二维位置传感器的制作方法

文档序号:6609551阅读:224来源:国知局
专利名称:二维位置传感器的制作方法
技术领域
本发明涉及典型由人的手指或触笔驱动的二维电容式位置传感器。示例器件包括触摸屏和触摸垫,特别是蒙在用于反馈控制用途的设备中的液晶显示器(LCD)或阴极射线管(CRT)和其他类型的显示器、触笔输入书写板、或编码器之上的那些触摸屏和触摸板。
背景技术
对机器的触笔或触摸输入的记述可以追溯到至少1908年,如在专利DE 203,719[1]中所体现的。
触摸屏和指点器越来越流行和普遍,不仅用于个人计算机,而且还用于诸如个人数字助理(PDA)、销售点(POS)终端、电子信息和售票亭、厨房用具之类的各种其他设备。这些设备持续发展为价格更低的产品,结果就要求不断在保持高的质量和稳定性水平的同时降低生产成本。
触摸屏通常分成电容式和电阻式这两类。
对于电容式器件来说,术语“2维电容式传感器”或者“2DCT”用来不做限制地通指具有能通过电容传感机制报告与物体或人体部分的位置有关的至少二维坐标(笛卡尔坐标或其他坐标)的表面或体积,且对机械装置或反馈系统进行位置传感的触摸屏、触摸传感垫、接近传感区;蒙在LCD、等离子屏、或CRT屏之类上的显示屏覆盖触摸屏;或其他类型的控制表面,等等。
对于电阻式器件来说,术语“2维电阻式传感器”或“2DRT”用来通指基于纯直流电(galvanic)原理的触摸屏或触笔输入器件。
术语“2DxT”是指2DCT或2DRT类型的元件。
术语“触摸”意味着强度足以产生所需输出的电容性信号的人体部分或机械部件的接触或接近。在“接近”的意义上,在2DCT能对由于对象接近得足以引起适当反应而产生的电容进行响应的情况下,触摸还可以意味着“指向”2DCT而没有直接物理接触。
术语“元件(element)”是指2DCT或2DRT的有源传感元件。术语“电极”是指在元件外围的连接点。
术语“条带(stripe)”是指作为元件的组成部分并且具有两个端的电线导体。条带可以是导线。条带可以具有有意安排的相当大的电流电阻(galvanic resistance),而导线具有最小的电阻。如果它所属的元件物理上是弯曲的,条带也将是物理上弯曲的。
术语“枕形畸变(pin cushion)”是指来自2DCT的信号的任何畸变,无论是抛物线形、桶形还是其他形状的2维变形。
许多类型的2DCT已知都遭受被刻画为“枕形畸变”或“双曲线形”或“抛物线形”的几何畸变,从而所报告的接触坐标由于传感表面上的电效应而有误差。这些效应在各个其他专利中,例如在列作参考予以引用的Pepper的US 4,198,539[2]中,有更深入的说明。在列作参考予以引用的Babb等人的US 5,940,065[3]和US 6,506,983[4]中可以看到对几何畸变的已知原因、解决方案和解决方案的问题的杰出总结。US 5,940,065[3]简要地说明了主要的两类校正1)涉及传感表面或连接电极的设计或修改的机电方法;2)用数学算法校正畸变的建模方法。
机电方法平面元件的边缘处理Küpfmüller等人在US 2,338,949[5](1940年申请)中使用在X和Y上很长的矩形拖尾围绕很小的可用区来解决在2DRT电子图中的边缘失真问题。Küpfmüller采取进一步措施将这四个拖尾槽切为各条带;这些条带不侵入用户输入区,但确实起着以非均匀方式沿着与电流平行的各边提高对电流的电阻的作用。这个想法在几乎50年后Yaniv等人的US 4,827,084[6]中以稍有不同的形式重新出现。Küpfmüller仍然是与本发明最类似的现有技术。
Becker在US 2,925,467[7]中首先描述了2DRT电子图,从而通过使用电阻比元件固有的片电阻低许多的边缘材料来消除非线性边缘效应。这种方法也可以用来构成2DCT。
Pepper在专利US 4,198,539[2]、US 4,293,734[8]和US 4,371,746[9]中描述了通过控制元件的边缘电阻结构使2DCT线性化的方法。
Talmage在US 4,822,957[10]中描述了一种结合2DRT元件和感测片(pick-off sheet)的与Pepper的类似的边缘图案。业已发表了众多的其他这样的专利,使用了各种方法,而这方面至今仍然是能产生新专利的沃土。业已发现,这些方法很难发展和复现,而且它们容易遭受差分加热引起的误差以及生产问题的影响。非常少量的局部性误差或漂移可以导致坐标响应有相当大的改变。构图的边缘条带的低电阻导致驱动电路的问题,迫使驱动电路消耗更多的功率,比别的措施昂贵得多。有很多的专利参考了Pepper的专利,而且这些专利声称做的是类似的事。Pepper等人所给出的改善并不一定大大超过Becker,因为至少Becker的方案对于生产来说比较容易而且重复性好一些。
具有导线元件的边缘电阻Kable在US 4,678,869[11]中公开了一种用于触笔输入的2维阵列,在两个轴上使用电阻分压链,高导电性的电极连接到这些链上,用于检测的电极具有某些非故意的电阻(uninteded resistance),检测信号根据在两个相邻电极之间产生的信号而进行内插。非故意的电阻导致响应中有少量枕形畸变。这个专利还描述了一种补偿这种技术所引起的轻微枕形畸变的算法措施。除非使用所连接的触笔,否则Kable方法无法工作,即它没有描述可对人的手指进行响应。Kable的专利需要在导体之间跨接,因此需要至少三个结构层(导体层、绝缘层、导体层)。
多个有源边缘电极Turner在US 3,699,439[12]中公开了一种具有有源探头的均匀电阻式屏幕,该有源探头在所有四边具有多个电极连接,以对结果进行线性化。
Yoshikawa等人在US 4,680,430[13]中以及Wolfe在US5,438,168[14]中提出使用多个处于各边(与角部相反)的电极点,以便有助于通过减小来自一个轴上的电极的电流与其他轴上的电极的相互作用来减小枕形畸变。虽然该元件是一个简单的片电阻,但这个措施涉及在非常接近这个元件的每个连接点处的大量有源电子连接(诸如二极管或MOSFET的线性阵列之类)。
Nakamura在US 4,649,232[15]中所提出的与Yoshikawa和Wolfe的类似,但带有电阻式的传感触笔。
