结合小特征尺寸和大特征尺寸组件的装置及其制造方法

文档序号:6654953阅读:284来源:国知局
专利名称:结合小特征尺寸和大特征尺寸组件的装置及其制造方法
技术领域
本发明的领域一般地涉及既具有大特征尺寸组件又具有小特征尺寸组件的装置,以及制造这种装置的方法。本发明尤其涉及组合VLSI集成电路和大规模组件以形成单个设备。
背景技术
VLSI提供了许多用于产生极小规模(microscopic-scale)和较小组件的有效方法。这种微型化在运行速度、占用面积(footprint)大小、必要资源量以及制造速度方面为电子设备提供了许多优点。
不幸的是,电子设备的某些组件不是很适合通过公知的VLSI工艺来形成。这些组件相对于通过VLSI形成的设备或设备的组件来说通常必然很大(巨观规模(macroscopic-scale))。一种这样的组件是天线,它可能需要具有某个特性长度以允许优选频率上的适当发射,并且对于它来说,所讨论的特性长度可能例如要以厘米或米为单位来适当地度量。利用VLSI来形成用作天线的导体往往是浪费时间和材料资源的,因为30cm的导体(例如)可以很容易通过不那么昂贵的工艺来形成。
从而,问题就变成了将比如天线这样的大规模组件与比如集成电路这样的小规模组件相结合的问题。对于传统的无线电设备,这可能涉及使用对集成电路、印刷电路板上的导体、附接到印刷电路板的连接器以及附接到连接器的天线的封装。对于具有严格的封装限制和灵活的尺寸限制的设备来说,该方法足够简单。但是,其他应用对于尺寸和材料成本可能有更多的要求。
具体而言,拥有这样一种小型无线电发射器可能是有用的其具有柔性材料,以允许弯曲和其他过分动作,而不会造成功能恶化。类似地,这种小型无线电发射器可能需要能够迅速地以几百万或几十亿的量来生产,从而要求组装简单并且每个单元的材料相对廉价。将印刷电路板方法用于这种无线电发射器很可能不会成功。此外,避免比如热固化这样的耗时(和/或空间)的处理操作也可能是有利的。
有可能单独地生产元件,例如集成电路,然后在需要时将它们放置在不同的、可能较大的基片(substrate)上。现有技术一般可被划分成两类确定性方法或随机方法。确定性方法,例如拾取和放置,利用人或机械臂来拾取每个元件,并将它们放置在不同基片中其相应的位置中。拾取和放置方法一般以每次一个的方式放置器件,一般不适用于非常小或数目众多的元件,例如像有源矩阵液晶显示器这样的需要大型阵列的那些元件。如果要放置的元件具有适当的形状,则随机放置技术更为有效并且会带来更高的产量。美国专利No.5,545,291和美国专利No.5,904,545描述了使用随机放置的方法。在该方法中,微结构通过流体传输被组装到不同的基片上。这有时被称为流体式自组装(FSA)。利用该技术,各自包含一个功能性组件的各种集成电路可以被制作在一个基片上,然后与该基片分离,并且通过流体式自组装工艺被组装到一个分别的基片上。该过程涉及将集成电路与流体结合,并且将流体和集成电路分布在具有接受体区域(receptor region)或开口的接收基片的表面上。集成电路在表面上的流体中流动,并且随机地对准到接受体区域中,从而变得嵌入在基片中。
一旦集成电路已经被沉积在了接受体区域中,设备的剩余部分就可以被组装。一般,这涉及用平坦化层来涂覆基片,以为集成电路提供电绝缘和物理保持力。平坦化层通过填充接受体区域中未被集成电路填充的区域,来在基片顶部上产生水平表面。在已经沉积平坦化层之后,可以安装其他元件,例如包括像素电极和迹线。
利用FSA,可以与设备的其他部分分别地制造和测试设备的功能组件。

发明内容
本发明的实施例一般地涉及在基片上制作元件的领域。一个实施例涉及一种装置,该装置包括基片,其中嵌入、包含或结合有集成电路。集成电路被附接到布置在基片上的第一导体。第一导体可以是热固性材料或热塑性材料。该装置还包括附接到第一导体的大规模组件;大规模组件从而被电耦合到集成电路。大规模组件包括第二基片。
另一个实施例涉及一种方法,包括将导电介质附接到其中嵌入或包含有集成电路的基片,从而使得导电介质被电连接到集成电路。该方法还包括将导电介质附接到集成电路的第一导体。该方法还包括将大规模组件附接到导电介质,从而使得大规模组件被电连接到集成电路。
在其他实施例中,描述了用于将大规模组件附接到第一导体的各种方法和材料。在某些实施例中,各向异性导电材料被用于将来自大规模组件的导体附接到其中包含或嵌入有集成电路(IC)的基片上的第一导体,以便在大规模组件和IC之间存在电和物理连接。在其他实施例中,各向同性导电材料被用于将来自大规模组件的导体附接到其中包含或嵌入有IC的基片上的第一导体,以便在IC和大规模组件之间存在电和物理连接。在某些实施例中,利用机械方法连接其中包含或嵌入有IC的基片上的导体和大规模组件的导体,以保持导体紧密接触。这种机械方法包括卷曲(crimping)、钉合(clinching)、按压(pressing)、超声能量、热和压力、捆绑(taping)、压缩(compressing)、扒钉钉合(stapling)、冲压(punching)、铆接(riveting)、热超声接合(thermosonic bonding)、以及热压接合(thermo compression bonding)方法。这些机械方法使得导体紧密接触,以允许大规模组件和IC之间的必要的电互连。


在附图中以示例方式而不是限制方式说明了本发明。
图1示出了带片(strap)的实施例的侧视图。
图2示出了附接到大规模组件的图1的带片的实施例的侧视图。
图3A示出了图1的装置的实施例沿所示方向的线A-A的视图。
图3B示出了图2的装置的实施例沿所示方向的线B-B的视图。
图4示出了天线的实施例。
图5示出了一个连接板(web)部分的实施例,该连接板部分上附着有包括例如NanoBlockIC(NanoBlock是ALIEN科技有限公司的商标和/或商品名)这样的功能块的带片。
图6示出了形成既包括小特征尺寸组件又包括大特征尺寸组件的装置的方法的实施例。
图7示出了形成既包括小特征尺寸组件又包括大特征尺寸组件的装置的方法的替换实施例。
图8示出了带片的替换实施例的侧视图。
图9示出了带片的另一个替换实施例的侧视图。
图10示出了带片的另一个替换实施例的侧视图。
图11示出了形成既包括小特征尺寸组件又包括大特征尺寸组件的装置的方法的另一个替换实施例。
图12A示出了基片的另一个实施例的顶视图。
图12B示出了基片的另一个实施例的侧视图。
图13示出了基片的另一个实施例的侧视图。
图14示出了基片的另一个实施例的侧视图。
图15示出了将带片的导体连接到大规模组件的导体的实施例的侧视图。
图16示出了将带片的导体连接到大规模组件的导体的另一个实施例的侧视图。
图17A~图17C示出了将带片的导体连接到大规模组件的导体的其他
具体实施例方式
描述了结合了小特征尺寸组件和大特征尺寸组件的装置以及用于制造该装置的方法。在下面的描述中,出于说明目的,阐述了许多具体细节,以提供对本发明的彻底理解。但是,对于本领域的技术人员很明显的是,没有这些具体细节也能实现本发明。在其他实例中,以框图形式示出结构和设备,以避免模糊本发明的主题。
