基于频域方向特征相关性的图像分类方法

文档序号:6481385阅读:387来源:国知局

专利名称::基于频域方向特征相关性的图像分类方法
技术领域
:本发明属于图像处理
技术领域
,特别是涉及一种图像分类方法,可用于对纹理图像和合成孔径雷达(SAR)图像的分类。
背景技术
:图像分类是模式识别的一个重要分支,是根据不同类别的目标在图像信息中所反映的不同特征,把它们区分开来的图像处理方法。图像分类的主要研究内容是如何对图像进行适当的描述,提取能够有效表示图像属性的特征,提出有效的分类识别方法,并在此基础上对图像进行准确高效的分类。图像分类的应用领域主要有以下几个方面图像纹理分析、图像内容检索、目标检测和识别等。其中图像的纹理分析和分类问题是图像处理和模式识别中的一个重要研究方向,在图像分类、分割、计算机图形学和图像编码等领域都起着至关重要的作用。20世纪80年代产生了很多传统的分类方法,如灰度共生矩阵,二阶统计方法,高斯-马尔可夫随机场,局部线性变换等。随着对人类视觉系统研究的深入,许多多分辨纹理分析模型开始发展起来,如小波变换,Gabor变换,Brushlet,轮廓波(Contouriet)等。研究者们结合多通道Gabor滤波、小波变换等方法,对纹理分析提出了大量创新和改进,很大程度上提高了纹理分析的精度。如Jasperetal采用适合纹理分析的小波基对纺织品纹理进行缺损检测,AjayKumar和GranthanK.HPang等人将Gabor滤波用于有纹理现象的物体结构缺损检测,K.N.BhanuPrakash等人利用灰度共生矩阵对母体内胎儿的肺部超生图像检测其是否己到成熟期。大量实验证明这种多分辨分析的方法能得到较好的分类效果,因此在图像分析和分类研究中得到了广泛的应用。传统的图像分类方法一般是利用纹理特征的向量距离或统计差别来判断类别属性,而基于特征相关性的图像分类则是基于这一事实图像是由特定频带和方向的纹理信息组合而成,这在视觉上反映为不同类别的图像在不同的特征通道上具有明显不同的相关性。因此,该相关性是区分不同类别纹理的一个显著特征。Zhi-ZhongWang和Jun-HaiYong等人对小波包各子带间的相关性进行了分析并提出相应的图像检索方法。该方法首先得到各子带的能量特征,然后分析各特征通道间的相关性求得到分类参数。测试时通过比较测试样本与训练样本相关性模型的拟合程度,依次排除直至获得正确的类标。与这一思路类似的方法包括利用小波、轮廓波等变换进行特征提取及相关性分析,但是这一类变换的共同缺点是框架固定而且变换后的子带在频率、方向等方面划分不够细致。这些缺点导致特征相关性不够明显,分类性能有限而且对图像的大小变化表现不够鲁棒,计算复杂度较高。
发明内容本发明的目的在于克服上述已有技术的不足,提出一种不受限于小波、小波包等变换以及多尺度几何分析工具框架的基于频域方向特征相关性的图像分类方法,以提高对图像尺寸变化的鲁棒性和分类的正确率,降低计算复杂度。本发明的技术方案是,对训练样本集合中的子图分别进行2维快速傅立叶变换,然后根据频率和方向将傅立叶平面划分为不同频域方向子带,计算各子带能量特征,分析特征间的相关性,并利用一元线性回归获得分类参数,最后通过比较测试子图的特征与各类图像的分类参数模型的拟合程度,得到分类结果。具体实现过程如下(1)选取各类纹理的样本图像,并将这些样本图像分为训练样本图像和测试样本图像两个数据集;(2)对训练样本图像数据集分别进行2维快速傅立叶变换,根据傅立叶平面的频率和方向将傅立叶平面划分为不同的频域方向子带;(3)计算各子带的能量特征,得到图像的频域方向特征矩阵M;(4)计算频域方向特征矩阵M各子带特征间的相关系数,根据各子带对的相关系数进行降序排列,得到相关对序列;(5)应用一元线性回归模型求得相关对序列中各特征相关对的分类特征参数,构成分类器;(6)将测试样本图像的频域方向特征与分类器中所有参数的拟合程度进行比较,计算该测试样本属于每一类图像的概率,取概率最大值对应的类标作为该样本的类标;(7)重复步骤(6),得到测试样本图像数据集中所有样本图像的类标。本发明与现有的技术相比具有以下优点1.