被顺序扫描的条带元件Greanias等人在US 4,686,332[16]和US 5,149,919[17]中、Boie等人在US 5,463,388[18]中、以及Landmeier在US 5,381,160[19]中提出沿X和Y轴被交替独立驱动和检测的各条带导体的元件传感的方法,据此解释出手指接触或者用传感器件、触笔接触的位置。这种结构涉及多层材料和特殊处理。Greanias提出使用条带之间的内插来获得两个轴上的更高的分辨率。这两者都需要三个或以上的层,以允许元件内导体的跨接。这两者都依赖于对每个条带的电容的测量,而不依赖于从一个条带到另一个条带的交叉耦合量。Boie还提出了一种特殊的保护面。
Binstead在US 5,844,506[20]和US 6,137,427[21]中提出一种以与Kable、Allen、Gerpheide和Greanias所提出的类似的方式使用离散细导线的触摸屏。Binstead使用非常细的行和列导线来达到透明。这个专利还提出使用在电极导线之间内插的Greanias方法来获得更高的分辨率。扫描依赖于对每个条带对地的电容的测量,而不依赖于从一个条带到另一个条带的交叉耦合量。
Evans在US 4,733,222[22]中还描述了一种沿X和Y轴顺序驱动各条的系统,这种系统还使用一个外部的电容器阵列,以通过电容器分压效应得出传感信号。使用内插求得比单独用条带能得到的更高的分辨率。
Volpe在US 3,921,166[23]中描述了一种离散键的机械键盘,这种键盘使用了电容式扫描方法。存在被顺序驱动的输入行和顺序传感的列。按压键使从行到列的耦合增大,这样就可以实现n键滚按(n-keyrollover);而不需要内插。虽然不是2DCT,但Volpe预示了被扫描的条带元件2DCT技术。本申请的申请人自己的US 6,452,514[24]也属于这种类型的传感器。
Itaya在US 5,181,030[25]中公开了一种具有电阻性条带的2DRT,这些条带在压力下与读出接触点位置的电阻面相耦合。这些条带,或者面,具有施加在其上的一维电压梯度,使得接触点在特定条带上的位置可以很容易识别。每个条带需要它专用的至少一个电极连接。
被循环扫描的条带元件Gerpheide等人在US 5,305,017[26]中提出了一种基于接触垫电容的计算机指点器,这种指点器使用多个由绝缘层隔开的交叠金属条带的正交阵列。扫描线排列成循环重复图案,以最小化驱动电路的要求。该发明的布线的循环特征防止了将这种2DCT用于绝对位置定位。该发明适用于用来代替鼠标的不需要确定实际位置而重要的是相对运动传感的触摸垫。Gerpheide提出一种在接触位置的两个相位相反的信号之间的信号均衡方法。
并行读取的条带元件Allen等人在US 5,914,465[27]中提出了一种具有由模拟电路并行读出的行和列的扫描条带的元件。该专利宣称比顺序扫描的元件更低的噪声和更快的响应时间。这种方法特别适合于代替鼠标的触摸垫,但对于较大的尺寸并不很合适。如同所有的条带元件2DCT的情况,需要多个结构层。Allen方法需要大规模集成电路和大量的连接引线。它用内插来获得比用这些数量的原始条带可达到的更高的分辨率。
在WO 04/040240[28]“电荷转移电容式位置传感器(ChargeTransfer Capacitive Position Sensor)”中Philipp结合图12说明了一种使用一些单独的电阻性的1维条带来制作触摸屏的方法。这些条可以并行也可以顺序读取,因为向这些条带的连接是相互独立的。此外,还结合图6说明了相邻的集总电极元件和诸如手指之类的物体之间的内插的耦合。WO 04/040240[28]在这里列为参考予以引用。
在WO 2005/020056[29]中Philipp描述了一种位置传感器,这种位置传感器具有第一和第二电阻性总线条(bus bar),由一个处在它们之间的非均匀导电区隔开(见该申请的图3)。非均匀导电区中由于接触或接近而感应出的电流优先流向要由检测电路检测的总线条。由于感应电流,例如由驱动电路感应的那些感应电流,优先沿着一个方向流动,因此位置估计中的枕形畸变很大程度上被限制在这单个方向上。这样的1维畸变可以通过应用标量校正因子非常简单地加以校正,从而避免需要复杂的向量校正。这提供了用于感测在塑料或玻璃面板或其他介质背后的电容的导电材料的2维图案,它可以用作2DxT,无论是呈现为触摸屏形式还是呈现为“触摸垫”形式。导体可以是清澈的,例如用铟锡氧化物(ITO)形成,以便为显示器或其他背面提供适当的透明覆盖片。
这个措施对于适用于蜂窝电话的对角线直到大约2英寸(50毫米)的比较小的屏幕可以工作良好,但是对于诸如某些白色家用电器(例如微波炉)所需的较大的屏幕的情况,性能就要降低。此外,使用这种设计,手指阴影效应可能会产生一些问题。
在US 6,288,707[30]中Philipp描述了一种要用作计算机指点器件的一部分的电容式位置传感器,这种位置传感器采用了比率制(ratiometric)电容性传感技术。在绝缘衬底层上布置了图案化金属电极的阵列,其中电极的几何形状被选择成随着用户手指跨越电极阵列移动而产生变化的电容输出。
附图中的图1复制了US 6,288,707[30]的图4。在绝缘层上布置了图案化金属电极阵列,其中电极的几何形状被选择成随着用户手指跨越电极阵列移动而产生变化的电容输出。这个排列包括每个维度两个的四个散布的电极组。x轴的组是三角形的,这容易看出和理解。第一组三角形1全部一起电连接到标为X1的输出总线上。第二组2也一起连接到标为X2的输出总线上。用户的手相对x轴的位置可以根据来自X1和X2的信号之比确定。由于电容与表面面积直接成正比,以及由于连接到X1上的片合起来在左侧具有比接到X2的片合起来的大的表面面积(反之亦然),因此只要一个足够大的手指面积以足以提供足够的信号强度的接近距离处在图案的上方就保证能取得X1/X2或X2/X1的比值的能力。相应组的片连接到Y1和Y2总线上。Y连接的组也是比率制的,虽然方式与X组的不同。Y组包括交替的Y1连接和Y2连接的矩形条带,分别标为3和4,具有随着部位改变的y轴尺寸,其方式使得产生随着位置Y平滑改变的Y1与Y2之间的表面面积之比。使每对相邻的y轴条带3和4的和成为恒定,使得对于任何两对条带,电容的和是相同的,即对于每对条带都有C(Y1)+C(Y2)=C(Y)。于是,随着用户的手指沿着y轴移动,以与C(X1)/C(X2)比值相同的方式测量所检测到的电容比,即最大的值成为分数的分子。
然而,这种设计为在x方向上的2DCT维度只提供了有限的能力。
数值方法Nakamura在US 4,650,926[31]中描述了使用查找表系统校正原始的2维坐标数据从而对诸如图形输入卡之类的电子图系统进行数值校正的系统。
