一种基于时延补偿的机器人遥操作预测控制方法与流程

文档序号:14989600发布日期:2018-07-20 21:56阅读:218来源:国知局

本发明属于机器人控制技术研究领域,涉及一种基于时延补偿的机器人遥操作预测控制方法。



背景技术:

机器人遥操作技术,是指操作人员在本地端通过操作本地端机器人实现对远端机器人高沉浸感、近实时同步操作的技术。它的这种远程操作特性使得它在生活中的各个领域获得了广泛的应用,例如在航天器的在轨服务领域,机器遥操作技术可进行包括失效卫星维护和救助、太空垃圾清理等任务。同时,机器人遥操作技术还常常用于海洋开发领域、医疗领域、远程制造和核材料处理、核电站安全监控等人类不便或无法亲身参与的领域。于是,机器人遥操作技术作为机器人应用领域的一种重要支撑技术得到了极大地重视和研究。

机器人遥操作系统主要由五部分组成,包括操作者,本地端机器人(主端),主从端通信链路,远端机器人(远端)和远端环境。机器人遥操作系统的运行机制可分为如下几个阶段:第一阶段,操作者在本地端通过施加控制作用给本地端机器人,从而使得本地端机器人按照期望的轨迹运动和动作。第二阶段,本地端机器人的动作信息(包括位置、角度和速度等信息),通过主从端上行通信链路传输至远端机器人,远端机器人按照输入的运动和动作信息对目标执行期望的操作。第三阶段,机器人的动作信息和远端环境信息(包括位置、角度、速度和环境外作用力等信息),通过主从端下行通信链路传输至本地端机器人。第四阶段,操作者根据传输回来的远端信息,与本地端机器人信息作比较和判断,从而发出进一步的操作命令,最终使得远端机器人能够跟随本地端机器人执行相应的操作。

然而,信号在主从端通信链路的传输过程中会产生传输时延。同时,信号的各个处理阶段也会产生较大的处理时延。从而导致信号不能实时的得到传输和利用,这就导致了本地端机器人和远端机器人的操作和动作的不同步,大大降低了系统的操作性能,甚至导致整个系统的不稳定。因此有必要设计先进的控制策略对时延进行补偿,保证信号的实时传输。信号的能否实时传输和利用,直接影响着系统的操作性能、稳定性和任务的成败,所以克服大时延对机器人遥操作系统的影响成为了机器人遥操作技术的研究重点。



技术实现要素:

要解决的技术问题

为了避免现有技术的不足之处,本发明提出一种基于时延补偿的机器人遥操作预测控制方法,通过预测控制策略实时的预测系统的状态,并利用该预测状态信息执行相应的操作,达到时延补偿的目的,从而从根本上消除时延的影响。

技术方案

一种基于时延补偿的机器人遥操作预测控制方法,其特征在于:在本地机器人端添加一个rbf神经网络,在远端机器人侧添加一个rbf神经网络,步骤如下:

步骤1、建立本地端机器人和远端机器人的动力学模型:

其中,下标m和s分别表示本地端机器人和远端机器人;qm和qs分别表示本地端机器人和远端机器人的关节角位置,mm(qm)和ms(qs)分别为本地端机器人和远端机器人对称正定惯性矩阵,分别为本地端机器人和远端机器人的离心力和哥氏力项,gm(qm)和gs(qs)分别为本地端机器人和远端机器人的重力项,分别为本地端机器人和远端机器人的不确定项,τm和τs分别为本地端机器人和远端机器人的控制力矩,fh和fe分别为操作者作用于本地端机器人和环境远端机器人的外力;

步骤2:

1、本地机器人端的预测rbf神经网络和远端机器人侧的预测rbf神经网络

a:本地机器人端的rbf神经网络的预测rbf神经网络的输入信号为:qs(t-ds(t))、输出信号为:

其中为qs(t-ds(t))预测误差:

自适应律为:

b、在远端机器人侧的预测rbf神经网络,预测信息

预测rbf神经网络的输入信号为:qm(t-dm(t))、输出信号为:

其中为qm(t-dm(t))预测误差:

自适应律

2、本地机器人端的预测rbf神经网络和远端机器人侧的估计rbf神经网络:

a、在本地机器人系统端,设计一个估计rbf神经网络,以输入信息(qm(t)、)状态信息来估计本地机器人系统建模时的不确定性fm,并用表示估计值,

估计误差为

rbf估计神经网络自适应律为:

b、在远端机器人系统端,设计一个估计rbf神经网络,输入信息(qs(t)、)状态信息来估计远端机器人系统建模时的不确定性fs,并用表示估计值,即该估计神经网络的输出为:

估计误差为

rbf估计神经网络自适应律为:

步骤3:基于步骤2设计的神经网络,结合比例和微分控制算法设计预测控制器对时延进行补偿,以下式实现系统的控制

其中:为比例项,为微分项,不确定性估计项;表示基于预测控制算法的主从端跟踪误差,最终的目标实现

有益效果

本发明提出的一种基于时延补偿的机器人遥操作预测控制方法,首先给出机器人的数学模型以及一些相关说明,然后再利用双重rbf神经网络,包括两个预测rbf神经网络和两个估计rbf神经网络,分别预测主从端的状态信息(本地端预测rbf神经网络用来预测从端机器人状态信息;远端预测rbf神经网络用来预测本地端机器人状态信息)和估计主从端建模时的不确定性(本地端估计rbf神经网络用来估计本地端机器人不确定性;远端预测rbf神经网络用来估计本地端机器人不确定性)。最后基于设计的预测控制方法设计了一个类pd控制器实现了主从端机器人的跟踪控制。

附图说明

图1:系统工作机制及结构框架图

图2:预测rbf神经网络(本地端)

具体实施方式

现结合实施例、附图对本发明作进一步描述:

为了实现上述目的,本发明所采用附图一所示的工作机制及框架,该技术方案包括以下实施步骤:

1)建立本地端机器人和远端机器人的动力学模型;

2)本地端训练两个rbf神经网络,其中一个用来预测本地端机器人的状态信息,另一个用来逼近本地端机器人系统建模的不确定性。同理,对从端机器人也执行同样的步骤;

3)基于设计的神经网络,结合比例和微分控制算法设计预测控制器对时延进行补偿,从而最终实现主从端的跟踪控制。

步骤1):

结合附图一给出机器人遥操作系统本地机器人和远端机器人动力学模型为:

其中,下标m和s分别表示本地端机器人和远端机器人;qm和qs分别表示本地端机器人和远端机器人的关节角位置,mm(qm)和ms(qs)分别为本地端机器人和远端机器人对称正定惯性矩阵,分别为本地端机器人和远端机器人的离心力和哥氏力项,gm(qm)和gs(qs)分别为本地端机器人和远端机器人的重力项,分别为本地端机器人和远端机器人的不确定项,τm和τs分别为本地端机器人和远端机器人的控制力矩,fh和fe分别为操作者作用于本地端机器人和环境远端机器人的外力;

步骤2):

本地端机器人系统和远端机器人系统中的rbf神经网络设计思路和方案如下:

(1)预测rbf神经网络:

本地端机器人rbf预测神经网络,用来预测远端机器人传输回来的关节角位置信息。由于实际的远端机器人关节角位置等状态信息被传输至本地端机器人端时,经历了时延ds(k),所以导致本地端利用的不是最新信息。然而,主从端传输链路和数据处理环节的存在,系统中状态信号存在时延是不可避免的。为了从根本上解决时延对系统性能的影响,本发明在本地机器人端添加一个rbf神经网络(利用rbf神经网络能以任意精度逼近任一个连续函数的功能),来预测远端机器人经过时延ds(t)最终将到达本地端机器人的关节角位置qs(t-ds(t))等状态信息。由于该预测rbf神经网络的存在,使得本地端机器人真正利用的是预测信息而不是真实的qs(t-ds(t))。

设计的预测rbf神经网络(本地端)如附图2所示,该预测rbf神经网络的输入信号为:qs(t-ds(t))、输出信号为:

其中为qs(t-ds(t))预测误差:

并基于预测误差自适应调节预测rbf神经网络的参数,实现较高精度的预测。自适应律如下:

同样,在远端机器人侧,也按照同样的思路和方法设计一个预测rbf神经网络,来预测本地端机器人经过时延dm(t)最终将到达本地端机器人的关节角位置qm(t-dm(t))等状态信息。所以远端机器人真正利用的是预测信息而不是qm(t-dm(t))。

设计的预测rbf神经网络(远端),该预测rbf神经网络的输入信号为:qm(t-dm(t))、输出信号为:

其中为qm(t-dm(t))预测误差:

并基于预测误差自适应调节预测rbf神经网络的参数,实现较高精度的预测。自适应律如下:

(2)估计rbf神经网络:

利用rbf神经网络的函数逼近和数据拟合的能力,设计一个估计rbf神经网络来估计系统的不确定性。

在本地机器人系统端,设计一个估计rbf神经网络。利用输入信息等状态信息来估计本地机器人系统建模时的不确定性fm,并用表示估计值,即该估计神经网络的输出为:

再定义估计误差为

对应的rbf估计神经网络自适应律为:

同样,在远端机器人系统端,也设计一个估计rbf神经网络(远端)。利用输入信息等状态信息来估计远端机器人系统建模时的不确定性fs,并用表示估计值,即该估计神经网络的输出为:

再定义估计误差为

对应的rbf估计神经网络自适应律为:

步骤3)

基于设计的步骤2)设计的神经网络,结合比例和微分控制算法设计预测控制器对时延进行补偿。

其中为比例项,为微分项,不确定性估计项。表示基于预测控制算法的主从端跟踪误差,最终的目标是实现

特别说明:预测rbf神经网络(远端)、估计rbf神经网络(本地端)、估计rbf神经网络(远端)的神经网络架构均相同。所以在这里只列出图2预测rbf神经网络的(远端)的架构图。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1