在说明书中提到“一个实施例”或“实施例”是指联系该实施例描述的特定特征、结构或特性被包括在本发明的至少一个实施例中。说明书中各处出现的短语“在一个实施例中”不一定都是指同一个实施例,也不一定是与其他实施例互斥的单独的或替换的实施例。
本发明的实施例一般地涉及在基片上制作元件的领域。在一个实施例中,本发明是一种装置。该装置包括带片,带片包括基片,基片中嵌入了或包含有嵌入的集成电路(IC)。第一导体被布置在基片上,并且附接到IC。导电介质在第一导体处附接到带片。该装置还包括附接到导电介质的大规模组件,所述导电介质允许大规模组件被电耦合到集成电路。大规模组件可以包括第二导体,其附接到导电介质,以将大规模组件耦合到IC。大规模组件可以被包括在另一个基片中。带片的基片和承载大规模组件的基片可以被翻倒在彼此的顶部上,以帮助大规模组件耦合到IC。在一个实施例中,IC具有有源表面。有源表面可以是IC表面,在该表面处,第一导体可以被附接到IC。在一个实施例中,有源表面面向大规模组件。
本发明的某些实施例涉及一种进行组装的方法。该方法包括通过将第一导体附接到其中包含或嵌入有集成电路的基片,以使得第一导体电连接到集成电路,来产生带片。该方法还包括将大规模组件附接到第一导体,以使得大规模组件电连接到集成电路。在某些实施例中,第二导体被包括在大规模组件中。第二导体电连接到第一导体。在某些实施例中,导电介质被用于将第一导体连接到第二导体。
有许多可以形成第一导体和/或导电介质的方式。用于形成第一导体和/或导电介质的材料可以通过以下技术来施加丝网印刷(例如,平台丝网印刷或轮转丝网印刷)、模版印刷、喷墨印刷、凹版印刷、苯胺印刷(flexography printing)、戳印(pad stamping)、静电印刷、层压、热压、激光辅助化学气相沉积、物理气相沉积(例如溅射)、掩模(shadowmasking)、蒸发、挤压涂覆、帘式淋涂、电镀或其他添加技术。也可以通过将适当量的材料计量(例如通过针、喷嘴或吸管,或其他传统计量工具)到特定的基片或表面上来施加材料。
导电介质可以是流体、墨(热塑性或热固树脂基的银墨)、导电带(具有导电填充物的热塑性或热固性聚合物)、导电膏(焊膏或聚合物基材中的导电填充物)、焊料,金属膜、悬浮在载体中的金属颗粒、导电聚合物、碳基导体,或者例如其他厚膜材料。一个示例性导电介质产品是Acheson Colloids 479SS。
在另一个替换实施例中,本发明是一种装置。该装置包括嵌入在基片内的集成电路。该装置还包括在集成电路的一部分和基片的一部分上形成的电介质层。该装置还包括在电介质层的一部分上形成的第一导体,第一导体与集成电路具有直接电连接。该装置被称为带片。
在另一个替换实施例中,本发明是一种方法。该方法包括在集成电路的一部分和基片的一部分上形成电介质,该集成电路嵌入在基片内。该方法还包括将第一导体附接到电介质和集成电路,第一导体电连接到集成电路。
在另一个替换实施例中,本发明是一种装置。该装置包括其中嵌入或包含有集成电路的基片。第一导体被附接到基片,并且集成电路被附接到第一导体。该装置被称为带片。该装置还包括附接到集成电路的第一导体的导电介质。
在另一个替换实施例中,本发明是一种装置。该装置包括其中嵌入有比如NanoBlock IC这样的功能块的带片。功能块是包括能够驱动特定设备的集成电路的小结构或微结构。并且第一导体电耦合到NanoBlock IC。NanoBlock IC例如是利用传统的VLSI过程生产的,并且利用流体式自组装(FSA)被嵌入。NanoBlock IC也可以通过其他传递方法被附接或包含在基片中。基片上附接有导电介质,从而允许NanoBlock IC和第一导体之间的电耦合。导电介质电连接到第一导体。附接到导电介质的是包括天线的基片,从而允许天线和NanoBlock IC之间的电耦合。
虽然这里的描述集中于以NanoBlock IC作为被结合、包含、嵌入或包括在基片中的IC,但是可以预期也可以使用其他功能块来代替。
在另一个替换实施例中,本发明是一种方法。该方法包括将第一导体附接到其中嵌入有NanoBlock IC的基片,以使得第一导体电耦合到NanoBlock IC,从而形成带片。该方法还包括将大规模组件附接到第一导体,以使得大规模组件电连接或耦合到第一导体。该方法还可以包括布置在第一导体和大规模组件之间的导电介质,以将NanoBlock IC互连到大规模组件。在一个实施例中,该方法还可以包括制作NanoBlock IC并执行FSA,以将NanoBlock IC嵌入到基片中。该方法还可以涉及大规模组件,其可以是天线、比如电池或钮扣电池这样的电源、或者印刷在带片或其他基片上的厚膜单元;显示电极或显示器;逻辑器件,或传感器;以及其他示例。
在另一个替换实施例中,本发明是一种装置。该装置包括其中嵌入或包含有NanoBlock IC的基片。基片上附接有第一导体,这允许了NanoBlock IC和导电介质之间的电连接。导电介质被附接到另一基片,例如天线。导电介质允许了天线和NanoBlock IC之间的电耦合。
本文档中,出于讨论目的,实施例可能涉及其中沉积有NanoBlock IC的带片。但是,也可以使用其他功能块或其他IC器件,而不会影响实施例的范围。此外,NanoBlock IC或其他IC器件可以被嵌入在带片中,或者以其他方式被包含、包括或结合在带片中。
图1示出了带片的一个实施例的侧视图,其中包括基片,基片具有比如NanoBlock IC这样的嵌入的功能块IC、平坦化层以及与NanoBlockTMIC接触的第一导体。如本领域已知的,NanoBlock IC包括至少一个导电焊盘。第一导体通过接触导电焊盘与NanoBlock IC接触。基片110中具有开口,以容纳功能块或NanoBlock IC 120,并且例如可以是柔性塑料基片。在一个实施例中,IC 120是经由传统VLSI形成的NanoBlock IC。NanoBlock IC 120在一个实施例中可以通过FSA被嵌入或沉积在基片110的开口中,而在其他实施例中,可以通过其他传递方法被嵌入或沉积在基片110的开口中。IC 120也可以通过比如拾取-放置这样的其他方法被传递到基片110。也可以利用其他方法将IC容纳在基片110中,例如利用可以通过其他方便的方法将IC 120按压到基片110中或将IC 120附接到基片110的工具。
NanoBlock IC 120可以具有与集成电路相一致的多种功能或结构。在一个实施例中,NanoBlock IC 120包括适合于从外部天线接收无线电信号并经由外部天线发送无线电信号的电路。NanoBlock IC 120还具有有源表面,例如具有NanoBlock IC 120电路的表面。此外,在一个实施例中,NanoBlock IC 120可以经由外部天线从外部源接收电力,并且利用这种电力来经由外部天线发送无线电信号。应当意识到,即使讨论集中于NanoBlock IC 120,也可以使用其他IC来代替,并且实施例并不局限于NanoBlock 120。