Drum在US 5,101,081[32]中描述了通过遥控装置对诸如图形输入卡之类的电子图系统进行数值校正的系统。
McDermott在US 5,157,227[33]中提出了使用所存储的常数校正2DxT的数值方法,这些常数在操作期间用来控制一个或多个多项式,以校正通过区段或象限报告的接触的位置。
Babb等人在US 5940,065[3]和6,506,983[4]中提出了使用在学习过程期间确定的系数对2DxT的均匀的片元件进行线性化的数值方法,不需要用区段或象限进行分段,并且基于单独的单元,以便校正甚至是微小的过程变化。Babb所揭示的方法很复杂,涉及“80个系数”和四阶多项式,这些方法的系数必须通过严格和费时的校准过程确定。在本发明的发明人所主持的测试中,已经发现在正常使用中需要用6阶多项式才能得出可接受的精度,而且结果仍然非常容易受校准后由于热漂移之类引起的极轻微的后续变化的影响。特别是,已经发现角部连接是长期坐标起伏的最大的原因,因为这些角部连接就连接尺寸和质量来说起着具有高增益因子的奇异点的作用。此外,这种数值校正的方法需要高分辨率的数字转换,以便产生甚至最朴素的分辨率输出。例如,业已发现为了提供质量为9比特的坐标结果需要用14比特的ADC。放大器系统和ADC的所需额外代价和功率在许多应用中可能是不允许的。
问题虽然在这个领域内先前已做了广泛的工作,但仍然有必要开发出具有数量比较少的外部连接的低成本、单层、大面积、透明、小畸变的2DCT。

发明内容
本发明提供了一种二维位置传感器,这种二维位置传感器包括具有传感区的基片,该传感区由包括用于确定x位置的电极和用于确定y位置的电极的电极的图案限定,其中x电极和y电极总体沿x方向延伸并且在y方向上交错,以及其中x电极包括第一、第二和第三组的元件,所述元件形成为使得第一和第二组的元件的相邻元件在传感区的一部分上沿x方向共同延伸,而第二和第三组的元件的相邻元件在传感区的另一部分上沿x方向共同延伸,使得x电极提供沿x方向横跨传感区的相应比率制电容性信号。
x电极还可以包括第四组的元件,而第三和第四组的元件的相邻元件在传感区的又一部分内共同延伸,使得x电极提供沿x方向横跨传感区的相应比率制电容性信号。
这个原则可以扩展为增添第五和更多组的x电极。在拓扑上,这个原则可以无限扩展下去。然而,实际上,用于外部连接的在传感区的外围边缘部位的电极馈线的厚度将越来越薄,因此到某个程度考虑到噪声及其他有关因素的限制再增添x电极组就成为不实际的。
在本发明的各实施例中,配置了多根在传感区的外围与电极连接的外部电线线路,这些外部电线线路包括与每个x电极组的元件连接的相应各电线线路;以及与y电极连接的多条电线线路。
在一组实施例中,配置了从传感区的外围沿y方向延伸的中脊(central spine),用来互连从中脊的两侧延伸的第三组x电极的元件,从而允许第三组x电极的元件可以从传感区的外围外部接触。
优选的是,中脊连续从上到下跨越传感区延伸,在这种情况下设置在传感区最上面或最下面的单个外部触点就足以满足需要。作为替换,也可以将中脊分开,在这种情况下需要在传感区的外围有两个外部触点,一个在传感区的最上面,一个在传感区的最下面。
在配置有中脊时,中脊两侧处在相同高度(即相同y位置)上的相应y电极可以共同连接,以省去使用额外的外部连接线路。例如,单根外部连接线路可以通过围绕传感区的外围布置的导电轨线与中脊任一侧的y电极连接。
在具有中脊的实施例中,可以使用多条外部电线线路在传感区的外围与电极连接,这些外部电线线路包括与中脊连接从而也就与第三组x电极接触的电线线路,中脊象征性地将传感区分成左侧和右侧;与第一组x电极中的处在中脊左侧的元件连接的电线线路;与第一组x电极中的处在中脊右侧的元件连接的电线线路;与第二组x电极中的处在中脊左侧的元件连接的电线线路;与第二组x电极中的处在中脊右侧的元件连接的电线线路;以及与y电极连接的多条电线线路。
x电极可以构造成多种拓扑形式,以便提供共同延伸。
例如,相应各x电极组的共同延伸的元件可以在它们共同延伸的距离上具有互补的斜削度,以提供比率制电容性信号。作为替换,各自x电极组的共同延伸的元件在它们沿x方向共同延伸的距离上具有一些面积改变的相邻块,以提供比率制电容性信号。
例如,参考具有中脊和第一、第二、和第三组x电极的实施例,第一和第三元件可以分别向或从外围和中脊斜削,而第二元件具有与第一和第三元件的斜削相补的双侧斜削。作为可供选择的替代方案,在同一个实施例的不同实现中,第一和第三元件可以采取面积分别向或从外围和中脊降低的互连的块的形式,而第二元件具有与第一和第三元件的块互补的面积改变的块。
y电极单独地和/或成组地与相应各外部电线线路连接,从而提供在y方向上的位置信息。这是简单而可靠的途径,其中y位置信息简单地从出现信号的线路来推断。此外,如果在一根以上的电线线路上出现显著的信号,就可以使用内插或某些其他近似方法。典型地,不会有足够多的外部线路能使每个y电极对应一根外部线路。因此,必须例如使用引到外部线路的导电金属轨线将相邻的y电极组合在一起。例如,可以将y电极分组为两个、三个或四个。
所述y电极可以由电阻性元件互连,使得通过与y电极的子集连接的外部电线线路输出比率制电容性信号,从而提供在y方向上的位置信息。在这种实现中,连接y电极以形成如在WO 2004/040240[28]中所公开的所谓“滑动部(slider)”。具体地说,电阻性条带覆盖在y电极上的部分由于与导电电极并联而被短路,而在相邻的y电极之间延伸的部分提供了电阻性的互连,如WO 2004/040240[28]的图6a所示。于是就能用最少两根分别处在滑动部每一端的外部线路(一根与最上面的y电极连接,另一根与最下面的y电极连接)感测(pick off)比率制信号。可以通过增添中间感测(即向中间的y电极增添一根或多根附加外部线路)得到更高的精度。这个途径是相当灵活的,因为通常可用的外部线路的数量是有限和受限制的,典型的数量是11根。如果采用滑动部途径,一旦分配必需数量的外部线路以连接x电极,剩下的可用外部线路就可以全部用于y电极连接。
y电极可以排列成一些垂直相邻的具有至少两个y电极的组,每个组的y电极具有不同的垂直宽度,使得通过与每个组的不同的y电极连接的外部电线线路输出比率制电容性信号,从而提供在y方向上的位置信息。优选的是,每个组的y电极直接垂直相邻,即没有x电极夹在它们之间。然而,如果x电极具有在y方向上比手指或其他所预料的执行件小的宽度,y电极组就可以具有插入的x电极。这种基于y电极的不同垂直宽度的比率制途径在US 6,288,707[30]中公开,特别是其中的图4实施例。
