基于来自多个数据源的情绪和/或行为信息来提供推荐的制作方法

文档序号:13426420
基于来自多个数据源的情绪和/或行为信息来提供推荐的制作方法
基于来自多个数据源的情绪和/或行为信息来提供推荐相关申请的交叉引用本申请要求于2015年2月11日提交的美国专利申请No.14/619,863的优先权,其全部内容通过引用并入本文。本申请涉及美国专利申请No.14/619,827、美国专利申请No.14/619,866、美国专利申请No.14/619,894、美国专利申请No.14/619,821和美国专利申请No.14/619,843,以上全部都于2015年2月11日提交并通过引用全文并入本文。技术领域所公开的主题涉及基于来自多个数据源的情绪和/或行为信息来对计算机化服务进行个性化的方法、系统和介质。

背景技术:
诸如智能手机、平板计算机和可穿戴计算机的设备正成为许多用户用于从各种各样基于技术的服务——诸如搜索引擎、社交联网站点、和电子商务站点——访问信息所使用的普遍存在和不可缺少的工具。此外,这些设备的用户可以使用这些基于技术的服务中的一个或多个来录入可以提供与特定用户的活动和关注有关的信息的信息。另外,一些用户可以使用这些基于技术的服务中的一个或多个来录入可以提供该用户的口味、亲密度、偏好等的描绘的信息。尽管在这些各个服务中访问和/或录入与用户有关的信息,该用户仍然很难跨各个服务利用这些信息,并且具体地,很难使用这样的信息来帮助该用户作出决策和/或评估。因此,期望提供用于基于来自多个数据源的情绪和/或行为信息来对计算机化服务进行个性化的方法、系统和介质。

技术实现要素:
根据所公开的主题的一些实施方式,提供了基于来自多个数据源的情绪和/或行为信息来对计算机化服务进行个性化的方法、系统和介质。根据一些实施方式,提供了一种用于对计算机化服务进行个性化的方法,所述方法包括:从多个数据源获得与计算设备的用户的目的相关联的信息;使用硬件处理器来确定来自所述多个数据源中的每个数据源的一部分信息与具有所述目的的所述用户相关,其中,所述一部分信息指示所述计算设备的所述用户的身体状态或情感状态;至少部分地基于所述目的和来自所述多个数据源中的每个数据源的所述一部分信息,将所述计算设备的所述用户分配到多个群组中的一个用户群组中;至少部分地基于所述目的和所分配的群组,确定与所述用户相关联的标的简档;基于来自所述多个数据源中的每个数据源的所述一部分信息,为所述计算设备的所述用户生成当前简档;将所述当前简档与所述标的简档进行比较以确定推荐动作,其中,所述推荐动作被确定为具有对所述用户的所述身体状态或情感状态有作用的可能性;确定连接到所述计算设备的一个或多个设备,其中所述一个或多个设备中的每个设备具有一个或多个设备能力;以及基于所述一个或多个设备能力,使得所述推荐动作在所述计算设备和连接到所述计算设备的所述设备中的一个或多个上被执行。根据一些实施方式,提供了一种用于对计算机化服务进行个性化的系统,该系统包括硬件处理器,该硬件处理器被配置来进行以下操作:从多个数据源获得与计算设备的用户的目的相关联的信息;确定来自所述多个数据源中的每个数据源的一部分信息与具有所述目的的所述用户相关,其中,所述一部分信息指示所述计算设备的所述用户的身体状态或情感状态;至少部分地基于所述目的和来自所述多个数据源中的每个数据源的所述一部分信息,将所述计算设备的所述用户分配到多个群组中的一个用户群组中;至少部分地基于所述目的和所分配的群组,确定与所述用户相关联的标的简档;基于来自所述多个数据源中的每个数据源的所述一部分信息,为所述计算设备的所述用户生成当前简档;将所述当前简档与所述标的简档进行比较以确定推荐动作,其中,所述推荐动作被确定为具有对所述用户的所述身体状态或情感状态有作用的可能性;确定连接到所述计算设备的一个或多个设备,其中所述一个或多个设备中的每个设备具有一个或多个设备能力;以及基于所述一个或多个设备能力,使得所述推荐动作在所述计算设备和连接到所述计算设备的所述设备中的一个或多个上被执行。根据一些实施方式,提供了一种包含计算机可执行指令的非暂时性计算机可读介质,所述计算机可执行指令在由处理器执行时使得处理器执行用于对计算机化服务进行个性化的方法,所述方法包括:从多个数据源获得与计算设备的用户的目的相关联的信息;确定来自所述多个数据源中的每个数据源的一部分信息与具有所述目的的所述用户相关,其中,所述一部分信息指示所述计算设备的所述用户的身体状态或情感状态;至少部分地基于所述目的和来自所述多个数据源中的每个数据源的所述一部分信息,将所述计算设备的所述用户分配到多个群组中的一个用户群组中;至少部分地基于所述目的和所分配的群组,确定与所述用户相关联的标的简档;基于来自所述多个数据源中的每个数据源的所述一部分信息,为所述计算设备的所述用户生成当前简档;将所述当前简档与所述标的简档进行比较以确定推荐动作,其中,所述推荐动作被确定为具有对所述用户的所述身体状态或情感状态有作用的可能性;确定连接到所述计算设备的一个或多个设备,其中所述一个或多个设备中的每个设备具有一个或多个设备能力;以及基于所述一个或多个设备能力,使得所述推荐动作在所述计算设备和连接到所述计算设备的所述设备中的一个或多个上被执行。根据一些实施方式,提供了一种用于对计算机化服务进行个性化的系统,该系统包括:用于从多个数据源获得与计算设备的用户的目的相关联的信息的装置;用于确定来自所述多个数据源中的每个数据源的一部分信息与具有所述目的的所述用户相关的装置,其中,所述一部分信息指示所述计算设备的所述用户的身体状态或情感状态;用于至少部分地基于所述目的和来自所述多个数据源中的每个数据源的所述一部分信息来将所述计算设备的所述用户分配到多个群组中的一个用户群组中的装置;用于至少部分地基于所述目的和所分配的群组来确定与所述用户相关联的标的简档的装置;用于基于来自所述多个数据源中的每个数据源的所述一部分信息来为所述计算设备的所述用户生成当前简档的装置;用于将所述当前简档与所述标的简档进行比较以确定推荐动作的装置,其中,所述推荐动作被确定为具有对所述用户的所述身体状态或情感状态有作用的可能性;用于确定连接到所述计算设备的一个或多个设备的装置,其中所述一个或多个设备中的每个设备具有一个或多个设备能力;以及用于基于所述一个或多个设备能力来使得所述推荐动作在所述计算设备和连接到所述计算设备的所述设备中的一个或多个上被执行的装置。在一些实施方式中,所述信息包括与计算设备的用户有关的社交信息、设备信息、和场境信息。在一些实施方式中,该方法进一步包括:基于来自所述多个数据源中的每个数据源的所述一部分信息,为所述计算设备的所述用户生成基线简档;以及将所述用户分配至具有相似基线简档的用户群组。在一些实施方式中,该方法进一步包括:从所述多个数据源中的每个数据源接收更新信息;和基于所述更新信息来为所述计算设备的所述用户生成当前简档。在一些实施方式中,所述标的简档是从多个标的简档中选择的,所述标的简档包括已经指示已经完成了所识别的目的的相似用户群组中的用户,并且所述推荐动作包括由与所述标的简档相关联的用户执行的动作。在一些实施方式中,所述推荐动作包括生成将被呈现在所述计算设备上的提示所述用户参与活动的内容,以及使得所述内容被呈现在所述计算设备上。在一些实施方式中,与所述计算设备的所述用户相关联的信息包括与所述计算设备相关联的位置信息,并且所述方法进一步包括:基于所述位置信息来确定多个输出设备,其中,所述多个输出设备中的每个输出设备具有执行所述推荐动作的能力;从所述多个输出设备中选择输出设备;以及向所选择的输出设备发送指令以执行所述推荐动作。在一些实施方式中,该方法进一步包括:确定推荐动作是否已经使得所述用户的所述当前简档朝向所述标的简档移动;以及确定是否继续使得所述推荐动作被执行。在一些实施方式中,所述推荐动作具有关联的评级,并且所述方法进一步包括:检索与所述推荐动作相关联的所述评级;以及修改所述评级以指示所述推荐动作已经使得所述用户的所述当前简档朝向所述标的简档移动。附图说明在结合以下附图考虑时,所公开的主题的各个目的、特征、和优点参考以下的所公开的主题的详细描述可以被更全面地理解,各附图中相似的附图标记标识相似的元素。图1示出了根据所公开的主题的一些实施方式的系统的一般化示意图的示例,在该系统上实现基于来自多个数据源的情绪和/或行为信息来个性化计算机化服务的机制。图2示出了根据所公开的主题的一些实施方式的图1的服务器的更具体的示例,该服务器可以从多个数据源接收各种类型的数据,并且可以基于接收到的数据的一部分来将各种类型的动作推荐给与用户设备相关联的各个用户设备。图3示出了根据所公开的主题的一些实施方式的,可用于实现图1所描绘的用户设备和服务器中的一个或多个的硬件的详细示例。图4示出了根据所公开的主题的一些实施方式的,基于来自多个数据源的情绪和/或行为信息来个性化计算机化服务的过程的说明性示例。图5示出了根据所公开的主题的一些实施方式的,用于提示用户设备的用户提供目的的用户界面的说明性示例。图6示出了根据所公开的主题的一些实施方式的,用于提示用户设备的用户选择用于检索与该用户有关的数据的一个或多个数据源的用户界面的说明性示例。图7示出了根据所公开的主题的一些实施方式的,基于特定目的或目标从来自多个数据源接收的数据中选择的在不同时间的数据的一部分的说明性示例。图8示出了根据所公开的主题的一些实施方式的,用于向用户呈现与目的相对应的可选目标的用户界面的说明性示例。图9示出了根据所公开的主题的一些实施方式的,用于向用户呈现可选择的输出设备的用户界面的说明性示例,该可选择的输出设备可以用于执行所推荐动作。图10示出了根据所公开的主题的一些实施方式的,用于向用户呈现包括所推荐动作的推荐界面的用户界面的说明性示例。图11示出了根据所公开的主题的一些实施方式的,提示用户提供与所执行动作有关的反馈的用户界面的说明性示例。具体实施方式根据一些实施方式,如下面更详细地描述的,提供了用于基于来自多个数据源的情绪和/或行为信息来个性化计算机化服务的机制,其可以包括方法、系统、和/或计算机可读介质。一般而言,这些机制可以从用户设备的用户接收与该用户的特定目的有关的输入,并且基于接收到的与该用户有关的数据,可以提供可以帮助该用户达到该特定目的的个性化和计算机化的服务。