六轮双核全自动高速灭火机器人伺服控制器的制造方法

文档序号:9416810阅读:369来源:国知局
六轮双核全自动高速灭火机器人伺服控制器的制造方法
【技术领域】
[0001]本发明涉多轴机器人的等领域,涉及一种六轮灭火机器人自动控制系统,尤其涉及一种六轮双核全自动高速灭火机器人伺服控制器。
【背景技术】
[0002]灭火机器人是一中模拟现实生活中人类发现有害火源并能够自动熄灭火源的一种新型智能机器人。一般情况下,比赛型灭火机器人能够在一间平面结构房子模型里运动,在操作规则指导下以最短的时间找到代表火源的一根蜡烛并将它熄灭。模拟现实家庭中机器人处理火警的过程。蜡烛代表家里燃起的火源,机器人必须找到并熄灭火源。蜡烛火焰的底部将离地面15-20cm高。蜡烛是直径l-2cm的白蜡烛。蜡烛火焰的确切高度和尺寸是不确定的、变化的,而且由蜡烛条件和周围的环境所决定。蜡烛将随机地放在比赛场地的一个房间里,比赛开始后不管火焰具体是什么尺寸,都要求机器人能发现蜡烛。
[0003]在真正的比赛中,为了加大比赛难度,比赛场地被分为n*n格的标准模式,最常采用的是8*8格的均匀模式,其比赛场地结构如图1所示,灭火机器人将在64格房间里寻找火源并熄灭。在图1的搜寻火源地图中,墙的材料是木质一般且可以反光,每块挡墙的长度为60cm长,高度在27-34cm。比赛场地地面是光滑的,场地的地板是黑色的。场地上的任意缝隙都刷成黑色。场地的缝隙不超过5_。一些机器人可能用泡沫,粉末或者其他的物质来熄灭蜡烛的火焰。由于每一个机器人比赛后清洗场地的好坏直接影响到地面情况,故地面不保证在整个比赛过程中都保持绝对黑色。一旦启动,灭火机器人必须在没有人的干预下自己控制导航,而非人工控制,为了考验灭火机器人在搜寻火源过程中的稳定性,其不可以碰撞或接触墙壁,否则将被受到处罚。
[0004]—台完整的灭火机器人大致分为以下几个部分:
O电机:执行电机是灭火机器人的动力源,它根据微处理器的指令来执行灭火机器人在二维平面上行走的相关动作;
2)算法:算法是灭火机器人的灵魂,灭火机器人必须采用一定的智能算法才能准确快速的从一个房间格到达另外一格房间的运动,然后发现火源,并开启自身携带的干冰控制器,扑灭火源;
3)微处理器:微处理器是灭火机器人的核心部分,是灭火机器人的大脑,灭火机器人所有的信息,包括房间墙壁信息,火源位置信息,和电机状态信息等都需要经过微处理器处理并做出相应的判断。
[0005]灭火机器人结合了多学科知识,对于提升在校学生的动手能力、团队协作能力和创新能力,促进学生课堂知识的消化和扩展学生的知识面都非常有帮助。国内研发此机器人的单位较多,但是研发的机器人比较落后,研发的灭火机器人结构如图2,长时间运行发现存在着很多安全问题,即:
(I)作为灭火机器人的执行机构采用的多是步进电机,经常会遇到丢失脉冲造成电机失步现象发生,导致对位置的记忆出现错误,灭火机器人无法寻求到火源,或者是灭火后机器人无法回到起始点;
(2)由于采用步进电机,使得机体发热比较严重,有的时候需要进行加装散热装置,使得机器人整体重量增加;
(3 )由于采用步进电机,使得系统一般不适合在速度较高的场合运行,高速运动时容易产生振动,有时候可能会接触墙壁,导致寻找火源失败;
(4)由于灭火机器人要频繁的刹车和启动,加重了单片机的工作量,单一的单片机无法满足灭火机器人快速启动和停止的要求;
(5)相对采用的都是一些体积比较大的插件元器件,使得灭火机器人控制系统占用较大的空间,重量相对都比较重;
(6)由于受周围环境不稳定因素干扰,单片机控制器经常会出现异常,引起灭火机器人失控,抗干扰能力较差;
(7)对于两轮灭火机器人寻找火源过程来说,一般要求其两个电机的PffM控制信号要同步,由于受单片机计算能力的限制,单一单片机伺服系统很难满足这一条件,使得灭火机器人行走导航很难控制,特别是对于快速行走时情况更糟糕;
(8)由于采用两个动力轮驱动,为了满足快速搜寻火源时的加速和减速,使得单个驱动电机的功率较大,不仅占用的空间较大,而且有时候在一些相对需求能量较低的状态下造成“大马拉小车”的现象出现,不利于灭火机器人系统能源的节省;
(9)基于单核控制的灭火机器人,特别是对于多轮的灭火机器人,由于处理器处理的算法较多,运算速度不是很快,不利于高速运转;
(10)在有些条件下,为了增加运算速度,在单核控制器中引入专用运动芯片处理部分伺服控制算法,但是受到专用芯片本身能力的影响,运算速度虽然得到了一定的提高,但是还不是很理想;
(11)在实际灭火过程中,火源未必处在房间格的中心,导致灭火机器人的行走方向与火源之间有一个夹角,导致灭火消费了大量的干冰,有时候可能会无法熄灭火源;
(12)在实际灭火过程中,由于蜡烛的燃烧,其高度也在发生变化,这与现实中的火源也非常相似,但是一般的灭火机器人携带的干冰灭火器的喷嘴高度是固定的,导致无法有效的扑灭火源;
(13)在实际灭火过程中,普通的光源探测传感器会可能收到外界光源的干扰,导致灭火探寻失败,无法完成任务。
[0006]因此,需要对现有的基于单片机控制的两轮灭火机器人控制器进行重新设计,寻求一种经济适用的能够在现实中的使用的双核六轮高速全自动灭火机器人伺服系统。