电极可以用诸如铟锡氧化物(ITO)之类的透明材料或任何其他适当的材料形成。基片也可以用透明材料形成,诸如玻璃或透明塑料材料之类,例如,诸如Perspex之类的有机玻璃(聚甲基丙烯酸甲酯,PMMA),或者诸如Zeonor(TM)或Topas(TM)之类的环烯共聚物(COP)。然而,在有些应用中,也有电极和/或基片不透明的情况。
应该理解,x和y方向是由适当的坐标系定义的,最普通的是x和y方向正交的笛卡尔坐标系,当然x和y方向也可以成非正交的角度。此外,为了方便起见在下面有时将x和y方向分别称为水平和垂直方向,当然这并不意味着与特指的诸如以重力方向为准的现实的空间的对准。


为了更好地理解本发明以及说明怎样可以实现本发明,下面将对附图进行示例性说明,在这些附图中图1为示出现有技术的2DCT的电极图案的示意平面图。
图2为示出本发明的第一实施例的2DCT的电极图案的一些部分的示意平面图。
图3为根据第一实施例的2DCT原型的平面图,示出了电极图案和在电极图案区的外围的与y电极连接的第一连接层。
图4为图3的2DCT原型的平面图,示出了电极图案和在电极图案区的外围的与x电极连接的第二连接层,第二连接层还将y电极的外部馈线连接到图3所示的y电极连接上。
图5为第一实施例的驱动和数据采集电路的系统级示意图。
图6为示出本发明的第二实施例的2DCT的电极图案和y连接的一些部分的示意平面图。
图7为与图6类似的示出第二实施例的变型的电极图案和y连接的一些部分的示意平面图。
图8为根据第二实施例的2DCT的原型的平面图,示出了电极图案和在电极图案区的外围的与y电极连接的第一连接层。
图9为根据第二实施例的2DCT原型的平面图,示出了将电阻性元件接在y电极之间的电阻性层。
图10为图8的2DCT原型的平面图,示出了电极图案和在电极图案区的外围与x电极连接的第二连接层,第二连接层还将y电极外部馈线连接到图8所示的y电极连接上。
图11为示出第三实施例的部分电极图案的示意平面图。
图12为根据第三实施例的2DCT原型的示出电极图案的平面图。
图13为示出第四实施例的电极图案的一些部分的示意平面图。
图14为示出第五实施例的电极图案的一些部分的示意平面图。
图15为示出第六实施例的电极图案的一些部分的示意平面图。以及图16为包含体现本发明的2DCT的玻璃触摸面板的示意平面图。
具体实施例方式
图2为示出第一实施例的2DCT的电极图案的具有代表性的部分的示意平面图,其中电极图案限定了该器件的传感区。这些电极排列在没有明显示出的但是具有处于图纸平面上的上表面的基片上。基片可以适当地是柔性的透明塑料材料,诸如聚对苯二甲酸乙二醇酯(PET)之类。基片通常是绝缘的。电极图案用电阻率为几百欧/平方的铟锡氧化物(ITO)形成。这是透明材料,因此适合显示器应用或其他需要看得见底下的按钮或其他模板的应用。
通常,电极图案可以通过淀积或除去任何适当的导电材料来形成。淀积可以是例如通过气相淀积或丝网印刷。除去可以是例如通过激光或化学蚀刻。
电极图案限定了用于确定y位置的y电极10、12和用于确定x位置的x电极14、16、18、20、22、24。如所示出的那样,x电极和y电极总体都沿x方向延伸,而在y方向上是交错的。y电极10、12形状为简单的直条,即细长的矩形,而x-电极14-24具有斜削的三角形形状。
首先更加详细地描述x电极,然后再描述y电极。
X电极可以分成三组。第一组是三角形的斜削电极14、24,排列在传感区的左侧和右侧。第二组是双侧斜削的三角形电极16、22,排列成分别从传感区的左侧和右侧向内朝中央延伸。第三组x电极18、20从整体形成的中脊26分别朝左侧和右侧向外延伸。第一和第二组的元件的相邻元件14、16和24、22分别在传感区的外侧部分I和IV内沿x方向分别朝传感区的左侧和右侧共同延伸。第二和第三组的元件的相邻元件16、18和22、20分别在中脊两侧的传感区的内侧部分II和III内沿x方向共同延伸。
以这种方式,每对相邻的共同延伸的第一和第二组的x电极或者第二和第三组的x电极各形成了一个如在参考文献[28]内所说明的所谓滑动部。具体地说,该滑动部是在参考文献[28]的图15中所示出的这种类型,参考文献[28]中描述这种滑动部的操作情况的相关内容在这里列为参考予以引用。应该理解,这些电极元件的形状和尺寸相对执行件(典型的是人的手指)被适当地进行设计,以便提供横跨它们沿x方向共同延伸(即,在x方向上交叠)的长度的比率制电容性信号。
左侧双侧斜削的x电极16通过在传感区的左外围接近x电极16的左边缘处沿y方向布置的导电线路30共同连接到外部连接线路X1上。要指出的是,双侧斜削电极在它们的左端具有便于这种外部连接的焊盘区33。
左侧斜削的x电极14通过在传感区的左侧外围接近x电极14左边缘处沿y方向布置的导电线路32共同接到外部连接线路X2上。
从中脊26伸出的斜削的x电极18和20当然由中脊26共同连接,并且通过中脊26与传感区的外围具有电接触。外部连接线路X3通过与中脊26基底接触的电线线路34与中脊连接。
右侧斜削的x电极24通过在传感区的右外围接近x电极24右边缘处沿y方向布置的导电线路36以与相应的左侧x电极14类似的方式共同连接到外部连接线路X4上。
右侧双侧斜削的x电极22通过在传感区的右外围接近x电极22的右边缘处沿y方向布置的导电线路38以与相应的左侧x电极16类似的方式借助于扩大的焊盘区39共同接到外部连接线路X5上。
以这种方式,x电极14-24外部接触5根用于读出的外部连接线路X1-X5。
y电极分成两个分别处于中脊26左侧和右侧的组10和12。如已经提到的那样,它们具有简单的直条形状,并且排列在左侧的各相邻组x电极14、16、18之间和右侧的各相邻组x电极20、22、24之间。y电极10和12通过导电线路连接成一些垂直相邻的组,因此传感区的y分辨率在这个实施例中就被限制在与这些相互连接的y电极的垂直范围相应的垂直距离。这样将y电极组合在一起降低了y分辨率,但可以使y电极所需的外部连接线路的数量少一些。在所示的这个例子中,最下面的y电极组包括四对y电极,它们共同接到形成外部连接线路Y1的一部分的导电轨线50上。虽然图中没有明显示出,处于相同高度的每对y电极由一条外周轨线共同连接。往上的这一组包括三对y电极,虽然图中只示出了第一对,它们连接到轨线52上,以便再连接到外部线路Y2上。总共有7组y电极通过所关联的导电轨线连接到各自的外部线路Y1-Y7上。在这个实施例中,y值是从这7根外部连接线路得出的,对于简单的控制算法来说,这仅提供了7个单位的y分辨率,虽然通过在相邻的y线路之间进行内插可以达到可能额外的y分辨率。