例如,用户设备的用户可以经由用户界面指示在工作日的过程期间包含更多锻炼的期望,并且基于来自该用户已经肯定地给予同意的一个或多个数据源的用户有关的数据,该机制可以推荐可以在技术上帮助用户达到特定目的的一个或多个动作——例如通过以下方式:基于天气信息、基于在线日历的排程约束(schedulingconstraint)、和/或通过一个或多个计算机网络接收的交通和公共运输信息,通过自动的移动警示或通知来推荐用户今天步行到办公室;向对花特别感兴趣的用户推荐沿着由计算机地图路线服务(例如,GoogleMaps)识别的用户路线访问园艺供应商;等等。应当注意,除了接收与特定目的有关的输入以外或者作为其替选,该机制可以接收用户反馈,并且基于所接收的用户反馈来确定该用户的目标。例如,用户可以经由用户设备上的用户界面指示在工作日缺乏精力,并且该机制可以解释这样的指示并且为该用户确定各种目标,诸如增加锻炼相关活动的量。在另一示例中,可以向用户提供界面,其请求该用户提供关于该用户的一般情绪、情感状态、和/或行为性情(behavioraldisposition)的反馈,并且该机制可以基于所提供的反馈来确定该用户的目标。可以针对用户确定和/或与用户设备相关联的目标的说明性示例可以包括:从当前指示的压力水平降低压力、大体上减轻体重、减轻10磅、达成特定情绪或情感状态(例如,放松、活泼等)、增加用户当前实现的锻炼量、结交更多的朋友、和/或与用户的大体情绪、情感状态、和/或行为性情有关的任何其他合适的目标。还应当注意的是,在分析来自多个数据源的与用户有关的数据之前,确定与该用户相关联的情绪、情感状态、和/或行为性情,和/或向该用户推荐一个或多个动作,该机制可以请求(或要求)该用户肯定地提供同意或核准来执行这样的确定。例如,在移动设备上加载应用时,该应用可以提示用户提供从一个或多个数据源接收信息的核准,执行这样的确定,和/或向该用户推荐一个或多个动作。在一个更具体的示例中,响应于下载应用并将该应用加载到移动设备上,在移动设备上执行的该应用可以执行设备发现功能来确定连接到该移动设备或在该移动设备附近的设备,诸如包括媒体数据(例如,观看历史、记录的媒体内容信息等)的媒体回放设备和/或包括用于获得与连接的移动设备周围的环境有关的信息的活动传感器和/或光传感器的气味发生器。然后,该应用可以向用户呈现界面,该界面请求(或要求)该用户通过选择一个或多个设备或数据源来肯定地提供对从这些设备访问信息的同意以用于接收可用于确定与该用户相关联的情绪、情感状态、和/或行为性情的与该用户相关的信息,确定与该用户相关联的一个或多个目标或目的,和/或推荐可以对与该用户相关联的身体状态、情感状态、和/或行为性情有作用的一个或多个动作。附加地或替选地,响应于在该移动设备上安装该应用,可以用许可消息来提示该用户,该许可消息在从一个或多个数据源接收信息、执行这样的确定、和/或向用户推荐一个或多个动作之前请求(或要求)该用户肯定地提供同意。在接收到同意和/或核准之后,该机制可以从多个数据源接收与该用户有关的任何合适的数据。这样的数据可以包括场境数据(contextualdata)、社交数据、个人数据等。例如,基于该用户在社交联网服务上发布的内容和/或信息(例如,使用用户设备上的社交联网应用)、与该用户相关联的生物计量数据(例如,来自与用户帐户相关联的可穿戴计算设备)、与该用户相关联的位置数据(例如,来自用户设备)、和/或指示该用户的当前情绪和/或行为的任何其他合适的数据,该机制可以预测该用户的当前情绪状态。在另一示例中,该机制可以确定该用户已参与的特定活动,诸如参加社交事件(例如来自在线日历的会议、聚会、体育事件等),消费媒体内容项(例如,视频剪辑、歌曲、新闻文章、网页等),与计算设备(例如,移动电话、可穿戴计算设备、平板计算机等)交互,与应用(例如,用户设备上的媒体回放应用、社交联网应用、消息收发应用、web浏览器等)交互,和/或任何其它合适的活动。例如,该活动数据可以用于确定与该用户相关联的参考行为(例如,日内的特定时间和部分通常花在观看在移动设备上执行的媒体回放应用上的视频)。在一些实施方式中,基于从用户已经肯定地提供同意的一个或多个数据源接收到的与该用户有关的数据,该机制可以推荐可以帮助该用户达成目的和/或目标中的一个或多个的一个或多个计算机化动作。例如,这些机制可以使用设备发现功能来确定用于执行一个或多个所推荐动作的哪些输出设备连接到移动设备或者接近该移动设备,诸如具有能够播放音频内容的扬声器的设备、具有能够呈现视频内容的显示器的设备、能够提供特定照明方案的照明系统、以及能够发出特定气味的气味发生器。作为响应,这些机制可以将指令传送到能够执行所推荐动作的输出设备。例如,响应于确定指示来自一个或多个数据源的用户的大体情绪、情感状态、和/或行为性情的信息,该机制可以识别一个或多个活动,这些活动如果被执行则可以使该用户更接近特定的目的或目标。在该示例中,该机制可以将指示所推荐活动的消息或其他合适的界面传送到与该用户相关联的移动设备。在一个更具体的示例中,响应于从社交媒体应用接收到指示用户可能正在经历低精力水平的社交联网数据(例如,使用社交媒体应用来分析来自帖子(post)的文本)和包括与用户相关联的针对给定日的排程信息的在线日历数据,所述机制可以向该用户推荐可以帮助该用户达到所确定的目标中的一个或多个目标的一个或多个计算机化动作。所述机制可以检查到该日历数据中列出的事件的路线,其中已经由计算机地图路线服务识别该路线,并且传送要在与该用户相关联的移动设备上呈现的界面,其中该界面推荐该用户沿着由计算机地图路线服务识别的该路线步行到该事件并访问特定果汁供应商。除了包括消息或其他合适内容的推荐界面以外或者作为其替选,个性化和计算机化服务可以包括确定应创建可能影响用户的大体情绪、情感状态、和/或行为性情的特定气氛。在一个具体示例中,该气氛可以包括:使得在相关联的用户设备(例如,移动设备、电视设备等等)上向用户自动回放特定内容(例如,标注为对用户是鼓舞性的特定歌曲),使得在相关联的用户设备上向用户呈现被标注为积极的故事的文章的新闻馈送,使得在相关联的用户设备上向用户呈现被标注为使用户感到有趣的照片或其他图像内容以及被标注为对用户具有放松效果的声音效果。在另一具体示例中,通过访问与用户或用户设备相关联的照明系统并使得特定光源开启或关闭、选择从特定照明设备发出的光的水平、和/或选择特定光源的色温、从而改变该用户的周边环境中的照明方案,可以创建气氛。在另一个示例中,通过修改由连接到用户设备的设备发出的环境噪声(例如,修改与用户相关联的计算设备上的风扇的速度)、从连接到用户设备的设备发出特定的气味(例如,使得能够发出特定气味并且在用户设备的用户的特定接近度内的设备发出薰衣草气味)、控制连接到用户设备的电器或家庭自动化设备(例如,控制HVAC单元的压缩机或修改洗衣机的滚筒的速度)等,可以创建气氛。在一些实施方式中,该机制可以生成与用户设备相关联的一个或多个简档。例如,在一些实施方式中,该机制可以生成可用于确定适合于该用户设备的用户的所推荐动作的各个简档。例如,该机制可以生成指示该用户的当前情绪、情感状态、和/或行为性情的简档,并且将生成的简档与标的简档进行比较来确定所推荐动作,该动作如果被执行则可以使用户更接近目的或目标。在一个更具体的示例中,可以基于已经指示了实现特定目的或目标的用户(例如,认为自己非常成功的用户、过去30天已经减轻了5磅的用户等)的简档或其他动作来生成标的简档。在此示例中,该机制可以确定由被确定为已经实现特定目的或目标的用户设备的用户执行的动作,并且可以确定是否可以向该用户推荐这些动作中的一个或多个动作以使得该用户也实现该特定的目的或目标。结合图1-11进一步描述这些和其它特征。转到图1,图1示出了根据所公开的主题的一些实施方式的系统的一般化示意图的示例100,在该系统上可以实现用于基于来自多个数据源的情绪信息和/或行为信息来个性化计算机化服务的机制。如图所示,系统100可以包括一个或多个用户设备102。用户设备102可以彼此处于本地或彼此处于远程。用户设备102可以通过一个或多个通信链路104连接到通信网络106,通信网络106进而可以经由通信链路112链接到服务器120。系统100可以包括一个或多个数据源110。数据源110可以是可以收集和/或提供与用户或用户设备有关的数据的任何合适的设备。例如,数据源110可以包括可以收集和/或提供与用户有关的数据的任何合适的传感器,诸如图像传感器(例如,相机、视频记录器等),音频传感器(例如,麦克风、声级(soundlevel)计等)、射频识别(RFID)传感器、全球定位系统(GPS)、能够测量一个或多个生物参数(例如,心率、呼吸速率、血压、体温、皮肤湿度等)的传感器、可穿戴计步器、Wi-Fi路由器等。在一个更具体的示例中,数据源110可以是连接到注册到与用户相关联的用户帐户的家庭自动化系统的多个传感器,其中可以接收与该用户家中的环境有关的不同数据流。在另一个更具体的示例中,数据源110可以包括连接到该用户本地的咖啡店的多个传感器和允许推荐系统请求与该本地咖啡店有关的数据的应用程序接口(例如,基于门传感器的当前多少客人正在商店中、基于图像传感器的当前在店内排队等待购买的客人数目、通过将标的简档与与该商店相关联的消费者简档相比较的该用户被指派的群组是否可能访问该商店等)。在另一示例中,数据源110可以包括计算设备,诸如桌面型计算机、膝上型计算机、移动电话、平板计算机、可穿戴计算设备等。由这样的计算设备提供的数据的示例可以包括用户生成的数据(例如,文本输入、照片、触摸输入等)、用户应用生成的数据(例如,由社交联网应用、消息收发应用、照片共享应用、视频共享应用、媒体播放器应用等提供的数据)、由驻留在计算设备上的一个或多个传感器(例如,图像传感器、GPS、能够测量一个或多个生物参数的传感器等)生成的数据、和/或与用户有关的任何其他适当的数据。例如,数据源110可以包括已经注册到具有用户帐户的用户的计算设备,并且数据可以包括来自安装在计算设备上并且使用相同用户帐户注册的各个应用的数据。在该示例中,计算设备的用户可以选择在用户设备102或服务器120上执行的应用使用哪些应用或哪些数据类型(例如,位置数据、无线网络数据等)。