【发明内容】

[0007]本发明主要解决的技术问题是提供一种六轮双核全自动高速灭火机器人伺服控制器,能够更好的提高灭火机器人对复杂环境的适应能力,本发明采用六轮结构替代了原有的两轮和四轮结构:为了兼顾两轮中置转向的优点,本发明采用前驱+中驱+后驱的六轮驱动结构:中置驱动的两个直流无刷电机功率较大,前置和后置驱动的四个直流无刷电机功率较小,只有在动力需求较高时才启动,起到助力作用,由于采用六轮驱动技术,灭火机器人前后中轮都有动力,可按探索地面和周围环境状态不同而将需求扭矩按不同比例分布在前后所有的轮子上,以提高灭火机器人的行驶能力。
[0008]为解决上述技术问题,本发明采用的一个技术方案是:提供了一种六轮双核全自动高速灭火机器人伺服控制器,包括电池、处理器、直流无刷电机X、直流无刷电机Y、直流无刷电机Z、直流电机M、直流无刷电机R、直流无刷电机U、直流无刷电机W、直流电机E以及灭火机器人,所述的电池单独提供电流驱动所述的处理器,所述的处理器分别发出第一控制信号、第二控制信号、第三控制信号、第四控制信号、第五控制信号、第六控制信号和第七控制信号,由所述的第一控制信号、第二控制信号、第三控制信号、第四控制信号、第五控制信号、第六控制信号、第七控制信号和第八控制信号,由所述的第一控制信号、第二控制信号、第三控制信号、第四控制信号、第五控制信号、第六控制信号和第七控制信号,由所述的第一控制信号、第二控制信号、第三控制信号、第四控制信号、第五控制信号、第六控制信号、第七控制信号和第八控制信号分别控制所述的直流无刷电机X、直流无刷电机Y、直流无刷电机Z、直流电机M、直流无刷电机R、直流无刷电机U、直流无刷电机W和直流电机E的信号合成之后再控制灭火机器人的运动,还包括图像采集单元,所述的处理器与图像采集单元通讯连接,其中,所述的处理器采用双核处理器,包括STM32F407和FPGA,所述的FPGA与STM32F407进行通信连接。
[0009]在本发明一个较佳实施例中,所述的电池采用锂离子电池。
[0010]在本发明一个较佳实施例中,所述的第一控制信号、第二控制信号、第三控制信号、第四控制信号、第五控制信号、第六控制信号、第七控制信号和第八控制信号均为PWM波控制信号。
[0011]在本发明一个较佳实施例中,所述的处理器的内部还设置有上位机系统和运动控制系统,所述的上位机系统包括房间探索模块、房间存储模块、路径读取模块、人机界面模块以及在线输出模块,所述的运动控制系统包括基于FPGA八轴同步混合伺服控制模块、坐标定位模块、I/O控制模块以及图像采集模块,其中,所述的基于FPGA八轴同步混合伺服控制模块包括六轴直流无刷电机灭火机器人搜寻伺服控制模块、单轴真空吸盘吸附伺服控制模块以及灭火器单轴升降伺服控制模块。
[0012]在本发明一个较佳实施例中,所述的六轮灭火机器人伺服控制器还包括超声波传感器、电流传感器、光电传感器、电压传感器、加速度计传感器、陀螺仪以及方向传感器,所述的超声波传感器、电流传感器、光电传感器、电压传感器、加速度计传感器、陀螺仪以及方向传感器均与处理器通讯连接。
[0013]在本发明一个较佳实施例中,所述的超声波传感器的数量为6个、电流传感器的数量为8个、光电传感器、电压传感器、加速度计传感器、陀螺仪以及方向传感器的数量均为I个。
[0014]在本发明一个较佳实施例中,所述的六轮灭火机器人伺服控制器还包括光电编码器,所述的光电编码器分别安装在直流无刷电机X、直流无刷电机Y、直流无刷电机Z、直流电机M、直流无刷电机R、直流无刷电机U、直流无刷电机W和直流电机E上。
[0015]本发明的有益效果是:本发明的六轮双核全自动高速灭火机器人伺服控制器,为克服单片机不能满足两轴灭火机器人行走的稳定性,进一步提高灭火机器人行走的速度,舍弃了国产灭火机器人所采用的单一单片机工作模式,在吸收国外先进控制思想的前提下,自主发明了基于STM32F407+FPGA的六轮双核全新控制模式。控制板以FPGA为处理核心,实现六轴直流无刷电机和两轴直流电机的八轴伺服控制的数字信号实时处理,并响应各种中断,实现数据信号的实时存储。双核控制器把STM32F407从复杂的工作当中解脱出来,实现房间信息读取、房间存储、I/O控制、图像采集等简单部分的信号处理,并响应FPGA中断,实现二者之间的数据通信和存储实时信号。同时,真空吸附技术的引入彻底消除了机器人行走打滑现象的发生,有效提高了机器人位置的精确性;图像采集技术和火源位置校正技术的加入可有效增加火源的判别以及灭火的可靠性。
【附图说明】
[0016]为了更清楚地说明本发明实施例中的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其它的附图,其中:
图1为灭火机器人房间示意图;
图2为基于单片机控制的两轮灭火机器人原理图;
图3为基于STM32F407+FPGA六轮灭火机器人结构图;
图4为基于STM32F407+FPGA六轮全自动灭火机器人原理图;
图5为基于STM32F407+FPGA六轮全自动灭火机器人伺服程序框图;
图6为灭火机器人运行方向示意图;
图7为右转不意图;
当前第1页1 2 3 4 5 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1