概括地说,这种2DCT通过排列在沿x方向横跨传感区宽度的四个覆盖区I-IV的滑动部提供准连续的x分辨率,组合以通过共同连接成垂直相邻的3、4条一组的水平延伸的电极条而提供的阶梯式的y分辨率。总共使用了12条外部连接线路,5条用于X,7条用于Y。
中脊和两侧斜削的电极相组合,允许传感区在x方向有较大的范围以提供大的能做成透明的传感区,而除了外围之外不含外部连接。此外,这种电极图案设计意味着手指阴影效应不显著,因为由于手指的物理位置得到的电容性信号的任何质心漂移受到电极的横向延伸的限制。例如,对于这种设计,可以制造出传感区对角线为6英寸(150毫米)的器件。
图3为根据第一实施例设计的2DCT原型的1∶1比例(即实际尺寸)的平面图,示出了电极图案和在电极图案区外围的与y电极连接的第一连接层。为了便于参考,被先前示意图所覆盖的区域在本图的底部用虚线矩形示出。图中还大致按比例地示出了手指的轮廓。
显然,通常ITO的电极图案覆盖了基片40的主要部分。在这个例子中,图案覆盖了与触摸屏或其他设备需形成传感部分的区域相匹配的矩形区域。图中还标出了先前所描述的x电极的四个覆盖区I-IV。大体呈矩形的基片40还具有一个在基片的左侧中途突出的颈凸42。颈凸42用来进行外部接触,如要结合下一个图所说明的那样。在基片40的左侧,即与颈凸42相邻的那一侧,可以看到有7组导电轨线50-62,形成y电极的外部连接线路Y1-Y7,线路Y2-Y7通过轨线52-62各连接到三个y电极上,而Y1通过轨线50与四个y电极连接,在器件的这个左半部分(即中脊26的左半侧)总共有22个y电极。在右侧,有排列完全对应的22个y电极,除在底部的四个是成组接在一起之外,都是三个一组地接在一起。基片右侧的外部连接线路Y1-Y7的轨线50-62绕过基片的顶端通到基片的左侧,使得左侧和右侧的相应的y电极对和共同连接的y电极对的组由单根导电轨线接合。
图4为图3的2DCT原型的平面图,示出了电极图案和在电极图案区的外围与x电极连接的第二连接层,第二连接层还将y电极的外部馈线与图3所示的y电极连接相连接。在图3和4所示的第一和第二层之间插有一个绝缘层,用以提供防止第一与第二连接层的某些部分之间电接触的绝缘区和保证第一与第二连接层的其他一些部分之间电接触的开放区。
首先来描述y电极连接的情况。7根导电轨线44在x方向上沿着颈凸42的上部平行延伸到基片40的主区域的左侧部分。然后,它们散开并与在图3的第一连接层内用于各y电极连接Y1-Y7的轨线50-62的一部分正上方的扩大的接触垫46端接,使得发给和来自每个y电极组的信号可以通过外部接触轨线44馈入和馈出。在绝缘层内的各接触垫46处具有开放区,以保证在第二连接层上的Y1-Y7轨线44中的每一个与第一连接层内的Y1-Y7电线轨线50-62中的每一个之间的电接触。在绝缘层内还具有覆盖处于ITO图案上面的在基片的左侧和右侧与y电极接触的Y1-Y7轨线中的每一个的绝缘区。
下面说明x电极连接的情况。用于外部连接X1-X5的5根电线线路30-38已经结合图2作了说明,并且可以在图5中原型的第二连接层内看到。如可以看到的那样,x电极连接完全在第二连接层上提供,这与y电极连接分布在第一和第二连接层之间不同。也就是说,轨线30-38绕过基片40的底部然后会合成5根平行的轨线导向颈凸42,在该处与7根平行的y电极接线会合。要指出的是,垂直布置在ITO区域的每侧上方的与x电极接触的x电极连接轨线和焊盘通过绝缘层与y电极连接轨线隔离。
图5为配合第一实施例的触摸屏使用的多通道传感器电路140的系统级示意图。在这个图中,传感器电路140被描绘为具有来自x电极的5个电容性电极输入X1、X2、X3、X4、X5,和表示7个y电极输入的单个电容性电极输入Yn。实际上,会有7根这样的线,每个y电极输入对应一根,从而总共提供所需的12根线路。充电控制线路157使用连接到基准电压线158的充电开关156,同时向全部电容性输入端X1-X5和Y1-Y7充电。
在一个变型中,省掉了充电控制线路157,而充电开关156用恒定地将各个电极连接到电压源上的上拉电阻器来代替。上拉电阻器的电阻值被选成使RC时间常数大于将层放电到电荷检测器阵列所用的放电间隔。这个电阻值例如可以在15千欧到25千欧之间。
通道X1-X5和Y1-Y7在将电荷传送给电荷检测器时同时动作,如图中所示,通过使用单个放电控制线路163驱动放电开关162使所有充了电的电极放电。在进行了电荷传送或一连串电荷传送后,模拟多路复用器182在微处理器168的控制下选择电荷检测器的电容器输出中的哪一个输出要被馈给放大器184和ADC 186,从而馈给外部控制和数据采集电路,典型地是一个PC。此外,受复位控制线190控制的复位开关阵列188在每个脉冲或脉冲串后激活,使电容性输入端复位到已知的基准值(例如,复位到地电位)。本领域技术人员会清楚,为了清晰起见图中已省略了每个通道传感器的许多电路元件。就x通道X1-X5而言,这些通道需要得到驱动,而信号需要得到处理,以考虑到使用在Harald Philipp的现有技术的专利公开(诸如参考文献[28]和[30])中所说明的“滑动部”途径需要从这些信号中得到的比率制信息。传感器电路和用脉冲串驱动传感器电路的方法等更为详细的情况可参见Harald Philipp的现有技术的专利公开,诸如参考文献[28]、[30]和[34]。
对应第一实施例概括地说,现在可以看到的是,这种设计具有中心对称的电极图案,中脊将传感器区域分成左右两半。中脊形成“圣诞树”的“树干”形式,树的“树枝”是从树干两侧伸出的单侧斜削的电极,与外接到传感器区域侧的两组双侧斜削的电极的第二斜削部分共同延伸,而这双侧斜削的第一斜削部分与也外接到传感器区域侧的另外两个单侧斜削的电极组共同延伸。这些电极都用于水平方向上的传感,它们在垂直方向上与外接到传感器区域侧且形成垂直位置传感电极的条交错。传感区域用12个外部连接进行操作,5个用于水平传感,连接到各组斜削的电极上,而7个用于22个垂直电极行,这种减少是通过将相邻的3或4个垂直电极行的垂直相邻的组共同连接来达到的,从而以损失垂直分辨率为代价减少外部连接的总数。此外,还说明了结构如何具有4层,两层用于连接,一个绝缘层用来控制两个连接层之间的连接,以及一个可以被省去而直接在其中一个连接层上形成的电极图案层。