在另一示例中,数据源110可以包括可以提供与用户有关的数据的一个或多个服务。例如,这样的服务可以包括社交联网服务、消息收发服务、视频共享服务、照片共享服务、文件托管服务等。在一个这样的示例中,用户设备102或服务器120可以经由一个或多个应用编程接口和/或任何其他合适的数据交换机制与数据源110通信。应当注意,可以使用来自一个或多个数据源110的数据来确定所推荐动作对用户的身体或情感状态的作用。用户的情感状态能够是复杂的现象。情感可以是与生理活动相关联的精神状态,并且可以受到内部或外部环境条件的影响。情感可以与用户的个性、情绪、气质、性情、和动机相关联。例如,情感状态可以包括快乐、满足、平静、惊喜、愤怒、恐惧、悲伤、抑郁、厌恶、疲倦、焦虑、匆忙等。在一些示例中,情感状态可以大致分为积极和消极的情感,其中积极情感可以包括快乐和满足,并且消极情感可以包括愤怒和抑郁。此外,内部环境条件的示例包括旧的记忆,并且外部刺激的示例包括由于各种环境因素引起的压力或压力的减轻。还应当注意,用户的身体或情感状态可以被认为是在某个时间点的该用户的身体特征或情感的总体快照或视图。由于用户的身体状态或情感状态可以涉及多个因素,所以身体或情感状态即使在短时间段内也会发生波动。通过使用来自多个源的与用户有关的数据,可以预测该用户的身体或情感状态,其可用于确定是否在给定时间推荐特定动作。此外,可以基于来自多个源的与用户有关的新的或更新的数据来预测该用户的身体状态或情感状态的改变。更进一步地,可以使用该用户的身体状态或情感状态的改变来评估对该用户所拥有的或位于该用户附近的设备的所推荐动作是否可能使该用户更接近目标或目的。数据源110可以彼此处于本地或彼此处于远程。每个数据源110可以通过一个或多个通信链路108连接到通信网络106,通信网络106进而可以经由通信链路112链接到服务器120和/或经由通信链路104链接到用户设备102。应当注意,在一些实施方式中,在从各个数据源110访问信息之前,用户设备102可以请求(或要求)用户设备102的用户提供访问各个数据源110中的每一个的核准。在一些实施方式中,用户设备102可以检测可用于提供与该用户有关的数据的数据源110、并且可以提供允许用户设备102的用户选择要将哪个数据源110用于获得与该用户有关的数据的用户界面。图2示出了可以由用户设备102和/或服务器120接收的输入数据的类型的说明性示例。如图2所示,服务器120可以包括:用于请求、合并(consolidate)、存储、和/或处理与用户或用户组有关的数据的数据存储引擎122,和用于对接收到的数据进行归类(例如,场境数据、社交数据、通用数据等)、选择数据中可以指示用户的身体状态或情感状态的特定部分、以及处理数据的所选择部分的数据处理引擎124。例如,也如图2所示,服务器120可以接收各种类型的视频数据、文本数据、RFID数据、环境音频数据(或从环境音频数据提取的关键字)、和移动设备数据等。使用一个或多个数据源110,数据存储引擎122可以接收任何合适的数据。例如,从一个或多个数据源110,数据存储引擎112可以接收和/或请求与一个或多个用户所参与的活动有关的数据,诸如“散步(tookawalk)”以及穿过的距离、访问了与咖啡店相对应的位置、参加了社交事件(例如,会议、聚会、体育赛事等)、参加了健身训练课程等。作为另一个示例,从一个或多个数据源110,数据存储引擎112可以接收和/或请求包括与活动有关的定时信息的数据,诸如该活动的持续时间、与该活动相对应的时间等。作为又一示例,数据存储引擎112可以接收和/或请求数据,该数据包括给定时间段内(例如,一周中的一天、几天、工作日、周末等)由一个或多个用户参与的活动的发生次数、参与给定活动的用户的数目、和/或与关于给定活动的频率信息有关的任何其他合适的信息。使用包括社交数据源的一个或多个数据源110,数据存储引擎122可以接收和/或请求与用户在社交联网服务上发布的内容和/或信息有关的数据。例如,该数据可以包括该用户在服务(例如,社交联网服务、消息收发服务、视频共享服务、照片共享服务、电子商务服务等)上发布的一个或多个情绪状态。作为另一示例,该数据可以包括用户在社交联网服务上发布的评论、消息、帖子、位置、和/或任何其他合适的内容。作为又一示例,该数据可以包括与社交联网服务上的用户的一个或多个社交联系(socialconnection)有关的任何合适的信息、由社交联系公布的内容、与社交联系相关联的位置等。使用一个或多个数据源110,数据存储引擎122可以接收和/或请求和与一个或多个媒体内容项的用户交互有关的数据。例如,该数据可以包括与该用户已经与之交互的媒体内容项有关的任何合适的信息。在一个更具体的示例中,该数据可以包括该媒体内容项的类型、该媒体内容项的描述、指向该媒体内容项的链接(例如,URL)、可以标识该媒体内容项的标识符(例如,URI、节目标识符等)、该媒体内容项的作者、与媒体内容项有关的艺术家等。作为另一示例,该数据可以包括和与该媒体内容项的用户交互的类型有关的任何合适的信息,诸如消费该媒体内容项、经由社交联网服务或任何其他合适的服务发布该媒体内容项、与其他用户共享该媒体内容项、经由社交联网服务或任何其他合适的服务对该媒体内容项点赞(like)、对该媒体内容项进行评论等。作为另一示例,该数据可以包括和与媒体内容项的用户交互有关的任何合适的定时信息,诸如该用户交互的持续时间、与该用户交互相对应的时间等。使用一个或多个数据源110,数据存储引擎122可以接收和/或请求与用户相关联的生物计量数据。例如,响应于接收到从包括传感器的数据源110访问生物计量数据的核准,该生物计量数据可以包括与用户相关联的任何合适的生理参数,例如心率、呼吸速率、血压、体温、皮肤湿度等。作为另一个示例,该生物计量数据可以包括生理参数的范围,诸如心率范围、血压范围等。使用一个或多个数据源110,数据存储引擎122可以接收和/或请求与用户相关联的位置数据。例如,响应于接收访问位置信息的核准,该位置数据可以包括可以用于估计与该用户相关联的计算设备的位置的任何合适的信息,诸如与计算设备相关联的标识符(例如,IP地址)、由计算设备生成的GPS信号、与计算设备相关联的Wi-Fi接入点、关于计算设备连接到的小区塔的信息等。作为另一示例,该位置数据可以包括可以用于估计该用户的位置的任何合适的信息,诸如由该用户使用合适的服务(例如,社交联网服务)发布的位置、该用户意图访问的位置(例如,与使用在移动设备上执行的日历应用排程的社交事件、关联于该用户的社交网络帐户等相关联的位置)等。在一些实施方式中,数据存储引擎122可以对从数据源110接收的数据进行归类和/或分类。例如,数据存储引擎122可以从多个数据源110(例如,使用一个或多个应用编程接口)接收数据,并且当接收到的数据包括关于用户所使用的一个或多个服务(例如,社交联网服务、电子邮件服务、消息收发服务、视频共享服务等)的信息、与用户相关联的搜索历史(例如,由用户输入的关键字)等时,数据处理引擎124可以将接收的数据分类为通用数据。作为另一示例,数据存储引擎122可以从多个数据源110(例如,使用一个或多个应用编程接口)接收数据,并且当接收到的数据包括与用户设备102的位置有关的信息、交通信息、基于来自用户设备102的位置信息的天气信息(例如,“晴”、“冷”等)、给定位置内的人口密度信息、与由数据源110提供的数据有关的位置场境(context)(例如,“工作”、“家”、“假期”等)、和/或可以提供与用户有关的场境信息的任何其它合适的信息时,数据处理引擎124可将接收的数据分类为场境数据。作为另一示例,数据存储引擎122可以从多个数据源110(例如,使用一个或多个应用编程接口)接收数据,并且当所接收的数据流包括与涉及多个用户的社交事件有关的信息(例如,使用社交联网服务、日历应用等排程的会议)、由使用服务(例如,社交联网服务、视频共享服务、照片共享服务等)的一个或多个用户发布的内容和/或信息、关于用户的一个或多个社交联系的信息、和/或可以被分类为社交数据的任何其它合适的信息,数据处理引擎124可将接收的数据分类为社交数据。在一个更具体的示例中,响应于确定社交服务的用户帐户也在用户设备102上认证,可以检索与该用户帐户相关联的社交数据。作为另一示例,数据存储引擎122可以从多个数据源110(例如,使用一个或多个应用编程接口)接收数据,并且当所接收的数据流包括关于用户目标、用户的个人兴趣(例如,在社交联网服务上可用的用户声明的兴趣、用户消费和/或点赞的媒体内容等)、用户所生成的一个或多个话语的信息、和/或可被视为个人的任何其他合适的信息时,数据处理引擎124可以将接收到的数据分类为个人数据。在该示例中,数据处理引擎124可以丢弃个人数据,除非从用户设备102的用户接收到使用这样的个人数据的特定核准。在一些实施方式中,数据处理引擎124可以处理由数据源110提供的数据流和/或由数据存储引擎122存储和/或处理的数据流。在一些实施方式中,数据处理引擎124可以确定来自数据源110的数据或数据的特定部分是否与用户的目标或目的相关。应当注意,在一些实施方式中,数据处理引擎124可以确定来自多个数据源110的数据或数据的特定部分是否与指派给特定用户组的用户的目标或目的相关。在一些实施方式中,数据处理引擎124可以确定来自数据源110的数据或数据的特定部分是否指示用户的情感状态。这些确定可以以任何合适的方式进行。例如,可以使用合适的分类器进行该确定,该合适的分类器可以将输入数据或输入数据的一部分分类为与目标相关或与该目标无关。在一个更具体的示例中,数据处理引擎124可以选择数据的一个或多个部分,其中数据的每个部分可以对应于任何合适的时间段,例如几分钟、几个小时、周中的一天、几天、一周、一个月等。在一些实施方式中,可以以任何合适的方式识别数据的部分。例如,可以使用可以将数据的一部分分类为与目标相关的分类器进行确定。在另一示例中,可以使用可以将数据的一部分分类为可能指示用户的情感状态的分类器进行确定。在另一示例中,可以使用可以将数据的一部分分类为与所推荐动作相关(例如,可用于确定该动作可能对用户的情感状态有作用的可能性的数据,可用于确定何时执行该所推荐动作的数据等)的分类器进行确定。应当注意的是,该分类器可以使用任何合适的机器学习算法进行训练,诸如支持向量机、决策树、贝叶斯(Bayesian)模型等。