由成形刀具确定被加工螺旋曲面廓形的点矢量包络法

文档序号:8921931阅读:515来源:国知局
由成形刀具确定被加工螺旋曲面廓形的点矢量包络法
【技术领域】
[0001] 本发明属于螺旋曲面的制造领域,尤其是螺旋曲面成形加工制造领域,涉及一种 由成形刀具确定被加工螺旋曲面廓形的点矢量包络法。
【背景技术】
[0002] 螺旋曲面是工程应用非常广泛的一类曲面,主要应用于齿轮、蜗杆、螺旋叶片及以 及加工刀具中,成形法是螺旋曲面的一种主要加工方式。成形刀具大多采用回转曲面,回转 曲面的母线与被加工的螺旋曲面型线间呈空间映射关系。然而成形刀具廓形正确与否,特 别是是否有干涉现象发生,一般需要通过计算成形刀具加工出的螺旋曲面廓形是否与理论 廓形一致来判断。
[0003] 目前螺旋曲面廓形计算普遍基于共轭曲面包络理论,其要点是通过建立的接触线 方程将特征点从曲面上"分离"出来。1987年,日本Ishibash等提出元素消去法,可仿真 刀具包络螺旋曲面的过程,在螺旋曲面工作平面上细分出许多长方形网格,当刀具母线运 动接触到某网格时该元素被切掉(消失),剩下的网格元素边界即表达了螺旋曲面的近似 轮廓。但该方法基于工作平面的仿真过程并不能完全反映实际三维运动过程,导致计算出 的螺旋曲面廓形上下端比实际多出一部分,无法用于刀具干涉检测中。
[0004] 因此,现有的螺旋曲面廓形求解方法还是基于共轭曲面包络理论,采用解析表达 式描述刀具回转曲面,通过人工推导,得到螺旋曲面的解析方程或数据。一方面,整个建模 过程涉及繁琐的公式推导和大量的数学计算,对一般的工程技术人员来说,掌握这一套理 论和计算方法有一定难度;另一方面,在利用计算机求解模型时,由于解析方程式及其推导 计算的多样化,很难建立通用性较强的计算机方法。所以采用数字法求解螺旋曲面廓形非 常必要。