形成在NanoBlock IC 120上的是平坦化层130,它例如可以通过传统的有机电介质层压或涂覆、图案化和蚀刻或其他类似的方法来形成。形成在平坦化层130上的是两个第一导体140,其例如可以由丝网印刷的导电膏形成,并且占据平坦化层130中的两个接触孔。在一个实施例中,两个第一导体140附接到NanoBlock IC 120的导电焊盘,并且两个第一导体140最好彼此不直接连接。
在一个实施例中,第一导体140由含有散布在热固性聚合物中的导电填充物(例如像银这样的导电金属,或者固有导电的聚合物(ICP),如聚苯胺)的热固性墨形成。或者,第一导体140由含有散布在热塑性聚合物中的与热固性墨类似的导电填充物的热塑性墨形成。在某些实施例中不需要导电填充物,例如当热固性材料或热塑性材料固有地导电时。
用于形成第一导体140的导电热固性墨可以是单组分原料、双组分原料或者多组分可聚合原料。在热固性墨被沉积之后,可以通过将其暴露给比如氧这样的活性组分、热、湿气,或者暴露给比如IR、可见光、UV、电子束、RF和微波射频之类的电磁辐射,来固化它。
用于形成第一导体140的导电热塑性墨可以作为经软化的聚合物被沉积(通过加热),并且可被允许凝固。在某些实施例中,可以用导电热塑性墨来形成第一导体140,并且使其凝固以形成第一导体140。第一导体140被接合到其他导体(例如大规模组件的导体)。这些实施例允许了第一导体140和其他导体之间的直接电连接。在其他实施例中,可以利用适当的溶剂软化导电热塑性墨,以便以经软化的形式来传递/沉积导电热塑性墨,然后允许经软化的热塑性墨凝固,以形成第一导体140。使用导电热塑性墨就可以不再需要中间导电介质270来将第一导体140电连接到其他导体(例如下面的大规模组件的导体280),这是因为热塑性材料在凝固时可被直接接合到另一导体。这些实施例允许了第一导体140和其他导体之间的直接电连接。
第一导体140也可以由其他导电材料形成,这些材料例如是银、铝或铜。第一导体140可以通过本领域中已知的各种技术来沉积,这些技术例如是物理气相沉积(例如溅射)、化学气相沉积或低压气相沉积、丝网印刷(例如平台丝网印刷或轮转丝网印刷)、模版印刷、喷墨印刷、凹版印刷、苯胺印刷、静电印刷、层压、热压、激光辅助化学气相沉积、掩模、蒸发、挤压涂覆、帘式淋涂、电镀或其他添加技术。在一个实施例中,第一导体140由导电膏(例如可从Acheson获得的那些,包括479SS)制成,并且例如可以通过丝网印刷工艺形成或沉积在基片110上。在另一个实施例中,第一导体140可以通过焊盘转移形成,其中预先形成的导电焊盘被自动工具拾起,并且被转移到基片110,以形成第一导体140。导电焊盘一般是在它们的经软化状态下传递的,并且被允许在被传递到基片110上之后固化或凝固。
在一个实施例中,在第一导体140上形成绝缘层150。绝缘层150例如可以通过薄膜或厚膜工艺形成,并且可以填充在两个第一导体140之间的空间中。将会意识到,在某些情况下,通过设计,第一导体140可以连接到集成电路的多个焊盘。这种情况的一个示例是将IC的所有接地焊盘连接到单个导体以实现公共地电势。
在某些实施例中,薄膜是通过使用真空或低压工艺来施加的。厚薄是利用非真空工艺、一般在大气压或接近大气压下施加的。本领域的技术人员将会意识到,相对于大气压,真空低压的环境压力的确切大小可能难以指定。但是,本领域的技术人员也将会意识到,低压和大气压之间的差异与大气压相比是相对较大的。
在某些实施例中,NanoBlock IC 120被形成有足够大的焊盘,以允许第一导体140和其他导体(例如大规模组件281的第二导体280,图2)以及NanoBlock IC之间的直接连接,从而避免对中间或居间导体的需要。在其他实施例中,任何大规模组件和NanoBlock IC之间的直接(垂直)连接是通过具有各向同性导电性的导体形成的。
图2示出了附接到大规模组件281的图1的带片的实施例的侧视图。本申请中讨论的大规模组件例如可以是天线、电子显示器或显示电极、传感器、比如电池或太阳能电池之类的电源、或者其他逻辑器件或存储器件(例如但不限于微处理器、存储器和其他逻辑器件)。
在将带片附接到大规模组件281时,第一导体140被电耦合到大规模组件上提供的其他导体,并且在一个实施例中,被电耦合到第二导体280。在一个实施例中,第一导体140通过导电介质270被电耦合到第二导体280。在一个实施例中,导电介质270包括两个导体270,或者包括至少两个导体270。
在一个实施例中,导体270中的每个具有与第一导体140之一的直接连接,并且可能具有与绝缘层150、平坦化层130和基片110中的一个或多个的接触。附接到导电介质270中每一个上的是第二导体280之一,它例如可以是天线的导电焊盘或天线的导电末端。或者,第二导体可以是比如电子器件、显示电极、传感器、电源和逻辑器件/存储器件之类的其他器件的导体。在一个实施例中,存在两个或至少两个第二导体280。从而,如图所示,第二导体280中的每一个可以被说成是(电地)耦合到NanoBlock IC 120。导电介质270充当第一导体140和第二导体280的中间导体。在一个实施例中,基片290是第二导体280被嵌入其中或第二导体280所附接到的材料,并且其性质最好是绝缘的。这样,在一个实施例中,基片290和第二导体280构成了大规模组件281。
空间260是两个导体270之间的空间,它可能由基片290和/或绝缘体150占据,在结构上可以被留为空白,或者例如如果是各向异性的则可以由导电介质270填充。重要的是要注意在大多数应用中,两个导电介质270中的每一个可能不被直接连接到另一个导电介质270,并且对于两个第二导体280情况也是类似的。
在导电介质270为各向同性的实施例中,可以利用适当的化学品或利用传统的图案化技术(例如蚀刻),来使不需要导电的区域失活。例如,可将一层各向同性材料覆盖沉积在第一导体140上,以形成导电介质270的导电层。可以使沉积在不需要导电的区域(例如空间260)上的各向同性材料失活,留下被称为导电介质270的导电区域。
在一个实施例中,导电介质270是导电带(tape)(例如可从3M公司获得的那些,例如包括3M Z-Axis 7303)。此外,导电带可以是各向同性或各向异性导电的。可以如下来施加(附着)这种导电带通过沿一行带片滚动该带,施加足够的压力以及可能施加热量来将该带附着到带片,然后切割该带和带片以分离开个体带片。这可以按各种方式来完成。
或者,导电介质270可以由导电膏(例如可从Acheson获得的那些,包括479SS)制成,其例如是通过丝网印刷工艺被沉积。在一个实施例中,导电膏被以相对于整体制造容限而言的中等分辨率,被丝网印刷在带片上(例如在带片的基片110部分上,或者在第一导体140的至少某些部分上),从而允许导电介质270与第一导体140的有用连接。此外,导电介质270也可以使用悬浮在例如是热塑性材料或热固性材料的聚合物载体中的金属颗粒、导电聚合物、碳基导体、焊料或本领域的技术人员将会意识到的其他导电介质制成。