在一些实施方式中,在从多个数据源110选择数据的各个部分后,数据处理引擎124可以向数据的每个部分指派权重。例如,对于特定目标或目的,数据处理引擎124可以确定来自特定数据源110的社交数据将被加权,使得其对所推荐动作或输出的确定具有更大的影响。这可能是因为与用户有关并且指示该用户的情感状态的社交数据被认为与结交新朋友的目的高度相关。在另一个示例中,这可能是因为社交数据倾向于提供用户的情感状态的准确指示(例如,由于用户设备的用户频繁在多个社交联网网站上公布状态更新),并且因为在推荐诸如将车辆驾驶到特定位置的特定动作之前,数据处理引擎124可以考虑这样的社交数据。在另一个合适的示例中,可以由用户设备102的用户设置权重,使得该用户可以调节应用以及如何处理与该用户有关的特定类型的数据。在一个更具体的示例中,该用户可以设置与社交数据相关联的权重,使得降低社交数据在确定动作或输出中的效果。在一些实施方式中,数据处理引擎124可以生成与用户有关的一个或多个简档。例如,数据处理引擎124可以使用所接收的数据来生成用于将用户设备102的用户指派至群组(例如,针对特定目的或目标的相似用户的群组)的基线简档。在该示例中,数据处理引擎124还可以为个体用户和/或用户组生成标的简档,其可以包括与已经指示实现特定目的或目标的相似用户相对应的数据。替选地,数据处理引擎124可以生成包括与已经指示未能达成特定目的或目标的相似用户相对应的数据的标的简档。作为另一示例,数据处理引擎124可以使用接收的数据,并且在一些实施方式中,请求和接收更新的数据以生成与用户相关联的、指示该用户的当前身体状态或情感状态的当前简档。可以使用任何合适的方法来生成与用户设备102的用户或用户组有关的任何适当的简档。例如,数据处理引擎124可以生成指示用户在给定时间段内的身体状态或情感状态的一个或多个简档。例如,可以基于被确定为指示用户在给定时间段期间的身体状态或情感状态的数据来生成与该用户相关联的基线简档,该给定时间段诸如上午、给定日、工作日、周末、给定周、季节、和/或任何其他合适的时间段。在另一个示例中,数据处理引擎124可以生成指示用户的以下信息的一个或多个简档:针对诸如平常工作日、休假日的给定场境的身体状态或情感状态,当用户设备102位于用户的家庭附近时的情绪和/或行为、当用户设备102指示用户设备102附近的温度低于65度时的情绪和/或行为等。在一些实施方式中,服务器120可以包括输出推荐引擎126以用于确定和/或提供可能影响或作用于用户的身体状态或情感状态的所推荐动作。例如,响应于将与该用户相对应的当前简档与标的简档相比较,输出推荐引擎126可以针对该用户确定所推荐动作。在一个更具体的示例中,输出推荐引擎126可以基于对指示该用户具有特定目的的当前简档和相似用户的标的简档进行比较,确定可能对该用户的身体状态或情感状态有作用的一个或多个所推荐动作,并且在执行该所推荐动作时可以帮助用户达到特定目标,标的简档包括与已经确定他们已经实现了特定目的的用户有关的信息以及与已经确定他们没有实现特定目的的用户有关的信息。应当注意,在一些实施方式中,输出推荐引擎126可以致使在用户设备102或与用户相关联的任何其它合适的计算设备上执行任何合适的推荐动作。如图2所示,动作或输出可以包括:触觉或触敏反馈、感官反馈(例如,图像内容、光示意(lightcue)、音乐、视频消息、视频内容等)、氛围相关反馈(例如,使得从合适的设备发出气味、通过照明或家庭自动化系统修改照明方案等)和/或内容相关动作(例如,呈现文本、图像内容、视频内容、音频内容)等。例如,输出推荐引擎126可以确定要将消息呈现给与用户相关联的用户设备102,以提示该用户参与活动。例如,这可以帮助该用户达到特定的目的或目标。在一个更具体的示例中,输出推荐引擎126可以确定该消息将以特定形式(例如,通过电子邮件、文本消息、移动通知、帐户通知、用户界面、和/或以任何其它合适的方式)和/或在特定时间(例如,基于该用户的当前身体状态或情感状态)呈现。作为另一示例,输出推荐引擎126可以确定将在用户附近创建气氛。例如,这可以帮助该用户达到特定目的或目标和/或影响该用户的确定的情感状态。在一个更具体的示例中,基于对该用户的当前身体状态或情感状态的确定,输出推荐引擎126可以使得在与该用户相关联的用户设备102上呈现音乐内容、已被标注为是积极内容的新闻文章的馈送、和/或已被标注为有趣内容的图像内容的馈送。在另一个更具体的示例中,输出推荐引擎126可以使得在连接到用户设备的具有音频输出设备的设备上呈现声音效果(例如,雨声),可以使用连接到用户设备的照明系统调整该用户周围的环境光,和/或可以通过在使用用户设备102的用户附近激发气味发生器来使得发出气味。参考图1,可以使用任何合适的用户设备102来执行来自输出推荐引擎126的所推荐动作。例如,用户设备102可以是可穿戴计算设备、电视、监视器、液晶显示器、三维显示器、触摸屏、模拟触摸屏、游戏系统、便携式DVD播放器、便携式游戏设备、移动电话、个人数字助理(PDA)、音乐播放器、平板计算机、膝上型计算机、桌面型计算机、移动电话、媒体播放器、照明设备、气味发生器、和/或可用于执行一个或多个所推荐动作的任何其它合适的设备。应当注意,在一些实施方式中,用户设备102可以具有应用编程接口,使得由输出推荐引擎126确定的所推荐输出可被传送到诸如家庭自动化系统的合适系统,其中该系统使用应用编程接口来使得该所推荐输出在一个或多个用户设备102上执行。在一个更具体的示例中,服务器120可以确定与用户设备相关联的用户具有特定的目的或目标(例如,在用户工作日的过程中得到更多的锻炼)。响应于从用户设备102的用户接收到访问来自各个设备和其他数据源的社交联网数据、位置数据、和日历数据的核准,服务器120可以基于该社交数据来确定该用户设备的用户当前正感觉精力相对低,并且从该日历数据确定该用户具有在特定时间排程并且将发生在特定位置的会议(在当前时间和会议之间没有事务)。服务器120可以使用这样的数据并考虑到历史数据。例如,基于来自与该用户相关联的可穿戴计步器的生物计量数据,服务器120可以确定用户设备102的用户在本月至今或本周至今已经参与的活动量,并确定该用户是否可能达到指示的目的或目标或可能达到平均活动水平。在另一示例中,基于位置信息,服务器120可以确定该用户使用汽车服务以在距离与该用户相关联的工作位置十个街区的特定位置处参加会议的频率。在又一示例中,基于社交联网服务上声明的兴趣和/或喜好,服务器120可以确定用户设备102的用户喜欢花。在另一示例中,使用地图测绘数据,其确定与该用户相关联的工作位置与会议位置之间的路线。考虑到来自多个设备和/或数据源的数据的这些部分,服务器120可以使得在一个或多个设备上执行一个或多个所推荐动作,诸如:对用户设备的提示用户在五分钟内从附近咖啡店购买一杯咖啡的通知;对用户设备的提示用户使用特定路线步行到会议的通知,该特定路线包括在沿着所提供的路线的位置访问最近开的兰花店。替选地,服务器120可以在会议之前的特定时间使得位于用户设备102附近的气味发生器发出薰衣草气味。在另一替选示例中,服务器120可以在会议之前的特定时间,在致使提示该用户使用特定步行路线步行到会议的通知之前,确定用户设备102附近的天气(例如,在确定降水几率大于特定阈值后,在基于所确定的温度和关于认为什么是“太热”的用户数据确定对于用户来说“太热”后等)。继续该示例,服务器120可以确定该用户设备的用户已经访问了该兰花店和/或该用户正如所推荐动作所推荐地步行到该咖啡店,并且服务器120可以使用该咖啡店的应用编程接口来请求该咖啡店中的消费者的数目,并且可以确定该用户在该咖啡店可能具有特定的等待时间。然后,服务器120可以使用其相应的应用编程接口来确定相同连锁经营(franchise)内的另一咖啡店具有较少的等待时间并且靠近用户设备102的用户(例如,离用户设备102提供的当前位置一个街区)。服务器120可以向用户设备102传送更新或修订的所推荐动作。在一些实施方式中,应当注意,服务器120可以识别在用户的特定接近度内的用于执行所推荐动作的一个或多个用户设备102或其他合适的设备(例如,电视、音频系统、媒体播放器、气味发生器、照明系统等)。例如,服务器120可以使得用户设备102检测连接到用户设备102的设备并且检测在用户设备102附近的设备(例如,使用设备发现功能)。作为响应,服务器120可以使得被认为是令人放松的歌曲的歌曲从服务(例如,媒体流送服务)流送并使用与该用户相关联的设备(例如,移动电话、媒体播放器等)输出。此外,服务器120可以响应于确定该用户喜欢薰衣草(例如,基于在用户的社交网络页面上发布的信息)并且基于该用户当前的情感状态,使得使用气味发生器在特定时间发出薰衣草气味。在一些实施方式中,服务器120可以基于用户的组合的身体状态或情感状态来个性化针对均具有对应用户设备的多个用户的服务。例如,用户可以是位于相同位置(例如,基于位置信息或者在线日历,咖啡店、会议室、接近给定用户、城镇、办公室等)的具有用户设备的用户组、在社交联网服务上彼此连接的具有用户设备的用户组、被确定为相似用户的具有用户设备的用户组、和/或任何其他合适的用户。返回参考图1,系统100可以包括一个或多个服务器120。服务器120可以是任何合适的一个或多个服务器,其用于提供对本文所述的用于基于来自多个数据源的情绪信息和/或行为信息来个性化服务的机制的访问,服务器120诸如处理器、计算机、数据处理设备、或这样的设备的任何合适的组合。例如,用于基于来自多个数据源的情绪信息和/或行为信息来个性化服务的机制可以分布在多个后端组件和多个前端组件和/或用户接口中。在一个更具体的示例中,可以在一个或多个服务器120上执行后端组件(诸如用于识别用户的目的、从一个或多个数据流中选择数据的特定部分、生成简档信息、针对与该用户相关联的一个或多个设备确定所推荐动作等的机制)。在另一个更具体的示例中,可以在一个或多个用户设备102和/或显示设备110上执行前端组件(诸如以内容的形式呈现所推荐动作、执行所推荐动作、检测用户设备在其他设备附近等)。在一些实施方式中,用户设备102、数据源110和服务器120中的每一个可以是以下中的任何一个:诸如计算机的通用设备,或诸如客户端、服务器等的专用设备。