下面对本发明的第二实施例进行说明。在大多数方面,第二实施例与第一实施例相同。使用相同的ITO电极图案。此外,x电极的外部连接完全相同,因此电极图案层和第一导电层完全相同。第二实施例与第一实施例之间的差别在于y传感。在第一实施例中,电极条提供离散y位置信息,其中分辨率由y电极条的垂直间隔限定,或者在为了减少外部连接线路而将多个相邻的y电极条共同连接的情况下分辨率由共同连接的y电极条的组的垂直间隔限定。在第二实施例中,采用同样的y电极排列,即水平条交插在x电极之间,但y电极条电阻性相互连接成所谓的“滑动部”排列[28],以通过连接到适当的外部测量电路而可以得到在垂直方向上的准连续的位置信息。
图6为示出本发明的第二实施例的2DCT的部分电极图案和y连接的示意平面图。图中也大致按比例示出了人的手指。为了清晰起见,省略了x电极和它们的外部连接轨线。图中示出了与第一实施例类似的具有若干垂直偏移的y电极条10(图中例示了十三个)的传感区域的左半侧的中间部分。每个条通过串联有分立电阻器72的导电即金属线70与垂直相邻的条连接。y电极条10通过引至用于Y传感的外部连接线路的导电轨线进行外连接。图中示出了连接到每第三个或第四个y电极上的4根这样的外部连接线路54′-60′。
在电气上,电阻72和它们的互连线70提供了相邻的y电极条10之间的电阻性通路,这种电阻性通路在垂直相邻的导电外部连接线路54′与56′、56′与58′等之间延伸。(在任何一对相邻的线路(例如54′和56′)的情况下,这在电气上与参考文献[28]中的图6a所示的实施例的滑动部相同。)如在参考文献[28]中所说明的那样,使用比率制分析来检测y位置,例如使用如在参考文献[28]中所说明的测量电路或其他在该技术领域内已知的为此所用的测量电路。
通常,在第二实施例中最少必须有两根这样的外部连接线,以形成滑动部的端部连接。这些端部连接优选的是应连接到最上面和最下面的y电极上,或者至少连接到上面和下面附近的y电极上。也有益的是,在这些两个端部连接之间再设置一根或多根附加的外部连接,以通过有效地沿y方向形成多个滑动部来改善y位置传感精度。通常由于成本的原因会希望将外部连接限制在固定的数量,在这种情况下由于可以提供许多y电极的外部连接,其数量可对应于在为x电极分配了足够的线路后的空闲不用的外部连接。
图7为与图6类似的示意平面图,示出了第二实施例的变型的电极图案和y连接线的一些部分。y电极条10和外部连接线52′-60′起着与结合图6所说明的相同的作用。在这个变型中,不是使用分立电阻来连接垂直相邻的y电极,而是在各y电极条上面垂直延伸地布置了每单位长度电阻均匀(在y方向上)的电阻性条带74。由于这些电极条基本上是金属的,即导电的,因此电阻性条带的叠在y电极上的部分在电气上是无效的,因为从垂直方向来看这些部分实际上与y电极并联,从而被短路掉。电阻性条带的在各y电极条之间的部分因此以与图6的分立电阻相同的方式形成了各y电极之间的电阻性通路。电阻性条带74用高电阻膜(例如基于碳的厚膜)制成。
图8为根据第二实施例设计的2DCT原型的平面图,示出了电极图案和在电极图案区域外围的与y电极连接的第一连接层。图8可与第一实施例的图3相比较。基本上,具有颈凸42的基片40载有相同的结构,仅有的区别是每第三或第四个y电极与外部连接线路50′-60′连接而省去了第一实施例的共同连接。例外的是最下面的两个y电极,它们共同连接到电轨线50′上。此外,要指出的是,y电极配有总共6根外部连接线路Y1-Y6,而不是7根。
图9为根据第二实施例设计的2DCT原型的平面图,示出了将电阻性元件连接在y电极之间的电阻性层。这个层是第二实施例所特有的,并且提供在传感区每一侧在y电极条外端的端部上面垂直延伸的电阻性通路74。每个垂直延伸的电阻性通路74用电阻率适当的材料的单根轨线形成。要指出的是,这个层还局部覆盖有高阻性材料75(灰色阴影),它覆盖了基片的外围部位以及颈凸的与基片主体邻接的部分。电阻性材料终止成有城墙状或锯齿状的形状74,在整个所关联的电阻性材料通路75的范围内来回交替,使得电阻性通路75与每个y电极条的外端部分直接连接,但在它跨过x电极的端部处被覆盖,从而防止了不希望有的与x电极的电干扰。一个可供选择的替代方案是具有蜿蜒的通路74,例如遵循城墙状或锯齿状的通路,以避免与x电极的端部交叉。
图10为图8的2DCT原型的平面图,示出了电极图案和第二连接层,第二连接层在电极图案区的外围提供与x电极的连接和将y电极外部馈线接到图8所示的y电极连接线上的连接。这几乎与第一实施例的图4完全相同,只是Y线要少一些。也就是说,x电极外部连接X1-X5和所关联的轨线30-38是相同的,而从颈凸42伸出以便与第一连接层的匹配轨线连接的Y外部连接Y1-Y6的外部连接线路44也是同样(只是在第二实施例中少一根)。此外,绝缘层具有与在第一实施例中的类似的适当的开放区和绝缘区。
驱动和数据采集电路与上面对第一实施例所说明的类似,只是在这种情况下除了对x电极信号之外还需要对y电极信号进行“滑动部”型处理。如已经提到的那样,适当的电路可以参见以Harald Philipp名义公开的先前专利出版物,诸如参考文献[28]和参考文献[30]和[34]。
图11是示出第三实施例的电极图案的各部分的示意平面图。与第一和第二实施例不同,第三实施例没有中脊。作为替代,传感区域的中央部分由在器件的左侧和右侧外部接触的双侧斜削电极的电极组共同延伸的区域所限定。由图可见,在没有中脊的情况下,y电极10是一些各从传感区的一侧延伸跨越到另一侧的单个直条。y电极10可以仅从左侧或右侧、或者部分从左侧或右侧、或者冗余地从两侧接触。x电极排列在各对垂直相邻的y电极10之间,并且由4组x电极80、82、84和86组成。x电极组80和86是分别从传感区域的左侧和右侧延伸的单侧斜削电极。x电极组82和84是也分别从传感区的左侧和右侧延伸的双侧斜削电极。传感区域的用于x分辨率的敏感部分由不同的x电极组共同延伸的三个部分形成,即由x电极组80和82在x方向上共同延伸所限定的处于传感区域左侧的第一部分I,由双侧斜削x电极组82和84在x方向上共同延伸所限定的处于传感区域中部的第二部分II,以及由x电极组84和86在x方向上共同延伸所限定的处于传感区域右侧的第三部分III。以这种方式,每个相邻的共同延伸的第一和第二组的x电极对、或者第二和第三组的x电极对、或者第三和第四组的x电极对各形成了一个如在参考文献[28]内所说明的所谓滑动部。外部连接与第一和第二实施例类似,因此在这里不再示出。然而,应该注意到,对于x电极将需要有4根外部连接线路X1-X4。对于y电极来说,可以进行与对第一和第二实施例的相同的考虑。在这方面要指出的是,对于第三实施例来说y电极的寻址可以遵循第一或第二实施例。