在替换实施例中,导电介质270是其中悬浮有导电颗粒的聚合膜。导电颗粒可以是金属或导电纤维(例如碳)。或者,导电颗粒可以具有各种形状的不导电核心,例如涂覆有导电材料的球形或连续长纤维。或者,聚合膜可以是碳纳米管。此外,聚合膜可以是热固性材料或热塑性材料。
在某些实施例中,导电介质270是由悬浮在载体中的颗粒、导电聚合物、膏、银墨、碳基导体、焊料和其他合适的导电材料制成的。
在另一个实施例中,导电介质270是具有导电填充物(例如银屑或颗粒、金属、涂覆有导电材料的纤维或涂覆有导电材料的玻璃珠)的压敏粘合剂(PSA)。作为具有导电填充物的PSA的导电介质270在两个刚性层(例如第一导体140和另一个导体(例如第二导体280))之间提供了柔软的保形层,以促进更好地接触。使用具有导电纤维的PSA膜的一个优点是只需要较小的压力(例如小于25psig)就能造成第一导体140和导电介质270之间的或导电介质270和第二导体280之间的连接。
在另一个实施例中,不是使用导电介质270作为连接第一导体140和第二导体280的中间导体,而是用不导电粘合剂271来取代导电介质270,如图15所示。在该实施例中,用热量和压力来使不导电粘合剂271的一部分断裂,如图15所示,以使得第二导体280和第一导体140彼此直接接触。从而,不导电粘合剂271的某些部分被局部加压和加热,从而使得它们变薄或断裂,以允许第二导体280与第一导体140接触。在一个实施例中,不导电粘合剂271用来将基片290(大规模组件281的基片)和基片110保持在一起,同时在专用于第二导体280和第一导体140之间的接触的部分处断裂。在另一个实施例中,不导电粘合剂271用来将第一导体140和第二导体280的某些部分保持在一起,如图15所示,并且被容性耦合。在一个实施例中,可以用卷曲或按压来选择性地在基片290上下压,以使得在不导电粘合剂271中的被卷曲或按压的部分处断裂。第二导体280被按压到断裂部分中,并且被按压成与第一导体140接触,如图15所示。在一个实施例中,不导电粘合剂271是在被选择性地卷曲或按压时能够断裂的粘合剂薄层。
在一个实施例中,第一导体140按前述方式形成在基片110上。不导电粘合剂271被布置在第二导体280和第一导体140之间,作为居间层。不导电粘合剂271例如可以是热熔或压敏粘合剂膜。然后在有或没有热量或压力的情况下,组合件被机械地卷曲在一起,卷曲的方式使得第二导体280弯曲并且刺破或穿透不导电粘合剂271,从而在第一导体140和第二导体280之间产生紧密连接。
在另一个实施例中,不导电粘合剂271被用于形成第二导体280和第一导体140的边缘密封,如图16所示。边缘密封将保持第二导体280和第一导体140紧密接触,这样,就不需要中间导体(例如导电介质270)了。在该实施例中,粘合剂薄层首先被沉积在第二导体280和第一导体140之间。然后,将会把基片290按压接近基片110的机械技术被用于在组件上向下压。随着基片290和基片110被按压在一起,不导电粘合剂271被按压到第一导体140和第二导体280的侧面或边缘。在第一导体140和第二导体280接触的一个实施例中,不导电粘合剂271被选择性地按压或压缩,以使得它移动或流动到第一导体140和第二导体280的边缘,以允许第一导体140和第二导体280电连接,如图10所示。
不导电粘合剂271可以是热熔粘合剂、压敏粘合剂、电磁辐射可同化粘合剂(例如,UV、IR、可见光、RF或微波可固化粘合剂)、热可固化粘合剂、热固性材料、热塑性材料或能够在压力和/或热量下流出以在凝固时形成边缘密封的材料。不导电粘合剂271可以在未固化或经软化的状态下被直接沉积在第二导体280上和/或第一导体140上,并且被允许在基片110和基片290被按压在一起之后固化或凝固。随着不导电粘合剂271凝固,它在第一导体140和第二导体280周围形成边缘密封,以保持这两个导体彼此直接接触以形成电连接。
在前述实施例的任何一个中,可以结合如图17A~图17C所示的小且尖的颗粒291,以直接或通过使用中间层(例如导电介质270或不导电粘合剂271)来增强第一导体140和第二导体280之间的物理互连和/或电互连。当第一导体140和第二导体280包含可能阻碍连接的少量污染物或氧化物残余时,颗粒291尤其有益。小且尖的颗粒(例如细微的钻石、玻璃或任何其他具有不规则形状的硬且小的颗粒)可以与导电墨或膏或不导电粘合剂混合。导电墨/膏或不导电粘合剂随后可以被丝网印刷或模版印刷或按前述方式分布。在一个实施例中,在将第一导体140接合到第二导体280的过程期间,颗粒将会穿透表面并且磨损污染物,从而改善对第一导体140和第二导体280形成的接触或连接。在另一个实施例中,小且尖的颗粒291可以充当机械互锁,以增强连接,如图17A~图17C所示。
在一个实施例中,如图17A所示,小且尖的颗粒(例如钻石)291被分布在用于形成第一导体140或第二导体280的导电膏或墨中。在该实施例中,第一导体140和第二导体280将在不使用中间层的情况下被彼此直接连接。在一个实施例中,小且尖的颗粒(例如钻石)291被分布在用于形成第一导体140或第二导体280的具有导电填充物的热固性墨中。在另一个实施例中,小且尖的颗粒(例如钻石)291被分布在用于形成第一导体140或第二导体280的具有导电填充物的热塑性墨中。用于热塑性墨的颗粒291的大小可能略大,以补偿墨的软化。随后允许利用前述方法或其他方便的方法凝固具有颗粒291的热固性墨或具有颗粒291的热塑性墨,以形成第一导体140或第二导体280。在第一导体140或第二导体280被凝固之后,小且尖的颗粒291位于第一导体140或第二导体280的表面。这些颗粒291随后充当机械互锁,以帮助保持第一导体140和第二导体280之间的接触。在替换实施例中,颗粒291被涂覆以导电材料,以进一步增强或确保第一导体140和第二导体280之间的电互连。
在另一个实施例中,尖且小的颗粒291被结合到不导电粘合剂271中,并且基片110和基片290被按压在一起,从而使得不导电粘合剂271被推到第一导体140和第二导体280的外边缘,如图17B所示。在该实施例中,第一导体140和第二导体280在不使用中间层的情况下被直接彼此连接。不导电粘合剂271可以是粘合剂薄层,并且可以首先被沉积在第二导体280和第一导体140之间。将把基片290按压接近基片110的机械技术随后被用于在组合上向下压。由于基片290和基片110被按压在一起,不导电粘合剂271被按压到了第一导体140和第二导体280的侧面或边缘。在第一导体140和第二导体280接触的一个实施例中,不导电粘合剂271被选择性地按压或压缩,以使得它移动或流动到第一导体140和第二导体280的边缘,以允许第一导体140和第二导体280电连接。
不导电粘合剂271可以是热熔性粘合剂、压敏粘合剂、电磁辐射可固化粘合剂(例如,UV、IR、可见光、RF或微波可固化粘合剂)、热固性材料或热塑性材料。不导电粘合剂271可以在未固化或经软化的状态下被直接沉积在第二导体280上和/或第一导体140上,并且被允许在基片110和基片290被按压在一起之后凝固。随着不导电粘合剂271凝固,它在第一导体140和第二导体280周围形成边缘密封,以保持这两个导体彼此直接接触以形成电连接。此外,颗粒291充当进一步维持第一导体140和第二导体280之间的附接的机械互锁。