这些通用或专用设备中的任何一个可以包括任何合适的组件,例如硬件处理器(其可以是微处理器、数字信号处理器、控制器等)、存储器、通信接口、显示控制器、输入设备等。例如,用户设备102可以被实现为智能电话、平板计算机、可穿戴计算机、车辆计算和/或娱乐系统(例如,在汽车、船、飞机或任何其它合适的载具中使用的)、膝上型计算机、便携式游戏控制台、电视、机顶盒、数字媒体接收器、游戏控制台、恒温器、家庭自动化系统、电器、任何其他合适的计算设备、或其任何合适的组合。通信网络106可以是任何合适的计算机网络或这样的网络的组合,包括互联网、内联网、广域网(WAN)、局域网(LAN)、无线网络、Wi-Fi网络、数字订户线路(DSL)网络、帧中继网络、异步传输模式(ATM)网络、虚拟专用网络(VPN)、对等连接等。通信链路104、108、和112中的每个链路可以是适于在用户设备102、数据源110、和服务器120间传送数据的任何通信链路,诸如网络链路、拨号链路、无线链路、硬连线链路、任何其它合适的通信链路、或者这样的链路的任何合适的组合。注意,在一些实施方式中,可以使用多个服务器120来提供对与本文所描述的用于基于来自多个数据源的情绪信息和/或行为信息来个性化服务的机制相关联的不同机制的访问。例如,系统100可以包括:数据选择服务器120,其促进选择来自多个数据源的指示用户的情感状态的数据;简档服务器120,其生成用于将用户指派到用户组中的基线简档,基于所指派的用户组并基于该用户的目的或目标来确定标的简档,生成表示该用户的当前简档,以及将该当前简档与该标的简档相比较;推荐服务器120,其确定可以有可能对该用户的情感状态有作用和/或可以使该用户更接近目的或目标的一个或多个所推荐动作;分发服务器120,其使得所推荐动作被执行(例如,向特定设备传送内容,向家庭自动化系统传送指令等);和/或用于执行本文所述的机制的任何合适功能的任何其它合适的服务器。图3示出了根据所公开的主题的一些实施方式的,可用于实现图1中所描绘的用户设备102和服务器120中的一个或多个的硬件的示例300。参考图3,用户设备102可以包括可以互连的硬件处理器302、显示器/输入设备304、存储器306、和发射器/接收器308。在一些实施方式中,存储器306可以包括用于存储用于控制硬件处理器302的用户设备程序的存储设备(诸如计算机可读介质)。硬件处理器302可以使用用户设备程序来执行本文所描述的用于使用多个数据源基于情绪和/或行为来个性化服务的机制和/或与其进行交互,该机制可以包括呈现一个或多个推荐界面(例如,用于输入目的或目标信息,用于提供从一个或多个数据源访问数据的核准,用于选择数据源等),并且可以包括执行所推荐动作。在一些实施方式中,硬件处理器302可以使用例如发射器、接收器、发射器/接收器、收发器、和/或诸如发射器/接收器308的任何其它合适的通信设备,通过通信链路104或任何其它通信链路来发送和接收数据。显示器/输入设备304可以包括触摸屏、平板显示器、阴极射线管显示器、投影仪、一个或多个扬声器、和/或任何其它合适的显示和/或演示设备、和/或者可以包括计算机键盘、计算机鼠标、一个或多个物理按钮、麦克风、触摸板、语音识别电路、触摸屏的触摸界面、相机、诸如光学运动传感器和/或加速度计的运动传感器、温度传感器、近场通信传感器、生物计量数据传感器、和/或任何其它合适的输入设备。发射器/接收器308可以包括用于发送和/或接收用于呈现内容的指令、与当前控制水平有关的信息、对位置信息的请求等的任何合适的发射器和/或接收器,并且可以包括用于与诸如图1所示的网络106的一个或多个通信网络进行对接的任何合适的硬件、固件和/或软件。例如,发射器/接收器308可以包括:网络接口卡电路系统、无线通信电路系统、和/或任何其他合适类型的通信网络电路系统;一个或多个天线;和/或用于发射和/或接收信号的任何其它合适的硬件、固件和/或软件。服务器120可以包括可以互连的硬件处理器312、显示器/输入设备314、存储器316和发射器/接收器318。在一些实施方式中,存储器316可以包括用于存储用于控制硬件处理器312的推荐程序的存储设备(诸如计算机可读介质)。硬件处理器312可以使用推荐程序来执行本文描述的机制和/或与其交互以用于:从多个数据源获得与计算设备的用户的目的相关联的信息;识别用户设备的用户的目的;从多个数据源接收与该用户相关联的信息;确定来自所述多个数据源中的每一个的信息的一部分与具有所识别的目的的该用户相关;基于所识别的目的和来自多个数据源中的每一个的信息的一部分,将该用户指派至多个群组中的一个用户组;基于所识别的目的和所指派的群组来确定与所述用户相关联的标的简档;基于来自多个数据源中的每一个的信息的一部分,为该用户生成当前简档;将该当前简档与该标的简档进行比较以确定所推荐动作,其中该所推荐动作被确定为有可能对该用户的情感状态有作用;使得该所推荐动作被执行(例如,在由该用户拥有或位于该用户附近的设备上执行);确定连接到所述计算设备的一个或多个设备,其中所述一个或多个设备中的每一个具有一个或多个设备能力;和/或通过通信链路108发送和接收数据。在一些实施方式中,推荐程序可以使得硬件处理器312例如执行下面结合图2所述的过程400的至少一部分。在一些实施方式中,硬件处理器312可以使用例如发射器、接收器、发射器/接收器、收发器、和/或诸如发射器/接收器318的任何其它合适的通信设备,通过通信链路114或任何其它通信链路来发射和接收数据。显示器/输入装置314可以包括触摸屏、平板显示器、阴极射线管显示器、投影仪、一个或多个扬声器、和/或任何其它合适的显示和/或演示装置,和/或可以包括计算机键盘、计算机鼠标、一个或多个物理按钮、麦克风、触摸板、语音识别电路、触摸屏的触摸界面、相机、诸如光学运动传感器和/或加速度计的运动传感器、温度传感器、近场通信传感器、生物计量数据传感器、和/或任何其它合适的输入设备。发射器/接收器318可以包括用于发送和/或接收要呈现的内容、对显示设备110的状态信息的请求、对内容的请求、对位置信息的请求等的任何合适的发射器和/或接收器,并且可以包括用于与诸如图1所示的网络106的一个或多个通信网络对接的任何合适的硬件、固件和/或软件。例如,发射器/接收器318可以包括:网络接口卡电路系统、无线通信电路系统、和/或任何其他合适类型的通信网络电路系统;一个或多个天线;和/或用于发射和/或接收信号的任何其它合适的硬件、固件和/或软件。在一些实施方式中,服务器120可以以一个服务器实现,或者可以被分布为任何合适数目的服务器。例如,可以在各个位置实现多个服务器120以提高可靠性和/或提高该服务器可以与用户设备102和/或数据源110进行通信的速度。附加地或替选地,如上面结合图1所述,可以实现多个服务器120以执行与本文所描述的机制相关联的不同任务。转到图4,示出了根据所公开的主题的一些实施方式的、使用来自多个数据源的数据基于用户设备的用户的身体状态或情感状态来个性化计算机化服务的过程的说明性示例400。应当注意,过程400可以个性化计算机化服务,其中可以使用来自多个数据源的数据来确定计算机化服务对具有用户设备的用户的身体状态或情感状态的作用。用户的情感状态可以是复杂的现象。情感可以是与生理活动相关联的精神状态,并且可以受到内部或外部环境条件的影响。情感可以与用户的个性、情绪、气质、性情、和动机相关联。例如,情感状态可以包括快乐、满足、平静、惊喜、愤怒、恐惧、悲伤、抑郁、厌恶、疲倦、焦虑、匆忙等。在一些示例中,情感状态可以大致分为积极和消极的情感,其中积极情感可以包括快乐和满足,并且消极情感可以包括愤怒和抑郁。此外,内部环境条件的示例包括旧的记忆,并且外部刺激的示例包括由于各种环境因素引起的压力或压力的减轻。还应当注意,用户的身体或情感状态可以被认为是在某个时间点的该用户的身体特征或情感的总体快照或视图。由于用户的身体状态或情感状态可以涉及多个因素,所以身体状态或情感状态即使在短时间段内也会发生波动。通过使用来自多个源的与用户有关的数据,可以预测该用户的身体状态或情感状态,其可用于确定是否在给定时间推荐特定动作。此外,可以基于来自多个源的与用户有关的新的或更新的数据来预测该用户的身体状态或情感状态的改变。更进一步地,可以使用该用户的身体状态或情感状态的改变来评估对该用户所拥有的或位于该用户附近的设备的所推荐动作是否可能使该用户更接近目标或目的。如所图示,在410处可以通过接收与特定目的或目标有关的用户输入来开始过程400。特定目的或目标的说明性示例可以是得到更多的锻炼(例如,一般地增加当前活动水平、得到每日至少1小时的任何形式的锻炼等)、减重(例如,一般地减重,三个月内减轻10磅等)、结交更多的朋友、实现特定的情感状态(例如,感觉更有成效、感觉压力较小等)等。在一个更具体的示例中,响应于从用户设备的用户接收到从社交联网服务访问与该用户有关的社交数据的核准,过程400可以从该用户在社交联网服务上发布的社交媒体帖子中提取关键字来确定该用户的一个或多个目的。在该示例中,可以从社交联网服务接收与该用户相关的社交数据,其可以包括具有文本、图像内容、视频内容、和/或音频内容的消息或帖子,由连接到该用户的其他用户公布的消息、和场境信息——诸如定时信息、位置信息、以及连接到该用户的一个或多个用户的宣布的情绪或情感状态。在另一个更具体的示例中,响应于在与该用户相关联的计算设备上安装推荐应用,该推荐应用可以在该计算设备上呈现提示该用户从用户界面选择目的的推荐界面。例如,该推荐界面可以被呈现为推荐卡、通知、或提示该用户指示目的或目标的任何其他合适的用户界面。可以在计算设备上呈现的推荐界面的说明性示例在图5中示出。如图所示,在一些实施方式中,诸如移动设备500的用户设备102可以提示用户在推荐界面510中输入目的,例如“getmoreexercise(得到更多锻炼)”或“improveyourmood(改善您的情绪)”。推荐界面510中的建议的目的可以基于任何合适的判据(例如,默认目的、流行目的、基于输入到用户设备中的最近搜索来选择的目的、基于与用户设备相关联的位置信息来选择的目的、基于从用户设备的用户核准的数据源推断的属性的目的等)。