一种动态调整cpu内核供电电压的控制电路的制作方法

文档序号:6530219阅读:399来源:国知局
一种动态调整cpu内核供电电压的控制电路的制作方法
【专利摘要】一种动态调整CPU内核供电电压的控制电路,包括:电压转换电路、电压反馈电路以及低通滤波电路,其中,所述电压转换电路用于向CPU输出供电电压;所述低通滤波电路,与所述电压转换电路连接,用于将CPU输出的PWM脉冲控制信号转化为直流电压,并将转化得到的所述直流电压输出到所述稳压芯片向CPU输出供电电压的采样点;所述电压反馈电路,与所述电压转换电路连接,用于从所述采样点获取采样电压,并将获取到的所述采样电压输出到所述电压转换电路。本实用新型提供了一种具有动态调整内核供电电压的控制电路,具有降低CPU功耗,解决散热问题的功能。
【专利说明】—种动态调整CPU内核供电电压的控制电路
【技术领域】
[0001]本实用新型涉及一种电子领域,尤其涉及一种动态调整CPU内核供电电压的控制电路。
【背景技术】
[0002]当今时代,电子产品飞速发展,产品趋于小型化设计发展,对功耗的要求越来越严格。电子消费品行业中,产品外观小型精美且功耗低将成为主流。CPU为影响整机功耗的重要组成部分之一,也是产品小型化热设计过程中重点关注的地方。而对于CPU,内核电压为CPU功耗的主要来源,业界一般通过DC/DC转化而得到,同时通过调整DC/DC反馈端采样电阻来达到调整内核电压的目的。
[0003]现有技术方案的缺点是:第一,稳压芯片的反馈端采样电阻一经确定,内核工作电压将恒定不变;第二,CPU在不同的工作状态下,内核需要的工作电压阈值不同,为保证CPU能够正常工作,必须留有足够大的裕量;第三,当实际内核的供电电压远大于内核需要的工作电压阈值时,内核耗散功率太大,造成能源浪费;第四,为满足热设计要求,耗散功率大将导致需要更为繁琐的散热措施,不利于产品小型化。
实用新型内容
[0004]本实用新型所要解决的技术问题在于,提供一种动态调整CPU内核供电电压的控制电路,可以动态的调整CPU内核供电电压,同时能减低CPU的功耗,解决散热的问题。
[0005]为了解决上述技术问题,本实用新型实施例提供了一种动态调整CPU内核供电电压的控制电路,包括:
[0006]所述电压转换电路包括稳压芯片,用于向CPU输出供电电压,其中所述稳压芯片包括开关控制电路和反馈调节电路,所述开关控制电路用于调控输出的供电电压,所述反馈调节电路用于根据所述电压反馈电路输出的采样电压调节所述开关控制电路,以使所述开关控制电路调控所述供电电压并输出;
[0007]所述低通滤波电路,与所述电压转换电路连接,用于将CPU输出的PWM脉冲控制信号转化为直流电压,并将转化得到的所述直流电压输出到所述稳压芯片向CPU输出供电电压的采样点;
[0008]所述电压反馈电路,与所述电压转换电路连接,用于从所述采样点获取采样电压,并将获取到的所述采样电压输出到所述电压转换电路。
[0009]所述电路还包括:
[0010]CPU,分别与所述电压转换电路和所述低通滤波电路连接,用于根据所述电压转换电路输出的所述供电电压启动处理数据功能,并向所述低通滤波电路输出所述PWM脉冲控制信号。
[0011]其中,所述反馈调节电路根据所述电压反馈电路输出的采样电压调节所述MOS管的开关频率,以使所述开关控制电路调控所述供电电压并输出。[0012]其中,所述电压转换电路包括第一电容、第一电阻、电感,电解电容,第二电容以及稳压芯片,其中,所述稳压芯片包括充电端口和开关端口 ;所述稳压芯片的充电端口与所述第一电容的一端连接,所述第一电容的另一端与所述第一电阻的一端连接,所述第一电阻的另一端与所述稳压芯片的开关端口连接,所述稳压芯片的开关端口与所述电感的一端连接,所述电感的另一端分别与所述电解电容的正极连接和所述第二电容的一端连接,所述电解电容负极和所述第二电容的另一端接地。
[0013]其中,所述电压转换电路还包括第三电容、第四电容、第二电阻、第五电容,第六电容、第三电阻,所述稳压芯片还包括电源端口、使能端口、时序端口、比较端口 ;所述稳压芯片的电源端口分别与所述第三电阻的一端、所述第三电容的一端以及所述第四电容的一端连接,所述第三电阻的另一端与所述稳压芯片的使能端口连接,所述第三电容的另一端和所述第四电容的另一端接地,所述稳压芯片的时序端口与所述第五电容的一端连接,所述第五电容的另一端接地,所述稳压芯片的比较端口与所述第六电容的一端连接,所述第六电容的另一端与所述第二电阻的一端连接,所述第二电阻的另一端接地。