在一个实施例中,颗粒291被结合到导电介质270中。颗粒291将会位于导电介质270的表面,如图17C所示。颗粒291为导电介质270提供了额外的机械互锁特征。如前所述,导电介质270可以是其中悬浮有导电颗粒的聚合膜,例如具有导电填充物的热固性墨或具有导电填充物的热塑性墨。不导电粘合剂271充当第一导体140和第二导体280的中间导体。此外,分布在导电介质270中的颗粒(例如钻石)291为导电介质270提供了对第一导体140和/或第二导体280的额外的机械互锁。颗粒291还可被涂覆导电材料以增加导电性。
在另一个实施例中,不是用导电介质270、不导电粘合剂271或小且尖的颗粒291来产生和/或增强第一导体140和第二导体280之间的电和机械连接,第一导体140和第二导体280被直接彼此连接。在一个实施例中,使用焊接(soldering)来将第一导体140直接附接到导体280。传统的焊接技术或激光焊接可以用来将第一导体140焊接到第二导体280。传统的焊料接合一般使用低熔点合金来接合两个金属表面(例如第一导体140和第二导体280)。焊料被加热到其熔点,并且在仍处于熔化状态的同时被置于要接合的两个金属表面之间。特别准备两个金属表面以促进与焊料的粘合通常是很重要的。从而,第一导体140和第二导体280都需要被准备以促进与焊料的粘合。在激光焊接技术中,少许焊料(例如以膏的形式)可以被置于第一导体140和第二导体280之间,并且激光被用于加热焊料,以将第一导体140和第二导体280接合在一起。激光焊接使得能够将焊料用作带片附接方法,即使过程中涉及塑料基片(例如基片110和/或290)。激光加热焊料的速度和位置精度可以高到使得塑料基片可能能够经受得住该操作。
在替换实施例中,用激光熔焊(welding)将第一导体140直接附接到第二导体280。一般,在激光熔焊中,高能量IR激光被用于提供精确定位的热源,以将两个相容的金属熔合在一起。可以预期,激光的高速度和高精度可被用于附接过程中,以将第一导体140和第二导体280熔化/熔合在一起以形成强导电接合。完成它的一种方式是将基片110适当地定位在基片290上,并且用激光来将附接区域(例如第一导体140和第二导体280需要接触或连接的区域)加热到高到足以将两个第一导体140和第二导体280的表面熔合在一起的温度。可以设想,所需的热量实际上可能在支撑塑料材料中灼烧出孔。只要为第一导体140和第二导体280形成了机械/电接合,这是可接受的。
当使用焊接或熔焊方法时,第一导体140和第二导体280一般是由彼此相容的导电材料制成的。在某些实施例中,在第一导体140和第二导体280被焊接或熔焊在一起时,在基片290或110中可能产生孔。这是可接受的,因为这些孔没有大到影响组合件的功能。
在另一个实施例中,用卷曲来使第一导体140电耦合到第二导体280。在该实施例中,卷曲工具(例如钳子、冲模(die)和板)可用于将第一导体140压到第二导体280。
在其他实施例中,第一导体140可以直接耦合到第二导体280,而不如前所述那样添加任何导电介质/粘合剂或不导电粘合剂。这些实施例可以使用机械接合技术来为第一导体140和第二导体280产生连接。金属铆钉(rivet)、杆(rod)、扒钉(staple)或线(wire)可用于穿通第一导体140和第二导体280,以建立机械附接,从而允许第一导体140和第二导体280之间的电互连。铆钉枪、加压空气枪、槌、自动致动器、钉机、空气枪、机械冲击设备或其他方便的工具被用于完成机械附接。
在一个实施例中,第一导体140被置于与第二导体280临时接触的状态,然后被卷曲在一起以产生耐久的电连接。卷曲可以按多种方式来完成。例如,第一导体140和第二导体280可以被压在一对钳子的齿之间、卷曲冲模和平板之间,或者卷曲冲模和互补板之间。卷曲冲模上可能具有多种组件特征,它们被设计为在一个组件特征上冲击第一导体140的一部分,在另一个组件特征上冲击第二导体280。例如来自槌、空气活塞或机械致动器的下方冲击也可以用于帮助卷曲。
在另一个实施例中,在相对的一侧具有相应的板的针状冲模被用于将第一导体140和280机械地接合在一起。将冲模推到板中使得顶部板中的导电变形至底部板上的导体。当此变形足够大时,顶部导体的一部分将会部分变形地留在底部导体内,从而建立了电接触。
第一导体140和第二导体280的电连接也可以用缝合到第一导体140和第二导体280中的线(未示出)来连接在一起。可以利用比如缝纫这样的纯手工系统,或者比如导电丝附接这样的更自动化的系统,来将该金属线拉过导体或缝到导体中。缝合连接可以是一针或多针,这依赖于所需的连接强度。
在一个实施例中,可以简单地利用传统的捆绑技术将基片110捆绑到可能是大规模组件的基片的基片290,以将两个基片紧紧保持在一起,从而使得第一导体140和第二导体280彼此接触,以允许电连接。在一个实施例中,支撑第一导体140的基片110被安放在支撑第二导体280的基片240上。然后,粘合带被施加在基片110上和基片290上,从而使得基片110与基片290靠在一起,其中第一导体140和第二导体280彼此紧密接触。粘合带例如可以是压敏粘合剂膜、具有B段(B-staged)热固粘合剂的干膜、UV固化粘合剂,它们是几种可能。粘合带可以施加到基片290上的基片110,或者,基片110开始可以被置于粘合带上,然后粘合带可以被施加到基片290,从而使得基片110上的第一导体140与基片290上的第二导体280适当地对准。
在另一个实施例中,第一导体140和第二导体280可以通过各种机械方法电连接。在一个实施例中,热超声接合被用于将第一导体140和导体280接合在一起。当第一导体140和第二导体280由易于熔合在一起的材料制成时,热超声接合是有用的。在一个实施例中,基片110或基片290将需要被加热。这可以通过将要加热的基片放置在经加热的台上来完成。如果必要的话,可以通过加热拾取工具来加热基片(110或290)。也可以使用其他加热基片的方法,例如经加热的气体。基片110随后被置于基片290上,从而使得第一导体140接触第二导体280。然后向组合件施加压力,以确保良好的接触。接下来在预定长的一段时间中,超声能量(振动)被施加到组合件。在一个实施例中,为了适应接合工具和部件之间的任何平面角,可以在接合工具的接合头与基片110或基片290之间引入聚合物层。热超声接合比起其他某些方面来要求的时间较少。热超声接合可用于熔合金属(例如Au-Au),从而可提供较低的接触阻抗。超声能量的添加允许了界面温度低于若采用其他方式可能会需要的温度。
在一个实施例中,热压缩接合被用于将第一导体140和第二导体280接合在一起。当第一导体140和第二导体280由不易于熔合在一起的材料制成时,热压接合也是有用的。热压接合与压超声接合类似,除了热压不是使用超声能量,而不是使用压力来获得物理接触。