如图所示,可以提供建议的目的的理由,例如“Basedonyourrecentsearches(根据您最近的搜索)”和“Basedonyourrecentposts(根据您最近的帖子)”。附加地或替选地,推荐界面可以向移动设备500的用户呈现搜索栏位,以提供与该用户期望实现的目的或目标有关的关键字。返回图4,在420处,推荐系统可以基于所确定的目的来确定用户设备的用户的一个或多个目标。例如,响应于确定该目的是减重,推荐系统可以确定与减重目的相关联的目标——例如,第一周实现第一活动水平和第二周实现第二活动水平,第一月实现平均活动水平,每天早上在特定时间醒来,每天结束时达到休息量阈值,工作日在特定时间吃饭等。如下所述,推荐系统可以生成各个简档,诸如均具有用户设备的相似用户的简档、具有用户设备的已经指示他们已经实现了确定的目的或目标之一的用户的简档、具有用户设备的已经指示他们未能实现确定的目的或目标之一的用户的简档等。在这个示例中,推荐系统可以处理这些简档来确定与目的相关联的目标(例如,被认为与所述用户相似的用户实现了哪些目标,在特定时间量内实现了哪些目标等)。在一个更具体的示例中,响应于选择推荐界面510中呈现的目的之一,推荐系统可以确定与所选择的目的相关联的多个目标,并且基于简档信息来选择这些目标中的一部分。在一些实施方式中,在430处推荐系统可以从多个数据源接收与用户相关联的任何合适的数据。例如,从一个或多个数据源,推荐系统可以接收和/或请求与一个或多个用户所参与的活动有关的数据,诸如散步以及使用具有社交服务的移动设备跨越的距离、使用具有社交服务的移动设备访问了与咖啡店相对应的位置、使用具有在线日历的移动设备参加了社交事件(例如,会议、聚会、体育赛事等)、使用具有在线日历和/或社交服务的移动设备参加了健身训练课程等。作为另一个示例,从一个或多个数据源,推荐系统可以接收和/或请求包括与活动有关的定时信息的数据,诸如该活动的持续时间、与该活动相对应的时间等。作为又一示例,推荐系统可以接收和/或请求数据,该数据包括给定时间段内(例如,一周中的一天、几天、工作日、周末等)由一个或多个用户参与的活动的发生次数、参与给定活动的用户的数目、和/或与关于给定活动的频率信息有关的任何其他适合的信息。在一些实施方式中,推荐系统可以接收和/或请求与用户在社交联网服务上发布的内容和/或信息有关的数据。例如,该数据可以包括该用户在服务(例如,社交联网服务、消息收发服务、视频共享服务、照片共享服务、电子商务服务等)上发布的一个或多个情绪状态。作为另一示例,该数据可以包括用户在社交联网服务上发布的评论、消息、帖子、位置、和/或任何其他合适的内容。作为又一示例,该数据可以包括与社交联网服务上的用户的一个或多个社交联系有关的任何合适的信息、由社交联系公布的内容、与社交联系相关联的位置等。在一些实施方式中,推荐系统可以接收和/或请求和与一个或多个媒体内容项的用户交互有关的数据。例如,该数据可以包括与该用户已经与之交互的媒体内容项有关的任何合适的信息。在一个更具体的示例中,该数据可以包括该媒体内容项的类型、该媒体内容项的描述、指向该媒体内容项的链接(例如,URL)、可以标识该媒体内容项的标识符(例如,URI、节目标识符等)、该媒体内容项的作者、与该媒体内容项有关的艺术家等。作为另一示例,该数据可以包括和与该媒体内容项的用户交互的类型有关的任何合适的信息,诸如消费该媒体内容项、经由社交联网服务或任何其他合适的服务发布该媒体内容项、与其他用户共享该媒体内容项、经由社交联网服务或任何其他合适的服务对该媒体内容项点赞、对该媒体内容项进行评论等。作为另一示例,该数据可以包括和与用户设备上的媒体内容项的用户交互有关的任何合适的定时信息,诸如该用户交互的持续时间、与该用户交互相对应的时间等。在一些实施方式中,推荐系统可以接收和/或请求与用户设备的用户相关联的生物计量数据。例如,响应于接收到从包括传感器的数据源访问生物计量数据的核准,该生物计量数据可以包括与用户相关联的任何合适的生理参数,例如心率、呼吸速率、血压、体温、皮肤湿度等。作为另一个示例,该生物计量数据可以包括生理参数的范围,诸如心率范围、血压范围等。在一些实施方式中,推荐系统可以接收和/或请求与用户相关联的位置数据。例如,响应于接收访问位置信息的核准,该位置数据可以包括可以用于估计与该用户相关联的计算设备的位置的任何合适的信息,诸如与计算设备相关联的标识符(例如,IP地址、设备标识符、媒体地址控制(MAC)地址、序列号、产品标识符等)、由计算设备生成的GPS信号、与计算设备相关联的Wi-Fi接入点、关于计算设备连接到的小区塔的信息等。作为另一示例,该位置数据可以包括可以用于估计该用户的位置的任何合适的信息,诸如由该用户使用合适的服务(例如,社交联网服务)发布的位置、该用户意图访问的位置(例如,与使用在移动设备上执行的日历应用排程的社交事件、关联于该用户的社交网络帐户等相关联的位置)等。在一些实施方式中,推荐系统可以呈现诸如图6所示的推荐界面的推荐界面,其中向移动设备500的用户提示供选择的数据源。例如,可以通过在移动设备500上执行的推荐系统检测各个数据源,并且响应于检测到该各个数据源,可以提示该用户选择哪些数据源来获得与该用户相关联的数据。如图6所示,推荐界面提示移动设备500的用户从对推荐应用可用的各个数据源中进行选择,其中该用户已经指示从移动设备500访问位置数据和从已经使用移动设备500认证的服务访问社交数据的许可。在一个更具体的示例中,推荐系统可以提示该用户提供访问特定数据源的核准,并选择哪些数据源可以包括与实现目标或目的相关的数据。在该示例中,推荐系统可以提供界面,该界面提示用户设备的用户提供用于访问特定数据源的凭证,例如用户名和密码。在一些实施方式中,推荐系统可以响应于选择用于获得用户的一个或多个数据源来提示用户提供附加信息,诸如使用推荐界面610来提供。例如,为了生成该用户的基线简档,推荐系统可以确定可以使用从所选数据源获得的数据导出或满足基线简档的某些部分,且该基线简档的其他部分仍然不完整。作为响应,推荐系统可以生成提示该用户提供这样的信息的界面——例如,如果目标是“减重”,则这样的界面可以提示移动设备500的用户输入身高值和重量值。返回参考图4,在440处推荐系统可以基于该目的或确定的目标来选择从多个数据源接收的数据的部分。例如,推荐系统可以从多个数据源(例如,使用一个或多个应用编程接口)接收数据,并且可以确定接收的数据将被分类成各个数据类别。例如,这些类别可以包括通用数据、场境数据、社交数据、和个人数据。通用数据的示例可以包括关于用户使用的一个或多个服务(例如,社交联网服务、电子邮件服务、消息收发服务、视频共享服务等)的信息,与用户相关联的搜索历史(例如,用户输入的关键字)等。场境数据的示例可以包括:关于用户设备102的位置的信息、交通信息、基于来自用户设备102的位置信息的天气信息(例如,“晴”、“冷”等)、给定位置内的人口密度信息、与由数据源110提供的数据有关的位置场境(例如,“工作”、“家”、“假期”等)、与位于用户设备附近或连接到该用户设备的设备有关的信息、和/或可以提供与用户有关的场境信息的任何其它合适的信息。社交数据的示例可以包括:与涉及多个用户的社交事件有关的信息(例如,使用社交联网服务、日历应用等排程的会议)、由使用服务(例如,社交联网服务、视频共享服务、照片共享服务等)的一个或多个用户发布的内容和/或信息、关于用户的一个或多个社交联系的信息、和/或可以被分类为社交数据的任何其它合适的信息。个人数据的示例可以包括用户的个人兴趣(例如,在社交联网服务上可用的用户声明的兴趣、用户消费和/或点赞的媒体内容等)、用户生成的一个或多个话语、和/或可被视为个人的任何其他合适的信息。在一些实施方式中,推荐系统可以为每个数据类别创建数据流。例如,响应于将来自多个服务的特定数据归类为是社交数据,推荐系统可以在接收到该社交数据时聚合该社交数据,并创建包含来自多个源的加时间戳的社交数据的社交数据流。替选地,在接收到来自用户的访问特定数据源的核准之后,推荐系统可对从该源接收的数据进行归类,并将该数据放入与该数据源相关联的数据流中,诸如来自特定社交源的加时间戳的社交数据的社交数据流。例如,如图7中所示,可以获得来自多个数据源的多个数据流——例如,通用数据(G5和G13)、个人数据(P1和P42)、社交数据(S9和S25)、以及场境数据(C33和C57)。在一些实施方式中,推荐系统可以通过确定为了确定例如可以影响用户的身体状态或情感状态的所推荐动作,要分析哪些类别的数据和要使用该数据的哪些部分,来选择数据的特定部分。响应于针对用户设备的用户在410处确定目的或在420处确定目标,推荐系统可以选择可包括与目的或目标相关的数据的特定类别的数据。例如,推荐系统可以确定社交数据和场境数据可能与减重的目的相关。响应于在430处从多个数据源分析与用户有关的数据,推荐系统可以选择来自特定数据源的数据的特定类别,并且选择指示或代表用户的身体状态或情感状态的数据的特定时间部分。例如,推荐系统可以响应于从用户设备的用户接收到从多个数据源接收与该用户有关的数据的核准,确定在工作日上午9点至下午5点之间该用户设备通常不关于社交数据源被使用,并且确定来自该用户设备和连接到该用户设备的设备的场境数据很可能代表该用户的情感状态。应当注意的是,使用接收到的数据和/或确定的目的和目标,推荐系统可以选择不同的数据子集以供进行不同的确定——例如,用于推荐特定动作的数据子集、指示在一天的特定时间期间用户的情感状态的数据子集、指示用户在普通一天期间的情感状态的数据子集、代表在给定日期间用户的活动的数据子集等。在一些实施方式中,每个目的或目标可以具有用于检索与用户有关并且与该目的或目标相关的数据的相关联的数据模板。例如,响应于在410处确定目的或在420处确定目标,推荐系统可以检索包括特定数据字段的相关联的数据模板,该特定数据字段诸如:特定的社交相关数据字段(例如,从社交帖子提取的关键字和关联时间)、场境相关的数据字段(例如,与每个社交帖子的时间相对应的来自与该用户相关联的多个设备的位置信息)、和通用数据字段(例如,用户设备已经安装的应用的类型和该用户设备附近的设备的设备简档)。