由于本发明对傅立叶平面的直接操作和扇区调整,克服了小波、小波包等变换的框架限制,使得特征在多频带、多方向等方面划分更细致,基于相关性的分类性能得到显著提高;2.由于本发明的频域方向特征提取方法子带参数可调,使得该发明对图像的最小尺寸没有限制,而且对不同大小的图像具有更好的鲁棒性;53.由于本发明采用快速傅立叶变换,使得计算复杂度大大降低,特征提取时间明显低于其他几种变换。图1是本发明的实现流程示意图2是本发明中频域方向子带划分示意图3是本发明中当"取不同值时,对应的子带中心位置K")的示意图;图4是Brodatz纹理图像D6的子带相关对28和29的特征分布示意图;图5是仿真实验所使用的SAR纹理数据图。具体实施例方式参照图l,本发明的具体实施过程如下-步骤l,选取各类纹理的样本图像,并将这些样本图像分为训练样本图像和测试样本图像两个数据集。本发明应用两个图像数据集进行性能测试Brodatz纹理图像和SAR纹理图像。la)Brodatz纹理图像样本数据集的选取方法说明如下选取标准Brodatz纹理库中的77类均匀纹理图像作为测试数据,这77类纹理是:D1,D3,D4,D5,D6,D8,D9,D11,D14,D16,D17,D18,D19,D20,D21,D22,D23,D24,D25,D26,D27,D28,D29,D32,D33,D34,D35,D36,D37,D38,D46,D47,D48,D49,D50,D51,D52,D53,D54,D55,D56,D57,D64,D65,D66,D68,D74,D75,D76,D77,D78,D79,D80,D81,D82,D83,D84,D85,D87,D88,D92,D93,D94,D95,D96,D98,D100,D101,D102,D103,D104,D105,D106,D109,D110,D111,D112。上述每幅纹理图像大小为640x640,根据以下两种子图选取方式,将77类均匀纹理图像分别建立两个数据库,如表l所示表lBrodatz纹理数据集设置<table>tableseeoriginaldocumentpage6</column></row><table>表1中,纹理库128是将所述77类图像均匀的切分为不重叠的25幅子图,每幅子图的大小为128x128,其子图总数为1925幅,25幅子图中,IO幅作为训练样本,15幅作为测试样本,即训练样本图像数据集内子图总数为770幅,测试样本图像数据集内子图总数为1155幅;纹理库64是将所述77类图像均匀的切分为不重叠的100幅子图,每幅子图的大小为64x64,其子图总数为7700幅,IOO幅子图中,40幅作为训练样本,60幅作为测试样本,即训练样本图像数据集包含子图3080幅,测试样本图像数据集包含子图4620幅。lb)SAR图像样本数据集的选取方法说明如下SAR图像分类数据库取自3幅真实SAR图像的不同纹理区域,其中包括5类纹理,图5显示了实验中所用的这5类SAR纹理数据图,从上到下从左到右分别是山脉、水域、农田以及高、低分辨率下的城区。分别在这5类均匀的SAR纹理区域中随机的取2000个点,进行滑窗提取子图的操作,子图大小为128xl28的数据库记为SAR128,子图大小为64x64的数据库记为SAR64,每类纹理都包含2000个子图,500幅作为训练样本,1500幅作为测试样本,因此SAR128和SAR64中子图总数均为10000幅,其中训练样本图像数据集包含2500幅子图,测试样本图像数据集包含7500幅子图,如表2所示表2SAR图像数据集设置<formula>formulaseeoriginaldocumentpage7</formula>步骤2,对给定训练样本图像进行2维快速傅立叶变换,并根据傅立叶平面的频率和方向对傅立叶平面进行频域方向子带划分。将图像进行2维快速傅立叶变换后,得到傅立叶平面,以傅立叶平面的直流分量为中心,将傅立叶上半平面按照频域方向子带划分的方法得到X个频域方向子带,其具体实现过程如下2a)将傅立叶平面上半部分按极坐标划分为iV个频带,"个方向,得到K二iVxD+2个扇区,每个扇区表示从低频到高频的不同频带和方向信息,构成不同的子带,如图2所示。