图12是根据第三实施例设计的2DCT原型的示出电极图案的平面图。这采用了图12的图案结构,具有15行x电极组和与x电极组交错的16行y电极条。还要注意的是,基片40具有设置在底侧的颈凸42,这对于这个实施例来说是更为方便的分配。最下面的4个y电极条共同连接(遵照第一实施例的途径),而其他的y电极条三个一组地共同连接,以提供被限制为5个离散行的y分辨率,这5行通过5根线路Y1-Y5连接到外部测量电路。y分辨率可以通过将原型修改成遵照第二实施例的途径而加以改善。4个x电极组中的每一个分别有各自的外部连接线路X1-X4。因此总共有9根外部连接线路。为了简明起见,对于这个实施例没有示出原型的其他层,但应该理解,可以承袭与第一和第二实施例大体类似的途径。
图13为示出第四实施例的电极图案的各部分的示意平面图。x电极82、84、86、88以与第三实施例中相同的方式排列,以提供覆盖I、II和III的三列x位置敏感的x电极。(在备选方案中,x电极可以按第一和第二实施例排列。)然而,在第四实施例中y电极的排列与上面这些实施例不同。也就是说,在第四实施例中,y电极遵循附图中的图1所示的现有技术的比率制配对途径,即参考文献[30]的图4所示的y电极结构。
在这种排列中,对于电极图案的每个单元来说,在每个相邻的x电极82、84、86、88的行之间有着相邻的具有不同面积的可独立寻址的成对y电极,因此在用户手指或其他执行件邻近这些y电极时,两个相邻的可独立寻址的y电极各自提供大小与它们的相对面积成比例的相应信号。通过改变每行内相邻的可独立寻址的y电极条对的相对面积,就可以使这些信号之比表征每个y电极单元内的y位置。在所示的这个例子中,每个单元具有5个y电极行,面积比从上到下为1∶0、1∶2、1∶1、2∶1、0∶1,其中第一个值呈现为从共同连接的y电极92、94、96、98的第一组90得出的信号,而第二个值呈现为从共同连接的y电极102、104、106、108的第二组100得出的信号。零值表示,对于这一行来说y电极仅由来自另一组的y电极形成,在这个例子中这是每个单元的最上面和最下面的y电极行的情况。第一组90外部接到线路Y1上,而第二组100外部连接到线路Y2上。其他每个电极图案单元将需要另外两根外部Y连接线。例如,在使用图13所示的电极图案单元的传感器中,如果有15行y电极和14行x电极,就要有3个单元,需要6个Y连接Y1-Y6和4个X连接X1-X4,即总共10根。
原则上,可以将任何数量的y电极行分组入一个单元,具有两个共同寻址的y电极组。然而,实际上,这个数量将受精度约束的限制。每单元的y电极行的行数至少是3行,但也可以是4、5(如图中所示)、6、7、8、9、10甚至更多个行。
应该理解,虽然在所示的这个例子中使用了y电极对,但原则上可以使用3个或以上的y电极以及使用它们的相对面积对位置进行编码,在这种情况下,对于给定的噪声电平,可以制做较大的单元,即其中可以通过单个外部y位置连接对从而寻址大量的行的单元。
此外,虽然处理电路如在所示的例子中那样产生随每个单元内的y位置平滑改变的表面面积之比是方便的,但原则上这种随y的改变在采用适当的处理电路的情况下可以是任意的。
Y组包括交替的Y1连接和Y2连接的矩形条带,分别标为3和4,具有随着部位改变的Y轴宽度,该改变方式使得产生随着位置Y平滑改变的Y1与Y2之间的表面面积之比。使每对相邻的y轴条带3和4的和成为恒定,因此对于任何两对条带,电容的和是相同的,即对于每对条带都有C(Y1)+C(Y2)=C(Y)。于是,随着用户的手指沿着y轴移动,较大的电容值就成为分数的分子。
图14是示出第五实施例的部分电极图案的示意平面图。在此这个图案与前面这些实施例不同,在于,双侧斜削x电极16′从“凸”形颠倒成“凹”形,其中斜削朝双侧斜削的中间进行斜削,而不是从中间朝两侧进行斜削。这个双侧斜削形状是参照具有中脊26′的实施例示出的,但它也可以用于无中脊的设计。单侧斜削的x电极14′、18′相应颠倒,以形成必要的与凹形双侧斜削电极16′的共同延伸。
图15为示出第六实施例的电极图案的各部分的平面示意图。这个实施例可以通过与图2所示的第一实施例相比较来理解。如在第一实施例中那样,传感区被中脊26″分成左右两半。y传感由左、右侧y电极条10″、12″执行,它们分别与各行左、右侧x电极14″、16″、18″和20″、22″、24″交错。要指出的是,相同的附图标记用来标注相应的电极,但对于第六实施例的加上了双撇号。
虽然x和y电极的总体排列与第一实施例的相同,并且y电极的形状也相同,但x电极的形状是不同的。形成共同延伸的区域的x电极不是具有平滑三角形的斜削形状,而是具有锯齿形状,其中x电极组14″与16″、16″与18″、20″与22″以及22″与24″的共同延伸由在y方向上的指状交叉形成,从而由共同延伸的电极对引起的相邻块限定了对于x位置特定的面积比。从通过交指形状在y方向上提供的面积比来看,只要驱动面积(例如手指接触面积)具有适当的大小,如图中示意性地以传感区左半侧上的虚线椭圆所示,仍然可以实现所希望的从x电极的共同延伸对得出的比率制信号的取决于x的改变。这种交指式的排列对于主要用于按钮阵列的传感器区域可能是更可取的,因为它提供了与每个交指单元的宽度(在图中示为″w″)相对应的x位置信息的阶梯式改变。以这种方式,可以为x和y位置信息给出对于按钮阵列是优选实现的阶梯式灵敏度。在所示的这个例子中,可以看到,在x位置比率制信号内将有14个阶梯,中脊26″的两侧各7个阶梯。
这种在水平和垂直两个方向上将传感区象征性地细分成矩形栅格的阶梯式灵敏度的实施例与其中由x和y电极的“滑动部”型配置提供的在水平和垂直两个方向上的准连续灵敏度的第二或第四实施例相反。
图16是装有根据任何以上所说明的本发明的实施例设计的2DCT的玻璃触摸面板器件的示意平面图。基片40所承载的前面所说明的2DCT传感器区域贴在玻璃面板116的下面,玻璃面板116例如为5毫米厚,带有夹在玻璃面板116的下面与基片40之间的按钮图案片110。按钮图案片110是印刷好的静态片,但在其他情况下可以用能够在多个按钮图案之间动态改变的显示器和/或具有诸如投影一个控制某个标量(诸如功率或时间)的细长条的连续特征的显示器代替,其与对装有该2DCT的器件的控制相关。通常,面板116不必是玻璃,也可以是任何适当的电介质材料。通常它将是透明的,以便可以与静态或动态的显示器集成在一起。面板典型地将形成诸如微波炉的门、烹饪器的上面板或供维护人员现场使用的手提工作流程跟踪装置的机壳之类的较大设备的一部分。