如上所述,响应于确定该特定数据字段的信息可能无法使用来自数据源的数据完成或导出,推荐系统可以提示该用户输入这样的缺失数据(例如,通过生成用户界面提示该用户输入数据和/或输入关于该用户作出的推断的准确性)。应当注意,虽然推荐系统可以基于特定的数据子集来进行确定,并且可以检索请求数据的特定部分的数据模板,但诸如用户设备102的用户设备的用户可以被提供有用于设置使用哪些数据源(例如,特定社交联网服务、特定移动设备等)以及推荐系统使用哪些类型的数据(例如,来自特定社交联网服务的社交信息而不是被确定为包括个人信息的数据、来自社交联网服务的社交帖子信息而不是来自社交消息收发服务的关系信息等)的控制。例如,可以向用户提供选择来自特定数据源的特定类型的数据的机会,该数据源可以包括与特定目的或目标相关的数据。在一些实施方式中,使用来自多个数据源的数据的所选择部分,推荐系统可以在450处确定用户的基线简档。例如,推荐系统可以处理数据的所选择部分并生成与每个目的或目标相关联的一个或多个基线简档。在一个更具体的示例中,与目标相关联的基线用户简档可以包括与该用户的身体状态或情感状态有关的任何合适的信息(例如,“快乐”、“不快乐”等)以及关于一个或多个用户行为或习惯的信息(例如,通勤、中午休息、周会、锻炼团体等)。在另一个更具体的示例中,基线用户简档可以使用心率信息、温度信息、流电皮肤(galvanicskin)响应信息、位置信息、和社交帖子信息,将这样的信息与情感状态相匹配,并且建立给定的时间段、日、周、季节当中的情感状态的基线模式等在一些实施方式中,使用来自多个数据源的数据的所选择部分,推荐系统可以确定用户的总体基线简档,其包括多个子简档——例如,使用该数据预测该用户的当前情感状态的子简档、描述该用户的典型活动水平的子简档、描述一天中特定时间的该用户的典型行为的子简档等。可以生成任何合适数目的子简档以创建该用户的总体基线简档。还应当注意,在一些实施方式中,推荐系统可以针对形成该用户的总体基线简档的每个子简档使用不同的数据子集。在一些实施方式中,在450处推荐系统可以基于基线简档将该用户指派至用户组。例如,推荐系统可以识别已经实现了目标或目的的用户组,以及一个或多个与该群组中的用户相关联的行为和/或由该群组中的用户执行的动作。在另一示例中,推荐系统可以识别未能实现目标或目的的用户组以及一个或多个与该群组中的用户相关联的用户行为和/或该群组中的用户执行的动作。然后,推荐系统可以将特定行为和/或动作与该用户的目标相关联。在一些实施方式中,推荐系统可以使用机器学习技术来识别和聚类相似的用户简档。例如,推荐系统可以使用机器学习技术来确定哪个群组简档和与该用户相关联的基线简档最相似,并且作为响应,可以将该用户置于与该群组简档相关联的群组中。在另一个示例中,推荐系统可以使用机器学习技术来确定哪个群组简档包括与用户设备的用户相似的具有该用户设备的用户并且包括对达成相同目的感兴趣的用户。在另一个示例中,推荐系统可以使用机器学习技术来确定哪个群组简档具有包括形成该用户的总体基线简档的子简档的公共特征的子简档。应当注意,可以使用任何合适的机器学习技术,例如支持向量机、决策树、贝叶斯模型等。应当注意,在一些实施方式中,可以使用其他信息来将相似的用户聚组在一起。例如,用户组可以包括具有处于相似地理邻近度的用户设备的用户,例如与特定用户在同一个城市的用户。作为另一示例,该用户组可以包括在一个或多个社交联网服务上彼此连接的用户。还应当注意,在一些实施方式中,过程400可以返回到420,其中推荐系统可以基于所指派的用户组来确定用于实现特定目的的一个或多个目标。例如,对于特定目的,推荐系统可以检索与已经指示期望达成该目的的相似用户的所指派群组相关联的一个或多个目标。在另一个示例中,为了特定目的,推荐系统可以对与目的相关联的目标进行排名,其中该排名基于来自用户组中的用户关于哪些目标帮助该用户达到目的的输入。然后,推荐系统可以为用户选择可能促进该用户达到目的的目标中的至少一部分。然后,所选择的目标可以在诸如图8所示的推荐界面800的推荐界面中呈现给用户。在该示例中,推荐系统可以向移动设备500的用户提供移除和/或添加附加目标的机会。在一些实施方式中,推荐系统可以将在450处生成的基线简档用于其他确定。例如,推荐系统可以确定包括来自多个数据源的与用户有关的更新数据的当前简档是否偏离先前生成的基线简档。例如,基线简档与当前简档之间的偏差可以包括对特定活动的频率(例如,锻炼频率)的比较以及对特定行为有关的定时信息的比较(例如,用户每天醒来的时间)。这样的偏差可以指示数据或基于数据的这样的确定可能不指示用户的情感状态(例如,响应于工作改变可以从用户检测到压力响应)。这样的偏差还可以指示推荐系统要更新基线简档和/或更新将用户指派至另一用户组(例如,随着用户接近目标或目的,随着用户的行为随时间推移而变化等)。在另一个示例中,这样的偏差可以指示推荐系统要推荐可以将用户返回到基线简档的动作。在一个更具体的示例中,由推荐系统生成的基线简档可以包括与用户相关联的行为和/或活动(例如,消费古典音乐、参加健身课程等)、与每个行为和/或活动有关的定时信息(例如,花费在听古典音乐上的时间)、在给定时间段内特定行为和/或活动的频率(例如,一周期间使用用户设备的用户听古典音乐的次数)、与行为和/或活动相关联的阈值(例如,用户倾向于一周至少听三次古典音乐每次至少三十分钟)等。在另一个更具体的示例中,由推荐系统生成的基线简档可以包括与用户相关的数据的任何合适的表示。例如,响应于接收到生物计量数据的特定部分,推荐系统可以确定该用户在办公室时的平均心率、在工作日燃烧的平均卡路里数、以及用户普通一日的活动曲线。还应当注意,可以生成多个基线简档并且将其与用户设备的用户相关联。例如,推荐系统可以使用与一个目标相关联的第一数据子集(例如,每天得到至少三十分钟的锻炼)生成基线简档,并且使用与另一个目标(例如,使用电子邮件应用少于特定的时间量)相关联的第二数据子集生成另一个基线简档。在另一个示例中,推荐系统可以在特定场境中生成基线简档,例如“工作”,并且在另一个场境中生成另一基线简档,例如“假期”。在一些实施方式中,在470处推荐系统可以基于所指派的群组、目标、和/或目的来生成标的简档。例如,对于特定目的,推荐系统可以识别和聚类其中已经确定用户已达到目标或目的的用户的用户简档。在另一个示例中,推荐系统可以识别和聚类其中已经确定用户未达到目标或目的用户的用户简档(例如,以确定哪些动作可能无法帮助用户达到特定目标或目的)。在另一个示例中,推荐系统可以识别和聚类该推荐系统先前已经帮助用户达成所声明的目标或目的的用户的用户简档。在一个更具体的示例中,推荐系统可以使用包括与已经达到特定目标或目的的用户有关的信息以及与未达到特定目标或目的的用户有关的信息的简档,来生成用于实现特定目标或目的的标的简档。在该示例中,推荐系统可以确定可以帮助用户达成特定目标或目的的动作、阈值、和其他信息——例如,已经确定实现在一个月内减轻10磅的目的的用户也已经每天行走至少一英里、早上六点醒来、晚上听古典音乐、并且在特定时间吃饭。例如,通过确定在已经指示实现特定目标或目的的用户之间的公共特征,推荐系统可以生成可用于向用户所推荐动作的标的简档。这些动作如果被执行则可能会影响用户的当前简档,使得该用户的当前简档更接近标的简档。返回参考图4,在一些实施方式中,在480处推荐系统可以基于来自多个数据源的更新数据来为用户生成当前简档。应当注意,与该用户相关联的基线简档和当前简档可以是动态简档,其可以使用来自多个数据源的更新数据生成。例如,响应于确定已经流逝特定时间段(例如,一分钟、一天等),推荐系统可以从多个数据源接收和/或请求更新的数据,并且为该用户生成当前简档。替选地,推荐系统可以继续使用基线简档。在一些实施方式中,在490处,推荐系统可以将当前简档与标的简档进行比较来确定所推荐动作。例如,这可以对用户的身体状态或情感状态有作用。基于目的或目标和简档信息,推荐系统可以确定将在用户设备、该用户所拥有的设备、或接近该用户设备的设备处执行哪个计算机化动作。在一些实施方式中,推荐系统可以确定在不同时间向用户设备的用户推荐的多个计算机化动作。例如,推荐系统可以确定用户具有在该用户的工作日的过程期间得到更多锻炼的特定目的。响应于从用户设备的用户接收到访问来自社交联网服务的社交联网数据、来自与该用户相关联的移动设备的位置数据、以及来自与该用户相关联的在线日历的日历数据的核准,推荐系统可以从社交数据确定该用户当前正感觉到精力相对较低,并且从日历数据确定该用户具有排程在特定时间并且将发生在特定位置的会议(在当前时间和该会议的时间之间没有事务)。推荐系统可以使用这样的数据并且将其他数据并入到动态用户简档中。例如,基于来自与该用户相关联的可穿戴计步器的生物计量数据,推荐系统可以确定该用户在本月至今或本周至今已经参与的活动量,并确定该用户是否可能达到指示的目的或目标或可能达到平均活动水平。在另一示例中,基于位置信息,推荐系统可以确定该用户使用汽车服务以在距离与该用户相关联的工作位置十个街区的特定位置处参加会议的频率。在又一示例中,基于社交联网服务上声明的兴趣和/或喜好,推荐系统可以确定用户设备的用户喜欢花。在另一示例中,使用地图测绘数据,推荐系统可以确定与该用户相关联的工作位置与会议位置之间的路线。考虑到来自多个设备和/或数据源的数据的这些部分,推荐系统可以生成与该用户相关联的当前简档,并将其与可以与特定目的和/或特定用户组相关联的标的简档进行比较。基于该比较,推荐系统可以使得执行一个或多个所推荐动作,诸如提示该用户在五分钟内从附近咖啡店购买一杯咖啡的通知;提示该用户使用特定路线步行到会议的通知,该特定路线包括在沿着所提供的路线的位置访问最近开的兰花店。替选地,推荐系统可以在会议之前的特定时间使得位于用户设备附近的气味发生器发出薰衣草气味。在另一替选示例中,推荐系统可以在会议之前的特定时间,在致使提示该用户使用由诸如GoogleMaps的计算机地图路线服务识别的特定路线步行到会议的通知之前,确定用户设备附近的天气(例如,在确定降雨几率大于特定阈值后,在基于所确定的温度和关于认为什么是“太热”的用户数据确定对于用户来说“太热”后等)。继续该示例,推荐系统可以确定用户已经访问了该兰花店和/或该用户正如所推荐动作所推荐地步行到该咖啡店。