图2中/)=8,图2中扇区13和26所在的位置,由于包含的信息不多,作为一个子带进行处理,D—般取16,7V—般取6;2b)按照下式计算每个子带中心点(^&)的位置<formula>formulaseeoriginaldocumentpage7</formula>其中w表示频带,W为频带的总个数,c/表示傅立叶上半平面的极坐标方向,"为总的方向数,及表示傅立叶平面的最大半径,a为可调的参数。图3表示a取不同值时,对应的半径、值,当《=1时,"为线性函数,表示在半径上均匀取点,当"增大时,转为非线性函数,使得低频位置取点更为密集,而高频部分取点稀疏,符合多尺度几何分析中的子带划分的思想。多次实验结果表明,取"=1.5,£>=16,^=6时结果较为稳健;2c)根据下式计算每个子带的大小A;-其中,同一频带不同方向上的子带大小相同。步骤3,按照下式计算〖个子带的能量特征,得到特征向量r-bj-l,...,A:IAI_/s々其中lsl表示子带系数的绝对值,4为第A个子带的系数坐标集合,1*1表示集合大小。步骤4,重复步骤23,对每一类纹理,计算所有训练样本的特征向量,以特征向量为列向量构成特征矩阵M。步骤5,计算每一类图像的相关对序列。5a)计算某类特征矩阵M的协方差矩阵C,矩阵C中的系数s为子带f和子带y的相关系数,子带/、y构成子带对;5b)将各子带对按相关系数p进行降序排列,选择其中/7>7;即相关性显著的相关对放入相关对序列中,输出相关对序列,这里,考虑到速度和精度的要求,一般取ra=o.4;5c)重复步骤5a)5b),计算每一类图像的相关对序列。步骤6,求分类参数矩阵X,构成分类器。6a)应用一元线性回归模型,计算每一类纹理的相关对序列中各相关对的分类模型参数,设第z'个相关对的参数为",A,A,A,计算公式如下7—附!11>'^_£1>'>^1>说"a々y'—"~2~~^~"0'一"劝一丄论mVw—2其中,^,;^分别代表某类图像第/j个样本的第f个相关对两个子带能量,夂是由线性回归方程j,=",.x;c,.+^得到的该相关对对应子带能量&的估计值,W为样本大小,当两个子带相关性较高时,线性回归方程可以很好的拟合两个子带间的关系,图4是纹理图像D6的相关对28和29的能量分布图,其相关系数为0.9952,图4中直线是线性回归方程得到的,可以看到,该直线可以很好的拟合子带相关对间的关系;6b)按照相关系数的降序,将每一类纹理各相关对的参数a力,/z,o",相关对标号及相关系数p这些参数放入分类参数矩阵X中,作为各类纹理的分类特征参数,构成分类器。步骤7,对给定测试样本图像进行2维快速傅立叶变换,然后按前述步骤23所述的频域方向特征提取的方法,计算其频域方向特征向量K;步骤8,将给定测试样本的特征向量r与分类器中所有参数的拟合程度进行比较,得到该测试样本的类标。8a)取出第/类图像第/个相关对的一元线性回归模型分类参数fl,^,/z,.,q及测试样本特征中该相关对对应的子带特征(x,,X);8b)按照一元线性回归方程:P="x;c+6求得子带特征x的估计值jP,.,计算误8c)按照卞式得到测试样本符合第y类图像每一个相关对分类参数模型的概率<formula>formulaseeoriginaldocumentpage9</formula>其中£是第/类图像相关对序列中相关对的总个数;8d)计算测试样本属于第j'类图像的概率i^<formula>formulaseeoriginaldocumentpage9</formula>8e)重复步骤8a)8d),计算出该测试样本属于每一类图像的概率,得到概率集P={《,;=1,...,S},其中S为图像集的总类别数;8f)将步骤8e)得到的概率集P按降序排列,若最大概率值i^唯一,则将测试样本归为最大概率对应的类;若P^不唯一,则将该测试样本归入拒绝域,表明该样本的类标不确定。步骤9,重复步骤8,求测试样本图像数据集中所有测试样本图像的类标并输出。本发明的效果可通过以下仿真实验进一步说明。1.仿真内容本发明以及小波、小波包、轮廓波的Brodatz纹理图像及SAR图像分类实验。