[0014]其中,所述稳压芯片还包括反馈端口,所述电压反馈电路包括第一采样电阻以及第二采样电阻;所述第一采样电阻的一端与所述电解电容的正极连接,所述第一采样电阻的另一端分别与所述稳压芯片的反馈端口和所述第二采样电阻的一端连接,所述第二采样电阻的另一端接地。
[0015]其中,所述低通滤波电路包括第四电阻、滤波电阻以及滤波电容;所述第四电阻的一端与所述稳压芯片的反馈端口连接,所述第四电阻的另一端分别与所述滤波电容的一端和所述滤波电阻的一端连接,所述滤波电容的另一端接地,所述滤波电阻的另一端与所述CPU连接。
[0016]实施本实用新型实施例,具有如下有益效果:通过低通滤波电路将CPU输出的PWM脉冲控制信号转化为直流电压,并将转化得到的所述直流电压输出到所述稳压芯片向CPU输出供电电压的采样点,电压反馈电路从所述采样点获取采样电压,并将获取到的所述采样电压输出到所述电压转换电路,电压转换电路通过控制MOS管的开关频率,输出稳定的供电电压,采用本电路可以动态的调整CPU内核供电电压,同时能减低CPU的功耗,解决散热的问题。
【专利附图】

【附图说明】
[0017]为了更清楚地说明本实用新型实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本实用新型的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
[0018]图1是本实用新型实施例提供的一种动态调整CPU内核供电电压的控制电路的电路结构不意图;
[0019]图2是本实用新型实施例提供的一种动态调整CPU内核供电电压的控制电路的电路原理图。
【具体实施方式】[0020]下面将结合本实用新型实施例中的附图,对本实用新型实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本实用新型一部分实施例,而不是全部的实施例。基于本实用新型中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本实用新型保护的范围。
[0021]如图1和图2所示,图1是本实用新型实施例提供的一种动态调整CPU内核供电电压的控制电路的电路结构示意图,图2是本实用新型实施例提供的一种动态调整CPU内核供电电压的控制电路的电路原理图。结合图1和图2首先介绍所述控制电路中的各个工作电路的连接方式和工作原理,所述动态调整CPU内核供电电压的控制电路包括:电压转换电路110、低通滤波电路120以及电压反馈电路130,所述电路还包括CPU140,其中:
[0022]电压转换电路110,包括稳压芯片,用于向CPU输出供电电压,其中所述稳压芯片包括开关控制电路和反馈调节电路,所述开关控制电路用于调控输出的供电电压,所述反馈调节电路用于根据所述电压反馈电路输出的采样电压调节所述开关控制电路,以使所述开关控制电路调控所述供电电压并输出。其中,所述开关控制电路包括MOS管,所述反馈调节电路根据所述电压反馈电路输出的采样电压调节所述MOS管的开关频率,以使所述开关控制电路调控所述供电电压并输出。
[0023]具体的,所述电压转换电路110包括如图2所示第一电容Cl、第一电阻R1、电感LI,电解电容CEl,第二电容C2以及稳压芯片U14,其中,所述稳压芯片U14包括充电端口 BS和开关端口 SW。所述稳压芯片的充电端口 BS与所述第一电容Cl的一端连接,所述第一电容Cl的另一端与所述第一电阻Rl的一端连接,所述第一电阻Rl的另一端与所述稳压芯片U14的开关端口 SW连接,所述稳压芯片U14的开关端口 SW与所述电感LI的一端连接,所述电感LI的另一端分别与所述电解电容CEl的正极连接和所述第二电容C2的一端连接,所述电解电容CEl的负极和所述第二电容C2的另一端接地。