然后,推荐系统可以使用与该咖啡店相对应的应用编程接口来请求该咖啡店中的消费者的数目,并且可以确定该用户在该咖啡店可能具有特定的等待时间。然后,推荐系统可以使用其相应的应用编程接口来确定相同连锁经营内的另一咖啡店具有较少的等待时间并且靠近该用户设备的用户(例如,离该用户设备提供的当前位置一个街区)。推荐系统可以向该用户设备传送更新或修订的所推荐动作。应当注意,这些多个计算机化动作中的每一个都可以与对应的触发事件相关联。例如,可以基于相关联的时间(例如,日内时间、之前事件的时间、直到下一个排程的事件开始的时间等)来触发诸如提示用户从附近的咖啡店购买咖啡的通知的动作。在另一个示例中,可以基于与用户设备相关联的位置信息(例如,检测到用户设备处于兰花店的特定接近度内)来触发诸如提示用户沿着到排程的会议的路线访问兰花店的通知的动作。在另一个示例中,推荐系统可以确定该动作是要以特定形式(例如,通过电子邮件、文本消息、移动通知、帐户通知、和/或以任何其它合适的方式)和/或在特定时间(例如,基于预测的用户情感状态)呈现的消息。返回参考图4,推荐系统可以使得一个或多个所推荐动作在495执行。所推荐动作的说明性示例在图2中示出。如图所示,动作或输出可以包括:触觉或触敏反馈、感官反馈(例如,图像内容、光示意、音乐、视频消息、视频内容等)、环境相关反馈(例如,使得从合适的设备发出气味、通过照明或家庭自动化系统修改照明方案等)和/或内容相关动作(例如,呈现文本、图像内容、视频内容、音频内容)等。在一个更具体的示例中,所推荐动作可以包括使用连接到用户设备的音频输出设备来在该用户设备的用户的背景中修改声音、消除声音、或增强声音。在另一个更具体的示例中,所推荐动作可以包括在用户设备的用户的环境中提供感官反馈(例如,光示意、音频示意、视频示意、气味示意等)以提供通知。在另一个更具体的示例中,所推荐动作可以包括基于与用户相关的历史信息的包括内容相关动作的怀旧导向(nostalgia-oriented)的反馈。在另一示例中,所推荐动作可以包括基于设备信息和与用户相关的其他信息(例如,用户界面元素的组织、文档或文件的定位等)的应用数据的优先级。在一些实施方式中,推荐系统可以基于所推荐动作来识别可以连接到或接近用户设备的用户的一个或多个设备以供执行所推荐动作。在一些实施方式中,推荐系统可以发起设备发现功能以确定哪个设备或哪些设备在用户设备附近。在一些实施方式中,可以响应于在用户设备上启动推荐应用或者响应于确定将使用设备来执行所推荐动作,启动这样的设备发现功能。附加地或替选地,在一些实施方式中,可以从任何合适的设备发起这样的设备发现功能,并且可以使用任何合适的信息来确定哪些设备在用户设备附近。在一些实施方式中,用户设备可以确定附近是否有任何输出设备。用户设备或在用户设备上执行的推荐应用可以使用任何合适的技术或技术组合来确定附近是否有任何输出设备。例如,用户设备可以传送包括消息的一个或多个信号,该消息请求附近设备(例如,接收到该信号的设备)以指示该设备接收到该信号的消息进行响应。在该示例中,该响应可以包括任何合适的设备信息,诸如设备位置信息和设备能力信息。作为另一示例,用户设备可以接收由设备传送的一个或多个信号,其包括指示显示设备可用于使得所推荐动作或输出被执行的消息。例如,可以使用诸如蓝牙的对等通信技术、使用RFID技术、和/或使用用于在该用户设备与一个或多个输出设备之间进行通信的任何其它合适的技术或技术的组合来传送这样的信号。在一些实施方式中,推荐系统可以向用户提供选择一个或多个可用于执行所推荐动作的输出设备的机会。例如,如图9所示,推荐界面910可以向用户提供选择、添加、或移除已被检测为连接到或接近移动设备500的各个输出设备的机会。如图所示,这样的输出设备可以包括电视设备、家庭自动化系统、平板计算设备、气味发生器、和汽车。在一些实施方式中,推荐界面可以向用户提供请求用户设备检测附加输出设备(例如,响应于移动到其他设备附近的不同位置)的机会。在一些实施方式中,推荐系统可以使得输出设备基于用户的身体状态或情感状态来执行特定动作。例如,在使用该输出设备执行特定动作之前,推荐系统可以确定用户的当前情感状态,并且在基于用户数据确定用户的情感状态是“愤怒”时,可以阻止在该输出设备上执行动作。在另一示例中,推荐系统可以确定:在确定用户的情感状态是除“愤怒”之外的任何状态时,可以在该输出设备上执行特定动作——例如,由于推荐系统已从历史用户数据确定当用户正经历“愤怒”的情感状态时,由一个或多个输出设备所采取的动作不会被很好地接收。附加地或替选地,在一些实施方式中,推荐系统可以使得该输出设备基于特定动作对用户的当前身体状态或情感状态的预测的作用来执行特定动作。例如,在使用该输出设备执行特定动作之前,推荐系统可以确定该动作对该用户的身体状态或情感状态的预测的作用,并且在确定预测的作用不在特定范围内(例如,与用户数据相关的情感状态保持不变)后,可以阻止在该输出设备上执行该动作。如图10所示并且结合上述示例,推荐系统可以向用户呈现包括多个所推荐动作的推荐界面1010。如图所示,在推荐界面1010中呈现的每个所推荐动作可以包括用于执行该所推荐动作的附加信息,例如响应于推荐该用户走到事件的位置的路线地图,或响应于推荐该用户购买一杯咖啡的商业信息。还如图所示,每个所推荐动作都可以与特定时间相关联,例如现在购买一杯咖啡,或者在下午1:45开始步行到该事件。在一些实施方式中,如上所述,可以由特定事件的发生来触发推荐界面1010中的每个所推荐动作,该特定事件诸如确定用户设备与特定位置相关联、确定用户设备指示该用户正沿着特定路线步行等。应当注意,在一些实施方式中,可以对多个用户执行所推荐动作。例如,如上所述,推荐系统可以将用户设备的用户置于具有相似基线简档的用户组中。此外,推荐系统可以基于其他合适的判据将用户置于用户组中,诸如与该用户具有建立的关系(例如,基于来自社交联网服务的社交数据)的其他用户或具有与该用户相似的位置简档的其他用户(例如,家庭成员、工作同事、朋友等)。在该示例中,推荐系统可以识别用户组内的一个或多个公共动作。然后,推荐系统可以选择要针对用户组执行的动作中的一个或多个。在一个更具体的示例中,推荐系统可以选择与预定数目的用户(例如,大多数用户、群组中的一定百分比的用户等)相关联的一个或多个公共动作,并且选择可能影响用户组的聚合情感状态的一个或多个公共的动作。在另一个更具体的示例中,推荐系统可以基于任何合适的判据来对公共动作进行排名,并且然后可以选择预定数目的动作(例如,前五个)并将其指定为群组动作。特别地,可以基于与用户相关联的当前简档与标的简档之间的偏差来对公共动作进行排名,使得推荐系统可以确定哪些动作具有影响用户组的聚合情感状态的较高可能性。例如,可以将高排名指派给与当前简档和标的简档之间的较大偏差相关联的公共动作。例如,推荐系统可以确定用户组的聚合的情感状态,并且然后可以确定用户组或该群组内阈值数目的用户位于特定输出设备附近。这可以包括确定与用户组中的用户相关联的位置信息在特定接近度内并且确定连接到与每个共同定位的用户相关联的用户设备或在其附近的输出设备。在一个更具体的示例中,群组动作可以包括可以被执行的任何合适的动作,诸如呈现合适的媒体内容(例如,可能影响用户组的聚合的情感状态的音乐播放列表)、调整用户组周围的环境光、调整用户组周围的环境噪声和气味等。一旦确定所推荐动作已被执行(例如,该设备呈现包括消费内容或执行特定活动的所推荐动作),推荐系统就可以提示用户设备的用户向推荐系统提供反馈。例如,推荐系统可以接收来自该用户的反馈,其指示所推荐动作是否由该用户执行、所推荐动作是否可能会对该用户的情感状态有作用、和/或是否要再次向该用户推荐该动作。如图11所示,推荐系统可以呈现提示用户提供反馈的界面1110,例如情感状态的变化的指示、禁用输出设备的选项、关于用户是否执行所推荐动作的指示(例如,确认用户步行到会议且沿路访问咖啡店)。附加地或替选地,推荐系统可以获得更新的数据,预测用户的当前情感状态和/或生成更新的简档,并且确定一个或多个所推荐动作是否已经使用户更接近一个或多个目的。在一个更具体的实施方式中,推荐系统可以确定特定的所推荐动作是否已经使用户更接近一个或多个目的和/或目标。例如,推荐系统可以在图11的界面1110中提示该用户提供反馈(例如,“Howareyoufeelingnowaftergettingacupofcoffeeandwatchingthatvideo?(喝了杯咖啡并看了该视频之后,您现在感觉如何)”)。在这样的示例中,推荐系统可以从用户接收与特定所推荐动作有关的反馈。在另一示例中,推荐系统可以从多个数据流中选择数据的特定部分,并且确定该数据是否指示所推荐动作可能已经使用户更接近一个或多个目的。在这样的示例中,响应于从用户设备的用户接收到从多个数据源接收与用户相关的数据的核准,推荐系统可以从提供所推荐动作之后的多个时间选择数据,并且可以确定社交数据和场境数据指示所推荐动作可能已经使用户更接近一个或多个目的(例如,该数据指示用户正在达成特定的活动水平的途中)。在一些实施方式中,任何合适的评级可以与所推荐动作相关联。例如,这样的评级可以包括关于推荐系统有多相信该所推荐动作可以使用户更接近一个或多个目的的置信度值。在该示例中,推荐系统可以以初始置信度开始,该初始置信度基于来自一个或多个用户的反馈而增量或减量,其中可以响应于确定在提供所推荐动作之后特定用户已经更接近目的而增加该评级。例如,这种增加的评级可以使得向其他用户提供所推荐动作,其他用户诸如具有相同或相似目的的用户、被置于与该用户相同或相似的群组中的用户等。应当注意的是该评级还可以包括附加信息,诸如难度值、及时性值等。因此,提供了用于基于来自多个数据源的情绪和/或行为信息来提供对计算机化服务进行个性化的方法、系统和介质。虽然已经在上述说明性实施方式中描述和说明了所公开的主题,但是应当理解,本公开仅作为示例,并且可以在不脱离所公开的主题的精神和范围的情况下作出所公开的主题的实施方式的细节的许多变化,所公开的主题的精神和范围仅由所附权利要求书限制。所公开的实施方式的特征可以以各种方式组合和重新排列。...
当前第1页1 2 3 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1