2.仿真条件Intel(R)Pentium(R)4CPU,3.00GHz,WindowsXP系统,Matlab7.4.0运行平台。3.仿真实验结果实验中分别对纹理图像和SAR图像进行分类。A.Brodatz纹理图像分类实验参数设置如表3所示。考虑到小波、小波包变换的鲁棒性,其子带最小尺寸为16x16,因此数据库128和数据库64的分解层数不同,分别取3层和2层变换。轮廓波分解的方向数和层数根据实验结果,取的是最优参数。对于本发明的频域方向分解,多个数据库的多次实验表明,取参数"=1.5,"=16,7¥=6时分类结果比较稳健。表3Brodatz纹理分类实验参数设置<table>tableseeoriginaldocumentpage10</column></row><table>随机选取10组训练、测试样本进行实验,求10次分类的平均结果,有如下实验结果1)应用相关性分类的方法对Brodatz纹理库128和纹理库64进行分类,得到如下表4、5所示的实验结果。表4Brodatz纹理库128的相关性分类结果<table>tableseeoriginaldocumentpage10</column></row><table>表5Brodatz纹理库64的相关性分类结果<table>tableseeoriginaldocumentpage10</column></row><table>从表4、表5可知,将本发明的频域方向特征应用到相关性分类方法中,能得到很好的分类效果。同应用广泛的基于小波变换的分类方法及多尺度几何分析方法轮廓波比较,本发明得到的分类正确率提高显著,对于纹理库128,本发明的分类正确率至少提高近9个百分点,对于纹理库64,优势更加明显,正确率至少提高24%,这一结果充分验证了本发明的特征在频率和方向上划分更细致,分类性能好的优点。通过比较纹理库128和纹理库64的分类结果,我们发现,随着子图尺寸的减小,本发明的分类性能下降远远低于其他几种变换。究其原因,是由于频域方向特征提取方法在频域直接操作,且参数可调,子带大小可变,因此图像尺寸的变化对该方法影响不大,而其他几种变换受到变换框架的影响,考虑到鲁棒性,一般对子带尺寸要求较高,因此对图像的最小尺寸有限制。实验结果充分说明了本发明的分类性能优于其他几种方法,而且对图像尺寸具有较好的稳健性。2)特征提取时间,本发明的频域方向特征提取的时间明显低于其他几种变换,其计算复杂度低。下表是对一幅1024x1024大小的纹理图像进行变换,提取其能量特征所用的时间。表6各种变换的特征提取时间,图像大小为1024*1024<table>tableseeoriginaldocumentpage11</column></row><table>表5所示是几种变换的特征提取时间,实验结果充分说明,由于本发明应用快速傅立叶变换来实现,因此特征提取时间明显低于其他几种变换,计算复杂度大大的降低。B.SAR图像分类实验参数设置如表7所示。SAR图像分类实验的参数设置和Brodatz纹理图像类似。表7SAR分类实验参数设置<table>tableseeoriginaldocumentpage11</column></row><table>对SAR图像的两个数据库SAR128和SAR64进行分类,得到如表8、表9所示为IO次平均的分类结果。表8数据库SAR128的相关性分类结果<table>tableseeoriginaldocumentpage12</column></row><table>表9数据库SAR64的相关性分类结果<table>tableseeoriginaldocumentpage12</column></row><table>表8、表9所示的结果表明,本发明的频域方向分解的分类效果是最好的。对于数据库SAR128,本发明的分类正确率比小波变换高1.13%,比轮廓波变换高12.43%,比小波包变换高17.25%;数据库SAR64,本发明分类结果优势更显著,比其他三种变换高出30多个百分点,充分验证了本发明的有效性。此外,由于64x64大小的子图包含的纹理信息不如128x128子图丰富,相对更难于区分纹理的类别,因此分类正确率将下降。