一种基于遗传算法的阵列天线方向图综合优化方法与制造工艺

文档序号:11134279
一种基于遗传算法的阵列天线方向图综合优化方法与制造工艺
本发明涉及的是移动通信天线技术领域。

背景技术:
阵列天线方向图综合技术应用于带有精密信号处理器的任何天线阵,它可以调整或自适应其波束方向图,目的是增强感兴趣的信号和减小干扰信号,还能够减轻多径效应的不利影响,它是智能天线的研究领域之一。随着社会信息交流的急剧增加、个人移动通信的迅速普及,频谱已成为越来越宝贵的资源,而智能天线采用空分多址技术,利用信号传播方向上的差别,通过调节各阵元信号的加权幅度和相位来改变阵列天线方向图,从而抑制干扰,提高信噪比、系统容量和允许的信号带宽,有效节约频谱和功率等资源。天线阵系统的方向图是依靠各个振子的方向图的叠加而实现的,如果各个振子的电压激励的幅值和相位有所变化,那么该智能天线系统所要对应的方向图也会发生变化。在移动通信应用中,很多时候基站是相对固定的,而终端是移动的;为了维持他们之间良好的无线信道,保证链路的正常工作,就要求智能天线的主瓣能够时刻的跟踪终端,也就是说智能天线系统的方向图要随着用户的位置变化来做自我的调整。本发明利用最短的时间内找到一个矢量,使得它所对应的天线方向图的主瓣对准用户的方向。本发明主要利用智能算法实现直线阵天线方向图综合,在计算阵元权系数时引入遗传算法,在这一算法中,把这一问题归化为一个空间范围内的寻优问题来处理,同一时刻的各个天线振子的幅度和相位构成一个矢量,而这个矢量把它叫做一个染色体,各个振子的电流和幅度都叫做该染色体的一个基因。很多具有相同基因个数的染色体就构成了一个解空间,本发明在这个解空间中找出一个最优的染色体。同时利用FEKO仿真软件建立直线天线阵模型,其天线单元为具有全向性的COCO天线,工作的中心频率在1800MHz。最终达到了对无线数字信号的高速时空处理,使信道容量增加、频谱效率提高的效果。

技术实现要素:
本发明的目的在于克服现有技术的缺点与不足,提供一种基于遗传算法的阵列天线方向图综合优化方法,该方法计算量小、寻优精度高。本发明的目的通过以下技术方案实现:一种基于遗传算法的阵列天线方向图综合优化方法,包括,天线阵模型建立步骤:N个COCO天线组成阵列,所述阵列包含N2个单极子天线,天线阵列采用均匀直线阵形式,天线阵元间距d≤λ,单元节边长为1/2介质波长:根据天线的工作中心频率f=1.8GHz,基片材料的介电常数εr=2.56,为使正反面微带段错落有致,产生适合的传输模式和辐射模式,需a≈b;同时介质板长度L是介质板宽度W的6.5倍,其中b为贴片单元间隔;最优权值获取步骤:步骤1、编码:从解数据的表现型到遗传空间的基因型串结构数据的映射称为编码,解空间Ω—分基因编码空间C;步骤2、初始种群生成:产生一组随机编码解P(k)∈C,k∈[1,2N],其中N为天线阵元个数,由于遗传算法对应的解空间为各阵元的复数权值ωi,ωi分为实部和虚部,而遗传算法只能对实数进行运算,所以设置每一个初始染色体包含2N列,每列200个基因的数组,所述随机编码解构成原始种群,每个解为一个个体,种群个体数为2N;步骤3、适应度值评估:对种群中的每一个个体所代表的解计算相应的适值,评估解的优劣,并且会对评估后的解按一定准则排序;步骤4、选择:在P(k)和O(t)中按适值的大小优胜劣汰,选择2N个个体重新构成子代种群;按随机均匀分布法、锦标赛法或轮盘赌法挑选双亲;步骤5、重组:通过交叉、变异、再生和迁移操作产生新的后代个体群O(t)∈C,t∈[1,M],M≤2N,新个体组合并以一定概率随机改变了父辈串的特征,将群体内的各个个体随机搭配成对;步骤6、循环步骤3至步骤5,直到取得最优权值;天线阵列方向图生成步骤:利用获取的最优权值对天线阵模型进行验证,从而生成天线阵列方向图。进一步的,在初始种群生成步骤中设置了种群的初始范围、种群的尺度和初始种群得分,种群的初始范围设置为[0,10]之间,对于相角设在[-π,π]内;种群...
当前第1页1 2 3 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1