控制方法可以用于载荷舱的载荷舱的姿态控制回路以及平台舱的相对位置控制回路中,补偿磁浮机构磁场误差引起的磁浮机构输出力精度,进而保证超高姿态指向精度、超高姿态稳定度的实现。

以上对本发明的具体实施例进行了描述。需要理解的是,本发明并不局限于上述特定实施方式,本领域技术人员可以在权利要求的范围内做出各种变化或修改,这并不影响本发明的实质内容。在不冲突的情况下,

本技术:
的实施例和实施例中的特征可以任意相互组合。



技术特征:

技术总结
本发明提供的一种卫星非接触磁浮机构电流补偿控制方法,包括如下步骤:第一步,将非接触磁浮机构的永磁体之间的空间进行细分选取采样点,并对采样点进行空间坐标定义;第二步,对采样点处的磁场强度进行测量并记录;第三步,对各个采样点磁场强度信息进行处理,得到不同坐标点位置电流的需补偿系数;第四步,在进行输出力控制时,实时测得线圈中心点所处位置;第五步,在进行输出力控制时,电流输出量根据线圈中心点所处位置和补偿系数进行补偿。与现有技术相比,本发明有以下创新设计:实现卫星姿态指向精度优于5×10‑4度、姿态稳定度优于5×10‑6度/秒的超高精度,彻底解决“双超”技术瓶颈,实现了载荷姿态的完全可测可控。

技术研发人员:朱敏;赵洪波;廖鹤;赵艳彬;张祎;朱莎莎;刘亦男;张高雄
受保护的技术使用者:上海卫星工程研究所
技术研发日:2017.05.17
技术公布日:2017.09.15
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1