例如,按钮图案片110例示为示出与5x6栅格一致的阵列,在右下角有一个两倍大小的按钮,从而提供总共30-1=29个按钮。从传感器区接出的外部连接线路经由颈凸42提供给印刷电路板(PCB)112承载的测量电路。测量电路PCB接到颈凸42的端部,并且也固定在玻璃面板116的下面。电缆114将测量电路接到其他数字电子器件和电源上。
应该理解,体现本发明的2DCT可以具有许多其他特征。例如,在有些应用中所希望的是具有“唤醒”功能,从而整个器件“休眠”或者处在某个不活动状态或者处在后台状态。在这样的情况下,经常所希望的是具有只要人体部分处在某个距离范围内就会引发唤醒信号的功能。元件可以作为单个大的电容性电极予以驱动而不用考虑定位,同时该单元处于后台状态。在这个状态期间,电子驱动器逻辑寻找非常小的信号改变,不必大到可以作为2维坐标处理,但足以确定物体或人在邻近。电子器件于是“唤醒”整个系统,元件受到驱动,从而再次成为真的2DCT。
参考文献[1]DE203,719[2]US 4,198,539[3]US 5,940,065[4]US 6,506,983[5]US 2,338,949[6]US 4,827,084[7]US 2,925,467[8]US 4,293,734[9]US 4,371,746[10]US 4,822,957[11]US 4,678,869[12]US 3,699,439[13]US 4,680,430[14]US 5,438,168[15]US 4,649,232[16]US 4,686,332[17]US 5,149,919[18]US 5,463,388[19]US 5,381,160[20]US 5,844,506[21]US 6,137,427[22]US 4,733,222[23]US 3,921,166[24]US 6,452,514[25]US 5,181,030[26]US 5,305,017[27]US 5,914,465[28]WO 04/040240 WO 2005/020056[30]US 6,288,707[31]US 4,650,926[32]US 5,101,081[33]US 5,157,227[34]US 5,730,16权利要求
1.一种二维位置传感器,包括具有传感区的基片,该传感区由包括用于确定x位置的电极和用于确定y位置的电极的电极的图案限定,其中x电极和y电极总体沿x方向延伸并且在y方向上交错,以及其中x电极包括第一、第二和第三组的元件,所述元件形成为使得第一和第二组的元件的相邻元件在传感区的一部分上沿x方向共同延伸,而第二和第三组的元件的相邻元件在传感区的另一部分上沿x方向共同延伸,使得x电极提供沿x方向横跨传感区的相应比率制电容性信号。
2.权利要求1的传感器,其中x电极还包括第四组的元件,第三和第四组的元件的相邻元件在传感区的又一部分上共同延伸,使得x电极提供沿x方向横跨传感区的相应比率制电容性信号。
3.权利要求2的传感器,还包括在传感区的外围与电极连接的多条外部电线线路,这些外部电线线路包括分别与每个x电极组的元件连接的相应各电线线路;以及与y电极连接的多条电线线路。
4.权利要求1的传感器,还包括从传感区的外围沿y方向延伸的中脊,用来互连从中脊的两侧延伸的第三组x电极的元件,从而使第三组x电极的元件可以从传感区的外围外部接触。
5.权利要求4的传感器,还包括在传感区的外围与电极连接的多条外部电线线路,这些外部电线线路包括与中脊连接从而与第三组x电极的接触的电线线路,中脊象征性地将传感区分成左侧和右侧;与第一组x电极中的处于中脊左侧的元件连接的电线线路;与第一组x电极中的处于中脊右侧的元件连接的电线线路;与第二组x电极中的处于中脊左侧的元件连接的电线线路;与第二组x电极中的处于中脊右侧的元件连接的电线线路;以及与y电极连接的多条电线线路。
6.权利要求1至5中的任何一个权利要求的传感器,其中相应各x电极组的共同延伸的元件在它们共同延伸的距离上具有互补的斜削度,以提供比率制电容性信号。
7.权利要求1至5中的任何一个权利要求的传感器,其中相应各x电极组的在x方向上共同延伸的元件在它们共同延伸的距离上具有面积改变的相邻块,以提供比率制电容性信号。
8.权利要求1至5中的任何一个权利要求的传感器,其中y电极单独地和/或成组地与相应的外部电线线路连接,从而提供在y方向上的位置信息。
9.权利要求1至5中的任何一个权利要求的传感器,其中y电极由电阻性元件互连,使得通过与y电极的子集连接的外部电线线路输出比率制电容性信号,从而提供在y方向上的位置信息。
10.权利要求1至5中的任何一个权利要求的传感器,其中y电极排列成垂直相邻的各具有至少两个y电极的组,每个组的y电极具有不同的垂直宽度,使得通过与每个组的不同的y电极连接的外部电线线路输出比率制电容性信号,从而提供在y方向上的位置信息。
11.权利要求1至5中的任何一个权利要求的传感器,其中电极用透明材料制成。
12.权利要求1至5中的任何一个权利要求的传感器,其中基片用透明材料制成。
全文摘要
本发明涉及一种二维位置传感器,其包括具有传感区的基片,该传感区由包括用于确定x位置的电极和用于确定y位置的电极的电极的图案限定。x电极和y电极总体上沿x方向延伸并且在y方向上交错。x电极包括至少第一、第二和第三组的元件,形成为使得不同的x电极组的元件的相邻元件沿x方向共同延伸,使得x电极可以提供比率制电容性信号,从而提供在整个传感区内的准连续的x位置传感。此外,可以将y电极电阻性地连接起来或者排列成比率制的对,以提供准连续的y位置传感。作为替换,x电极组可以是交指形的,以形成面积不同的沿x方向相邻的块,以与y电极所提供的阶梯式y位置传感相组合,提供阶梯式的x位置传感。
文档编号G06F3/044GK101089802SQ200710108809
公开日2007年12月19日 申请日期2007年5月31日 优先权日2006年5月31日
发明者哈拉尔德·菲利普, 鲁本·赫里斯托福 申请人:哈拉尔德·菲利普
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1