[0024]进一步的,所述电压转换电路还包括第三电容C3、第四电容C4、第二电阻R2、第五电容C5,第六电容C6、第三电阻Ren,所述稳压芯片U14还包括电源端口 IN、使能端口 EN、时序端口 SS、比较端口 C0MP。所述稳压芯片U14的电源端口 IN分别与所述第三电阻R3的一端、所述第三电容C3的一端以及所述第四电容R4的一端连接,所述第三电阻R3的另一端与所述稳压芯片U14的使能端口 EN连接,所述第三电容C3的另一端和所述第四电容C4的另一端接地,所述稳压芯片U14的时序端口 SS与所述第五电容C5的一端连接,所述第五电容C5的另一端接地,所述稳压芯片U14的比较端口 COMP与所述第六电容C6的一端连接,所述第六电容C6的另一端与所述第二电阻R2的一端连接,所述第二电阻R2的另一端接地。
[0025]其中,所述第一电容Cl、所述第二电容C2、所述第三电容C3、所述第四电容C4、所述第五电容C5以及所述第六电容C6均为滤波电容,所述电感LI和所述电解电容CEl构成充放电电路。当稳压芯片U14工作正常时,通过稳压芯片U14的开关控制电路控制电感LI和电解电容CEl的充放电,输出对应的供电电压Vcore,并通过第一米样电阻Rsmse和第二米样电阻Rgnd对所述供电电压进行采样,并将采样得到的采样电压反馈到稳压芯片U14的反馈端口 FB,再通过稳压芯片U14内部的内部调节电路改变稳压芯片U14内部的MOS管的开关频率,从而改变电路的占空比,占空比不同,输出所述供电电压的大小也随之不同。
[0026]所述低通滤波电路120,与所述电压转换电路110连接,用于将CPU输出的PWM脉冲控制信号转化为直流电压,并将转化得到的所述直流电压输出到所述稳压芯片向CPU输出供电电压的采样点。具体的,所述稳压芯片还包括如图2所示的反馈端口 FB,所述低通滤波电路120包括第四电阻R_、滤波电阻Rfilto以及滤波电容CfiltOT。所述第四电阻Rpwm的一端与所述稳压芯片U14的反馈端口 FB连接,所述第四电阻R4的另一端分别与所述滤波电容CfiltCT的一端和所述滤波电阻Rfilto的一端连接,所述滤波电容CfiltCT的另一端接地,所述滤波电阻Rfilte的另一端与所述CPU连接。所述低通滤波电路通过滤波电阻Rfilte和滤波电容Cfilto将CPU输出的PWM脉冲控制信号转换成直流的Vpwm,其中,所述滤波电容Cfilte的作用是通低频电压阻高频电压。
[0027]所述电压反馈电路130,与所述电压转换电路110连接,用于从所述采样点获取采样电压,并将获取到的所述采样电压输出到所述电压转换电路110。具体的,所述电压反馈电路130包括如图2所示的第一采样电阻Rs.以及第二采样电阻RgnP所述第一采样电阻Rsense的一端与所述电解电容CEl的正极连接,所述第一采样电阻Rsmse的另一端分别与所述稳压芯片的反馈端口 FB和所述第二采样电阻Rgnd的一端连接,所述第二采样电阻Rgnd的另一端接地。其中,所述第一采样电阻Rsmse和所述第二采样电阻Rgnd对所述供电电压Vcore采样后反馈给所述稳压芯片U14的反馈端口 FB。
[0028]进一步的,本实施例中的控制电路还可以包括CPU140。所述CPU140分别与所述电压转换电路110和所述低通滤波电路120连接,用于根据所述电压转换电路110输出的所述供电电压启动处理数据功能,并向所述低通滤波电路120输出所述PWM脉冲控制信号。具体的,CPU在启动处理数据功能时,根据不同的寄存器来确定其所处工作模式,不同工作模式下CPU工作所需的阈值电压不同,CPU会根据寄存器的配置输出对应的PWM脉冲控制信号。其中,PWM脉冲控制信号是用来控制稳压芯片U14内部的MOS管的偏置,改变MOS管的导通时间,从而实现控制所述供电电压输出。
[0029]下面结合图2对该电路的工作原理做一个详细介绍。
[0030]当稳压芯片U14工作正常时,通过稳压芯片U14的开关控制电路控制电感LI和电解电容CEl的充放电,输出对应的供电电压Vcme,并且通过第一米样电阻Rsmse和第二米样电阻Rgnd对所述供电电压进行采样,并将采样后的采样电压反馈到稳压芯片U14的反馈端口 FB,再通过稳压芯片U14内部的内部调节电路改变稳压芯片U14内部的MOS管的开关频率,从而实现稳定的输出。在现有的技术方案中是通过改变所述第一采样电阻Rsense和第二采样电阻Rgnd的阻值来调整输出所述供电电压的大小。在此基础上,本实用新型实施例在该电路中增加了 RC低通滤波电路,通过配合对应的PWM脉冲控制信号来调节所述供电电压的大小。因此本实施例不需要改变所述第一采样电阻Rsense和第二采样电阻Rgnd的阻值来调整输出所述供电电压。