此外,当中间介质(例如导电介质270或不导电粘合剂271)如前所述被沉积在第一导体140和第二导体280之间时,热超声接合和热压接合可用于将第一导体140和第二导体280接合在一起。
图3A示出了图1的带片的实施例沿所示方向的线A-A的视图。示出了基片110、NanoBlock IC 120、平坦化层130、第一导体140和绝缘层150之间的各种交叠。此外,示出了平坦化层130中接触孔315,从而使得第一导体140和NanoBlock IC 120之间的连接清楚。
图3B示出了图2的装置的实施例沿所示方向的线B-B的视图。示出了第一导体140、绝缘层150和第二导体280之间的交叠。为了清晰,还示出了基片110,但未示出基片290。
图4示出了天线的实施例。每条臂455被连接到天线导体焊盘283,在一个实施例中它与第二导体280相同。注意,在替换实施例中,臂455可以简单地形成包括天线导体焊盘283的天线导体,从而使得它们成为臂和焊盘两者的单一整体结构。
图5示出了一个连接板部分的实施例,其上附着有包括NanoBlock IC的带片。每个带片505(其中一个示例性带片505被标记)被附着到一对导电带条(tape strip)515。带条515形成更大的卷轴(spool)的一部分,该卷轴还包括用于绕线目的的通孔525。在一个实施例中,带条515可以是各向异性导电膜(ACF),其中带片505的导体(例如第一导体140)附着到ACF。此外,带卷轴可以形成为在带片515的列之间存在缝隙,以允许通过缝隙割开带,以产生单列带片。
图6示出了形成既包括小特征尺寸组件又包括大特征尺寸组件的装置的方法的实施例。在块610处,例如通过传统VLSI方法制作集成电路。在块620处,将集成电路被嵌入到(一个或多个)基片中。在块630处,发生用于形成平坦化和绝缘层的处理,并且形成绝缘体(本领域的技术人员将会意识到也可以形成薄膜或厚膜绝缘层)。在块640处,例如通过膏上丝网印刷或通过其他添加工艺将导电介质施加到基片。在块650处,将大规模组件附接到导电介质。注意,在一个实施例中,图5的带卷轴可被用于通过单独附接每个带片然后在附接之后切割带,来将大量带片附接到大规模组件。在替换实施例中,导电介质640被直接施加到包含IC 620的基片,而省略绝缘层。
图7示出了形成既包括小特征尺寸组件又包括大特征尺寸组件的装置的方法的替换实施例,特别参考了使用比如NanoBlock IC之类的功能块的RF-ID标签的制作。在块710处,例如通过传统VLSI方法制作NanoBlockIC。应当意识到,可以通过其他适合的方法将NanoBlock IC沉积、附接或以其他方式包含在基片中。在块720处,通过FSA将NanoBlock IC嵌入在基片中。在块730处,发生用于形成平坦化层和/或绝缘层的任何必要的后FSA处理。具体而言,形成至少一个薄膜电介质。本领域的技术人员将会意识到,在替换实施例中,薄膜电介质可能不是必要的。在块740处,将例如采取被丝网印刷在基片上的膏的形式的第一导电介质施加到基片,从而产生带片。在块750处,将导电带附着到带片上的导电介质。在块760处,将天线附接到带片,从而使得天线被电耦合到相应带片的NanoBlock IC。
图8示出了带片的替换实施例的侧视图。将会意识到,图8的实施例与图1的实施例类似。但是,图8示出了基片810,其中(在开口中)嵌入或包含有集成电路820,其具有焊盘825。焊盘825中的每一个上通过添加工艺沉积有第一导体840,例如银墨。通常,但不是总是,第一导体840被沉积成使之与一个且只与一个焊盘825直接接触,从而允许对于电路每个电接触有单独的导体。
此外,将会意识到,焊盘825的大小可能大于如图1的NanoBlock IC120这样的集成电路上的类似焊接的大小,这是因为焊盘825必须与特征尺寸远大于VLSI设备通常的特征尺寸的材料(第一导体840)直接接口。注意,在一个实施例中,可以预期第一导体840具有约10~15μm的沉积厚度,以及1μm量级或更小的最终厚度,并且焊盘825的最小尺寸为20×20μm量级或更大。
图9示出了带片的另一个替换实施例的侧视图。图9示出了与图8类似的实施例,它还包括了绝缘体。提供了包括嵌入或包含在其中的集成电路920的基片910。焊盘925是集成电路920的一部分,并且可以预期它具有与焊盘825类似的尺寸。通过使用厚膜工艺,绝缘层(电介质)930被沉积在集成电路920上。可以预期绝缘层930具有10微米量级的厚度。同样利用添加工艺沉积的是第一导体940,它覆盖绝缘层930和焊盘925的某些部分,从而允许集成电路920和大规模组件之间的电接触(例如通过大规模组件中包括的第二导体)。可以预期第一导体940具有与第一导体840类似的特性。
图10示出了带片的另一个替换实施例的侧视图。在该实施例中,提供了包括其中结合或包含有集成电路1020的基片1010。在基片1010的顶部,形成绝缘体1030。绝缘体1030被形成通孔图案,通过这些通孔,第一导体1040可以实现与集成电路1020的导电焊盘1025的接触。将会意识到,通孔要求比图8和图9的导体组件的任何绝缘体更高的图案化精度。此外,将会意识到,基片1010的几乎整个表面都可能被绝缘体1030覆盖,而不是像图9那样只是有限区域被覆盖。此外,将会意识到,集成电路1020上的焊盘1025可能比集成电路920和820的类似焊盘要小。
图11示出了形成既包括小特征尺寸组件又包括大特征尺寸组件的装置的方法的另一个替换实施例。在块1110处,将集成电路嵌入在支撑基片内。在块1120处,将绝缘体施加到基片。在块1130处,例如通过光刻薄膜工艺图案化绝缘体,从而去除绝缘体的某些部分,以暴露基片或集成电路的某些部分,例如接合物或导电焊盘。作为施加、图案化或者甚至后蚀刻阶段的一部分,可能涉及进一步的清洁,例如洗掉光刻胶。或者,将会意识到,可以使用光敏绝缘体或电介质,从而例如消除对光刻胶的需要。
在块1140处,将导电材料施加到基片,涂覆绝缘体的全部或部分,以形成第一导体。在块1150处,根据需要处理(例如通过热固化)导电材料,以形成适当的导体(例如第一导体)。注意,本领域中已知,对于各种制造工艺,对于某些配方,在90~100℃下可以以合理的固化时间实现银墨的固化。将会意识到,固化时间会发生变化,并且本领域的技术人员可以使固化工艺适应于周边制造工艺和要生产的设备的需要。在块1160处,将大规模组件附接到第一导体,从而实现与集成电路的电耦合。在一个实施例中,大规模组件包括第二导体,其中第一导体和第二导体(或者直接,或者通过导电介质,如前所述)将IC电互连到大规模组件。还注意到,块1160的对第一导体的最终处理可以在块1170处大规模组件被附接之后执行。
前面的描述大部分集中在结合将其中嵌入、包含或结合有集成电路的带片附接到单独的大规模组件来使用本发明。将会意识到,存在其中并不涉及单独的大规模组件的其他实施例。具体而言,大特征尺寸组件可以作为带片的一部分被结合,例如充当天线的嵌入式导体,或者可以形成在带片上,如图12A和图12B所示。印刷或以其他方式使用添加处理技术来在带片上形成导电介质的天线1240是一种选择。