【发明内容】

[0005] 针对现有技术中存在的上述不足,本发明提供了一种由成形刀具确定被加工螺旋 曲面廓形的点矢量包络法,该方法能够方便和快速包络出螺旋曲面的廓形,该方法中离散 点与包络点间具有直接的对应关系。
[0006] 为了解决上述技术问题,本发明采用了如下技术方案:
[0007] 由成形刀具确定被加工螺旋曲面廓形的点矢量包络法,根据平均化准则对成形刀 具廓形母线进行点离散,为保持离散点的几何特性,增加廓形母线离散点的法向矢量特征, 用点矢量完整地描述离散点;并对廓形母线点矢量的回转运动轨迹进行离散,以点矢量的 包络运动完整地仿真成形刀具包络螺旋曲面的过程;选取所求螺旋曲面廓形截面为计算平 面,根据运动及几何关系将点矢量的包络运动映射至计算平面上,将成形刀具的包络转化 为平面点矢量包络;在计算平面上,建立平面点矢量包络方法,将点矢量族中与螺旋曲面有 向距离最短的点确定为包络点,最后将所有包络点拟合成螺旋曲面廓形。
[0008] 作为本发明的一种优选方案,根据平均化准则进行成形刀具廓形母线点离散是 指,成形刀具廓形母线由一段或几段平面曲线构成,所述的平曲线包括直线、圆弧以及自由 曲线,根据距离、弧度或角度的平均化对平面曲线进行离散,得到几何意义上分布均匀的点 族。
[0009] 作为本发明的另一种优选方案,所述的点矢量由离散点及其法向矢量构成,该离 散点也称为点矢量的起点,从而利用一系列空间点矢量表述母线的几何特性。
[0010] 作为本发明的又一种优选方案,所述的点矢量包络运动由下列步骤实现,首先将 成形刀具的包络转化为廓形母线的回转运动包络,再离散为一系列点矢量的回转运动包 络,最后将点矢量的回转运动轨迹离散为回转轨迹点族。
[0011] 作为本发明的一种改进方案,所述的将点矢量的包络运动映射至计算平面上,通 过建立相应坐标系,将点矢量的包络运动投影至计算平面,保证所有点矢量的起点位置在 计算平面上,并对点矢量的方向进行平面投影得到在计算平面上的矢量分量,该分量与矢 量起点在计算平面上构成新的平面点矢量。
[0012] 作为本发明的另一种改进方案,所述的平面点矢量包络方法是指,螺旋曲面型线 上的点矢量运动形成的平面点矢量族中,有一点矢量的起点与螺旋曲面廓形上的一点最接 近重合,该点矢量的起点为点矢量族的包络点,根据点矢量族中到螺旋曲面有向距离最短 的点矢量决定螺旋曲面最终廓形,而其它点矢量在包络螺旋曲面廓形的过程中会被消除 掉。
[0013] 作为本发明的又一种改进方案,所述的平面点矢量包络方法,是采用包络逼近方 法实现,针对型线上某一点矢量形成的平面点矢量族,对点矢量逐个比较,采用排除法找出 成形刀具廓形点,当考察某一个点矢量时,建立逼近标准,过计算平面上的成形刀具原点建 立一条垂直于该矢量方向的逼近基准线,计算所有点矢量的起点到逼近基准线的距离,判 断该点矢量对应的距离是否为最短,如果是,则该点矢量的起点为刀具廓形点,否则将该点 矢量排除,按照相同的方法考察型线上其它点矢量形成的点矢量族,逐一找出各点矢量族 对应的刀具廓形点。
[0014] 作为本发明的进一步改进方案,所述的逼近基准线,因各点矢量的位置及方向是 不同的,因此考察不同的点矢量时,所建立的逼近基准线的斜率也不同。
[0015] 本发明的有益效果是:该方法建模简单,几何通用性好,不需要进行复杂的运算且 利于编程实现,是一种高鲁棒性、精度可控的方法;同时,该方法能够方便和快速进行成形 刀具廓形包络计算,且计算过程中离散点与包络点间具有直接的对应关系。因此本方法对 消除螺旋曲面制造过程中的过切和干涉现象、运动轨迹的优化及异形螺旋曲面的制造具有 很好的指导作用。
【附图说明】
[0016] 图1为本发明所建立的成形刀具与齿轮坐标系;
[0017] 图2为本发明点矢量逼近算法示意图;
[0018] 图3为本发明点矢量包络出螺旋曲面廓形的过程示意图;
[0019] 图4为本发明实现点矢量逼近算法的流程图。
【具体实施方式】
[0020] 下面结合附图和【具体实施方式】对本发明作进一步详细地描述。
[0021] 以成形砂轮磨削标准渐开线斜齿轮为例,由成形刀具确定被加工螺旋曲面廓形的 点矢量包络法包括如下步骤:
[0022] 1)对成形砂轮廓形母线进行点离散,按照等角度离散准则对成形刀具廓形母线进 行离散,得到一系列在母线上平均分布的离散点。
[0023] 2)对所有的母线离散点附加其空间矢量特性,确定型线上各离散点处的平面矢量 方向,根据成形砂轮的回转特性,离散点的平面法矢分量就表示该点的空间法向矢量。
[0024] 3)根据齿轮与成形砂轮间的空间几何关系建立坐标系(如附图1所示),并确定 成形砂轮及齿轮间的空间位置关系及姿态。图1中,〇 g= (xg,yg,zg)为齿轮坐标系,0f = (xf,yf,zf)为惯性坐标系,0S=(xs,ys,zs)为砂轮坐标系。砂轮与齿轮的轴交角为r,中 心距为a,砂轮绕Y
当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1