[0031]其中,本实用新型实施例调节所述供电电压的工作原理如下:
[0032]设定通过第一采样电阻Rsmse的电流为I1,通过第二采样电阻Rgnd的电流为I3,通过电阻Rpwm的电流为I2,根据基尔霍夫电流定律可得:
【权利要求】
1.一种动态调整CPU内核供电电压的控制电路,其特征在于,所述电路包括电压转换电路、电压反馈电路以及低通滤波电路,其中: 所述电压转换电路包括稳压芯片,用于向CPU输出供电电压,其中所述稳压芯片包括开关控制电路和反馈调节电路,所述开关控制电路用于调控输出的供电电压,所述反馈调节电路用于根据所述电压反馈电路输出的采样电压调节所述开关控制电路,以使所述开关控制电路调控所述供电电压并输出; 所述低通滤波电路,与所述电压转换电路连接,用于将CPU输出的PWM脉冲控制信号转化为直流电压,并将转化得到的所述直流电压输出到所述稳压芯片向CPU输出供电电压的采样点; 所述电压反馈电路,与所述电压转换电路连接,用于从所述采样点获取采样电压,并将获取到的所述采样电压输出到所述电压转换电路。
2.如权利要求1所述的动态调整CPU内核供电电压的控制电路,其特征在于,所述电路还包括: CPU,分别与所述电压转换电路和所述低通滤波电路连接,用于根据所述电压转换电路输出的所述供电电压启动处理数据功能,并向所述低通滤波电路输出所述PWM脉冲控制信号。
3.如权利要求1所述的动态调整CPU内核供电电压的控制电路,其特征在于,所述开关控制电路包括MOS管,所述反馈调节电路用于根据所述电压反馈电路输出的采样电压调节所述开关控制电路,以使所述开关控制电路调控所述供电电压并输出包括: 所述反馈调节电路根据所述电压反馈电路输出的采样电压调节所述MOS管的开关频率,以使所述开关控制电路调控所述供电电压并输出。
4.如权利要求1所述的动态调整CPU内核供电电压的控制电路,其特征在于,所述电压转换电路包括第一电容、第一电阻、电感,电解电容,第二电容以及稳压芯片,其中,所述稳压芯片包括充电端口和开关端口; 所述稳压芯片的充电端口与所述第一电容的一端连接,所述第一电容的另一端与所述第一电阻的一端连接,所述第一电阻的另一端与所述稳压芯片的开关端口连接,所述稳压芯片的开关端口与所述电感的一端连接,所述电感的另一端分别与所述电解电容的正极连接和所述第二电容的一端连接,所述电解电容负极和所述第二电容的另一端接地。
5.如权利要求4所述的动态调整CPU内核供电电压的控制电路,其特征在于,所述电压转换电路还包括第三电容、第四电容、第二电阻、第五电容,第六电容、第三电阻,所述稳压芯片还包括电源端口、使能端口、时序端口、比较端口 ; 所述稳压芯片的电源端口分别与所述第三电阻的一端、所述第三电容的一端以及所述第四电容的一端连接,所述第三电阻的另一端与所述稳压芯片的使能端口连接,所述第三电容的另一端和所述第四电容的另一端接地,所述稳压芯片的时序端口与所述第五电容的一端连接,所述第五电容的另一端接地,所述稳压芯片的比较端口与所述第六电容的一端连接,所述第六电容的另一端与所述第二电阻的一端连接,所述第二电阻的另一端接地。
6.如权利要求4所述的动态调整CPU内核供电电压的控制电路,其特征在于,所述稳压芯片还包括反馈端口,所述电压反馈电路包括第一采样电阻以及第二采样电阻; 所述第一采样电阻的一 端与所述电解电容的正极连接,所述第一采样电阻的另一端分别与所述稳压芯片的反馈端口和所述第二采样电阻的一端连接,所述第二采样电阻的另一端接地。
7.如权利要求1所述的动态调整CPU内核供电电压的控制电路,其特征在于,所述低通滤波电路包括第四电阻、滤波电阻以及滤波电容; 所述第四电阻的一端与所述稳压芯片的反馈端口连接,所述第四电阻的另一端分别与所述滤波电容的一端和所述滤波电阻的一端连接,所述滤波电容的另一端接地,所述滤波电阻的另一 端与所述CPU连接。
【文档编号】G06F1/26GK203689430SQ201320664381
【公开日】2014年7月2日 申请日期:2013年10月25日 优先权日:2013年10月25日
【发明者】李鹏飞, 胡海强 申请人:南通同洲电子有限责任公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1