或者,其他大特征尺寸组件,例如电源、传感器或逻辑器件,可以被形成在带片上或附接到带片。将NanoBlock IC或其他小型或微型功能块与带片上的这种大特征尺寸组件互连可通过使用导体1440来完成,从而允许大特征尺寸组件1460和小特征尺寸(例如NanoBlock IC)组件1420之间的电耦合,如图14所示。此外,导电介质1340可被用于互连嵌入在单个基片中的两个或更多个小特征尺寸组件,例如两个NanoBlock IC,如图13所示。
图12A示出了基片的另一个实施例的顶视图。基片1210可以是例如如前所述的基片,包括柔性或刚性材料。IC 1220被嵌入在基片1210中的开口中。绝缘体1230是形成在基片1210和IC 1220两者顶部之上的一层绝缘材料(或电介质层),并且可以具有平坦化属性。接触孔1215是绝缘体1230中位于IC 1220的接触焊盘之上的孔,从而允许IC 1220和第一导体1240之间的物理接触和电连接。绝缘层1250是第一导体1240、绝缘体1220和基片1210的某些部分之上以及整个IC 1220之上的另一个绝缘体或电介质。注意,各种层的实际配置可能会相当不同。例如,第一导体1240被形成到例如对于射频应用可能有用的天线的两条臂中。但是,电池、传感器、电源、钮扣电池以及显示器和显示电极也可以通过用导体和/或导电介质和其他材料来形成。
图12B示出了基片的另一个实施例的侧视图。如图所示,第一导体1240占据图12A的接触孔1215,以与IC 1220直接接触。此外,将会意识到,在其沿绝缘体1230的表面绘出其路径时,针对第一导体1240示出的片段对应于天线的各个片段。沿着这些线,将会意识到在某些情况下绝缘体1230的存在并不是必要的。
图13示出了基片的另一个实施例的侧视图。基片1310包括第一IC1320和第二IC 1325。绝缘体1330形成在IC 1320、IC 1325和基片1310上。第一导体1340形成在上述绝缘体1330上,并且与IC 1320和IC 1325两者接触。第一导体1340的一部分形成IC 1320和IC 1325之间的电连接,从而将IC 1320电耦合到IC 1325。在IC 1320和IC 1325两者之上形成了绝缘体层1350。
图14示出了基片的另一个实施例的侧视图。基片1410在其中的开口中嵌入或包含有IC 1420。形成在基片1410和IC 1420之上的是绝缘体1430。形成在绝缘体1430之上并连接到IC 1420的是导体1440,其一部分连接到传感器1460,从而将IC 1420电耦合到传感器1460。形成在导体1440和绝缘体1430的一部分之上的是绝缘体1450,其与绝缘体1430可能是相同材料也可能不是相同材料。
在前面的详细描述中,已经参考本发明的特定示例性实施例描述了本发明的方法和装置。但是,很明显,在不脱离本发明的实施例的范围的情况下,可对其作出各种修改和改变。具体而言,各个框图的相分离的块代表方法或装置的功能块,但不一定是指示物理或逻辑上的分离或者本发明的实施例的范围中固有的操作顺序。例如,图1的各个块可以集成到组件中,或者可以被细分为组件,或者可以形成为与图示的那些不同的物理形状。类似地,图6(例如)的块代表一种方法的某些部分,在某些实施例中,这些部分可以被重新排序或被并行而不是按直线或逐步方式组织。本说明书和附图因此应当被视为说明性的而不是限制性的。
权利要求
1.一种装置,包括包括基片的带片,所述基片中包含有集成电路,所述集成电路耦合到布置在所述基片上的第一导体,所述第一导体由热固性材料或热塑性材料制成;以及具有第二导体的大规模组件,所述第二导体被电耦合到所述第一导体,以将所述大规模组件电耦合到所述集成电路,所述大规模组件包括第二基片。
2.如权利要求1所述的装置,其中,所述第二导体被直接电耦合到所述第一导体,并且其中,所述集成电路具有面向所述第二导体的有源表面。
3.如权利要求1所述的装置,其中,所述第一导体通过加热、电磁辐射、湿气、UV曝光和暴露给活性组分中的任何一种而凝固。
4.如权利要求1所述的装置,其中,所述第一导体由具有导电填充物的热塑性材料制成,所述具有导电填充物的热塑性材料直接耦合到所述大规模组件的第二导体到所述集成电路。
5.如权利要求1所述的装置,其中,所述第一导体是由固有导电的热塑性材料制成的。
6.如权利要求1所述的装置,其中,所述第一导体是由固有导电的热固性材料制成的。
7.如权利要求1所述的装置,还包括形成在所述第一导体上的导电介质,以将所述第一导体互连到所述大规模组件的第二导体。
8.如权利要求7所述的装置,其中,所述导电介质是各向同性材料和各向异性材料中的一种。
9.如权利要求8所述的装置,其中,所述各向同性材料在不需要导电的区域被使得失活。
10.如权利要求7所述的装置,其中,所述导电介质是以下之一具有导电颗粒的聚合物载体、固有导电的热塑性材料、具有导电颗粒或涂覆有导电材料的不导电颗粒的热塑性材料、固有导电的热固性材料、具有导电颗粒或涂覆有导电材料的不导电颗粒的热固性材料、导电聚合物、碳基导体、具有导电纤维的载体、具有导电碳纳米管的载体、具有导电填充物的压敏粘合剂、以及焊料。
11.如权利要求1所述的装置,其中,所述集成电路是适合用于以下应用中的一种或多种的电路射频识别标签、传感器、显示器或相位阵列天线。
12.如权利要求1所述的装置,其中,所述大规模组件包括形成在所述第二基片上的天线、电子显示器、显示电极、传感器、电源、存储器件和逻辑器件中的任何一种。
13.如权利要求12所述的装置,其中,所述天线是所述第二导体的一部分。
14.如权利要求1所述的装置,还包括布置在所述第一导体和所述第二导体之间的不导电粘合剂,所述不导电粘合剂包括断裂部分以允许所述第一导体和所述第二导体之间的接触,或者包括所述第一导体和所述第二导体之间的充分薄的部分,以使得能够通过所述不导电材料将所述两个导体容性耦合。
15.如权利要求14所述的装置,其中,卷曲或按压被用于引起所述不导电粘合剂中的断裂。
16.如权利要求1所述的装置,还包括不导电粘合剂层,所述不导电粘合剂层在所述第一导体和所述第二导体的边缘周围形成边缘密封,以使所述第一导体和所述第二导体保持紧密接触。
17.如权利要求1所述的装置,还包括分布在所述第一导体或所述第二导体之一中的多个小颗粒,所述颗粒当所述第一导体和所述第二导体被放置为彼此紧密接触时,产生所述第一导体和所述第二导体之间的机械互锁。
18.如权利要求17所述的装置,其中,所述第一导体和所述第二导体中的至少一个是由热固性或热塑性材料制成的。
19.如权利要求17所述的装置,其中,所述颗粒被涂覆以导电材料。
20.如权利要求17所述的装置,还包括不导电粘合剂层,所述不导电粘合剂层在所述第一导体和所述第二导体的边缘周围形成边缘密封。
21.如权利要求1所述的装置,还包括分布在所述第一导体和所述第二导体之一中的多个小且尖的颗粒,以增强与所述第一导体或所述第二导体的接触。