但本发明仅下降了4%,而其他方法下降显著,至少降低24%。这一实验结果进一步验证了,本发明对于图像尺寸的变化有较好的鲁棒性。权利要求1、基于频域方向特征相关性的图像分类方法,具体实现过程如下(1)选取各类纹理的样本图像,并将这些样本图像分为训练样本图像和测试样本图像两个数据集;(2)对训练样本图像数据集分别进行2维快速傅立叶变换,根据傅立叶平面的频率和方向将傅立叶平面划分为不同的频域方向子带;(3)计算各子带的能量特征,得到图像的频域方向特征矩阵M;(4)计算频域方向特征矩阵M各子带特征间的相关系数,根据各子带对的相关系数进行降序排列,得到相关对序列;(5)应用一元线性回归模型求得相关对序列中各特征相关对的分类特征参数,构成分类器;(6)将测试样本图像的频域方向特征与分类器中所有参数的拟合程度进行比较,计算该测试样本属于每一类图像的概率,取概率最大值对应的类标作为该样本的类标;(7)重复步骤(6),得到测试样本图像数据集中所有样本图像的类标。2、根据权利要求1所述的图像分类方法,其中步骤(2)所述的根据傅立叶平面的频率和方向将傅立叶平面划分为不同的频域方向子带,按如下步骤进行2a)以傅立叶平面的直流分量为中心,将傅立叶上半平面按极坐标的半径和方向划分为iV个频带和"个方向,得到《-Wx"+2个扇区,每个扇区表示从低频到高频的不同频带和方向信息,构成不同的子带;2b)利用下式计算每个子带中心点(,&)的位置<formula>formulaseeoriginaldocumentpage2</formula>其中w表示频带,iV为频带的总个数,c/表示傅立叶上半平面的极坐标方向,D为总的方向数,i表示傅立叶平面的最大半径,"为可调的参数,"一般取16,W—般取6,a—般取1.5;2c)根据下式计算每个频带上的子带大小A、&"=r"—Vl,M=l,'",iV,其中,同一频带不同方向上的子带大小相同;2d)以(&,A)为子带中心,A^为子带大小进行划窗,得到K个频域方向子带。3、根据权利要求l所述的图像分类方法,其中的步骤(6)所述的计算该测试样本属于每一类图像的概率,按如下过程进行3a)取出某类图像第i个相关对的一元线性回归模型分类参数",^,A,(7,及测试样本特征中该相关对对应的子带特征(《,X);3b)按照一元线性回归方程:P="xx+6求得子带特征乂.的估计值A,计算误差X-夕,;3c)按照下式得到测试样本符合该类每一个相关对分类参数模型的概率f:3e)重复步骤3a)3d),计算出该测试样本属于每一类图像的概率。4、根据权利要求1所述的图像分类方法,其中步骤(6)所述的取概率最大值对应的类标作为样本的类标,是将所有得到的概率按降序排列,若最大概率值P^唯一,则将测试样本归为户_对应的类;若/L^不唯一,则将该测试样本归入拒绝域。其中£是第^类图像相关对序列中相关对的总个数;3d)计算测试样本属于该类图像的概率尸:全文摘要本发明公开了一种基于频域方向特征相关性的图像分类方法,主要解决现有方法计算复杂度高,分类精度低,对图像尺寸变化鲁棒性差的缺点。其实现过程包括(1)选取纹理样本图像,并分为训练样本和测试样本两个图像数据集;(2)对训练样本图像进行2维快速傅立叶变换,并根据傅立叶平面的频率和方向划分频域方向子带,得到频域方向特征矩阵;(3)根据频域方向特征矩阵子带特征间的相关性,求得相关对序列;(4)应用一元线性回归模型计算各相关对的分类特征参数,构成分类器;(5)将测试样本图像的频域方向特征与分类器参数进行拟合,得到测试样本的类标;(6)重复步骤(5),得到所有测试样本图像的类标。本发明可用于对Brodatz纹理图像和SAR图像的分类。文档编号G06K9/62GK101551864SQ20091002250公开日2009年10月7日申请日期2009年5月13日优先权日2009年5月13日发明者公茂果,杨晓鸣,焦李成,爽王,王桂婷,缑水平,桦钟,马文萍申请人:西安电子科技大学
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1