22.如权利要求1所述的装置,还包括形成在所述第一导体上以将所述第一导体互连到所述第二导体的导电介质,所述导电介质包括分布在其中的多个小颗粒,以增强所述第一导体到所述第二导体的互连。
23.如权利要求1所述的装置,还包括铆钉、杆、扒钉和线中的一个或多个,以将所述第一导体互连到所述第二导体,其中所述铆钉、杆、扒钉和线中的一个或多个插过所述第一导体和所述第二导体,所述铆钉、杆、扒钉或线将所述第一导体连接到所述第二导体。
24.如权利要求1所述的装置,其中,所述第一导体和所述第二导体通过机械接合连接,所述机械接合包括但不限于捆绑、卷曲或钉合。
25.一种方法,包括将包含功能块的第一基片的第一导体附接到大规模组件的第二导体,所述功能块被嵌入在第一基片中并且被电连接到所述第一导体,并且所述大规模组件被形成在第二基片上;所述第一导体利用热超声接合和热压接合中的一种被附接到所述第二导体;所述第一导体和所述第二导体中的每一个是独立地由金属、热塑性材料和热固性材料中的任何一种制成的。
26.如权利要求25所述的方法,其中,所述热塑性材料和所述热固性材料中的任何一种或两者是固有导电的。
27.如权利要求25所述的方法,还包括将多个小且尖的颗粒分布到用于制造所述第一导体和所述第二导体之一的材料中,以产生机械互锁,以增强所述第一导体和所述第二导体之间的附接。
28.如权利要求25所述的方法,还包括利用流体式自组装将所述功能块分布到所述第一基片中。
29.一种方法,包括将第一导体附接到嵌入在第一基片中的集成电路,所述第一导体被电连接到所述集成电路;以及将大规模组件附接到所述第一导体,所述大规模组件被电连接到所述第一导体,并且所述大规模组件形成在第二基片上。
30.如权利要求29所述的方法,还包括将所述集成电路嵌入在所述第一基片中。
31.如权利要求29所述的方法,还包括利用流体式自组装将所述集成电路嵌入在所述第一基片中。
32.如权利要求29所述的方法,其中,将所述第一导体附接到所述集成电路是通过以下任何一种实现的丝网印刷、平台或轮转丝网印刷、模版印刷、喷墨印刷、凹版印刷、苯胺印刷、戳印、静电印刷、通过针和吸管分布、层压、热压、激光辅助化学气相沉积、物理气相沉积、掩模、蒸发、挤压涂覆、帘式淋涂和电镀。
33.如权利要求29所述的方法,还包括将导电介质附接到所述第一导体,将所述导电介质附接到所述大规模组件中包括的第二导体,以将所述集成电路互连到所述大规模组件。
34.如权利要求33所述的方法,还包括利用热超声接合和热压接合之一来促进所述导电介质到所述第一导体和所述第二导体中任何一个的附接。
35.一种方法,包括将集成电路嵌入到第一基片中,并将第一导体布置在所述第一基片上,所述集成电路被电连接到所述第一导体,所述第一导体由热固性材料或热塑性材料制成;以及将具有第二导体的大规模组件电耦合到所述集成电路,所述第二导体被耦合到所述第一导体,以将所述大规模组件电耦合到所述集成电路,所述大规模组件包括第二基片。
36.如权利要求35所述的方法,其中,所述热塑性材料和所述热固性材料中的任何一种或两者是固有导电的。
37.如权利要求35所述的方法,还包括将所述第二导体直接耦合到所述第一导体,其中所述集成电路的有源表面面向所述第二导体。
38.如权利要求35所述的方法,其中,所述集成电路的有源表面面向所述第二导体。
39.如权利要求35所述的方法,其中,所述热塑性材料具有导电填充物。
40.如权利要求35所述的方法,其中,所述热固性材料具有导电填充物。
41.如权利要求35所述的方法,还包括将导电介质布置在所述第一导体,以将所述第一导体互连到所述大规模组件的第二导体。
42.如权利要求41所述的方法,其中,所述导电介质是各向同性材料和各向异性中的任何一种。
43.如权利要求42所述的方法,还包括在不需要导电的区域中使所述各向同性材料失活。
44.如权利要求41所述的方法,其中,所述导电介质是以下任何一种具有导电颗粒的聚合物载体、固有导电的热塑性材料、具有导电颗粒的热塑性材料、固有导电的热固性材料、具有导电颗粒的热固性材料、导电聚合物、碳基导体、具有导电纤维的载体、具有导电碳纳米管的载体、具有导电填充物的压敏粘合剂、以及焊料。
45.如权利要求35所述的方法,其中,所述集成电路是适合用于射频、显示器、传感器、或相位阵列天线应用的电路。
46.如权利要求35所述的方法,其中,所述大规模组件包括形成在所述第二基片上的天线、电子显示器、显示电极、传感器、电源、存储器件和逻辑器件。
47.如权利要求46所述的方法,其中,所述天线是所述第二导体的一部分。
48.如权利要求35所述的方法,还包括将不导电粘合剂布置在所述第一导体和所述第二导体之间,并且选择性地使所述不导电粘合剂的预定部分断裂以允许所述第一导体和所述第二导体之间的接触,或者使所述第一导体和所述第二导体充分接近以使得能够通过所述不导电材料将所述两个导体容性耦合。
49.如权利要求48所述的方法,其中,卷曲或按压被用于使所述不导电粘合剂的预定部分断裂。
50.如权利要求49所述的方法,还包括在所述第一导体和所述第二导体的边缘周围形成边缘密封,以使所述第一导体和所述第二导体保持紧密接触。
51.如权利要求35所述的方法,还包括将多个小且尖的颗粒分布在所述第一导体或所述第二导体之一中,所述颗粒当所述第一导体和所述第二导体被放置为彼此紧密接触状态时,产生所述第一导体和所述第二导体之间的机械互锁。
52.如权利要求51所述的方法,其中,所述第一导体和所述第二导体中的至少一个是由热固性或热塑性材料制成的。
53.如权利要求51所述的方法,其中,所述颗粒被涂覆以导电材料。
54.如权利要求51所述的方法,还包括在所述第一导体和所述第二导体的边缘周围形成边缘密封。
55.如权利要求35所述的方法,还包括将多个小且尖的颗粒分布在所述第一导体和所述第二导体之一中,以增强与所述第一导体或所述第二导体的接触。
56.如权利要求35所述的方法,还包括在所述第一导体上形成导电介质以将所述第一导体互连到所述第二导体,并且将多个小且尖的颗粒分布在所述导电介质中。
57.如权利要求35所述的方法,还包括穿过所述第一导体和所述第二导体布置铆钉、杆、扒钉和线中的一个或多个,以将所述第一导体附接到所述第二导体。
全文摘要
一种结合了小特征尺寸组件和大特征尺寸组件的装置。该装置包括带片,该带片包括基片,基片中包含有集成电路。集成电路耦合到布置在基片上的第一导体,第一导体由包括导电填充物的热固性材料或热塑性材料制成。具有第二导体的大规模组件被电耦合到第一导体,以将大规模组件电耦合到集成电路。大规模组件包括第二基片。
文档编号G06K19/077GK1914730SQ200580003454
公开日2007年2月14日 申请日期2005年1月28日 优先权日2004年1月30日
发明者苏珊·斯文德勒哈尔斯特, 马克·A·哈德雷, 保罗·S·德扎伊克, 戈登·S·W·克雷格, 格伦·甘格尔, 斯科特·赫尔曼恩, 阿里·彻, 伦道夫·W·埃森哈尔特 申请人:阿利安科技有限公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1