一种基于遗传算法的阵列天线方向图综合优化方法与流程

文档序号:11134279
一种基于遗传算法的阵列天线方向图综合优化方法与制造工艺

本发明涉及的是移动通信天线技术领域。



背景技术:

阵列天线方向图综合技术应用于带有精密信号处理器的任何天线阵,它可以调整或自适应其波束方向图,目的是增强感兴趣的信号和减小干扰信号,还能够减轻多径效应的不利影响,它是智能天线的研究领域之一。随着社会信息交流的急剧增加、个人移动通信的迅速普及,频谱已成为越来越宝贵的资源,而智能天线采用空分多址技术,利用信号传播方向上的差别,通过调节各阵元信号的加权幅度和相位来改变阵列天线方向图,从而抑制干扰,提高信噪比、系统容量和允许的信号带宽,有效节约频谱和功率等资源。

天线阵系统的方向图是依靠各个振子的方向图的叠加而实现的,如果各个振子的电压激励的幅值和相位有所变化,那么该智能天线系统所要对应的方向图也会发生变化。在移动通信应用中,很多时候基站是相对固定的,而终端是移动的;为了维持他们之间良好的无线信道,保证链路的正常工作,就要求智能天线的主瓣能够时刻的跟踪终端,也就是说智能天线系统的方向图要随着用户的位置变化来做自我的调整。本发明利用最短的时间内找到一个矢量,使得它所对应的天线方向图的主瓣对准用户的方向。

本发明主要利用智能算法实现直线阵天线方向图综合,在计算阵元权系数时引入遗传算法,在这一算法中,把这一问题归化为一个空间范围内的寻优问题来处理,同一时刻的各个天线振子的幅度和相位构成一个矢量,而这个矢量把它叫做一个染色体,各个振子的电流和幅度都叫做该染色体的一个基因。很多具有相同基因个数的染色体就构成了一个解空间,本发明在这个解空间中找出一个最优的染色体。同时利用FEKO仿真软件建立直线天线阵模型,其天线单元为具有全向性的COCO天线,工作的中心频率在1800MHz。最终达到了对无线数字信号的高速时空处理,使信道容量增加、频谱效率提高的效果。



技术实现要素:

本发明的目的在于克服现有技术的缺点与不足,提供一种基于遗传算法的阵列天线方向图综合优化方法,该方法计算量小、寻优精度高。

本发明的目的通过以下技术方案实现:一种基于遗传算法的阵列天线方向图综合优化方法,包括,天线阵模型建立步骤:N个COCO天线组成阵列,所述阵列包含N2个单极子天线,天线阵列采用均匀直线阵形式,天线阵元间距d≤λ,单元节边长为1/2介质波长:

根据天线的工作中心频率f=1.8GHz,基片材料的介电常数εr=2.56,为使正反面微带段错落有致,产生适合的传输模式和辐射模式,需a≈b;同时介质板长度L是介质板宽度W的6.5倍,其中b为贴片单元间隔;

最优权值获取步骤:

步骤1、编码:从解数据的表现型到遗传空间的基因型串结构数据的映射称为编码,解空间Ω—分基因编码空间C;

步骤2、初始种群生成:产生一组随机编码解P(k)∈C,k∈[1,2N],其中N为天线阵元个数,由于遗传算法对应的解空间为各阵元的复数权值ωi,ωi分为实部和虚部,而遗传算法只能对实数进行运算,所以设置每一个初始染色体包含2N列,每列200个基因的数组,所述随机编码解构成原始种群,每个解为一个个体,种群个体数为2N;

步骤3、适应度值评估:对种群中的每一个个体所代表的解计算相应的适值,评估解的优劣,并且会对评估后的解按一定准则排序;

步骤4、选择:在P(k)和O(t)中按适值的大小优胜劣汰,选择2N个个体重新构成子代种群;按随机均匀分布法、锦标赛法或轮盘赌法挑选双亲;

步骤5、重组:通过交叉、变异、再生和迁移操作产生新的后代个体群O(t)∈C,t∈[1,M],M≤2N,新个体组合并以一定概率随机改变了父辈串的特征,将群体内的各个个体随机搭配成对;

步骤6、循环步骤3至步骤5,直到取得最优权值;

天线阵列方向图生成步骤:利用获取的最优权值对天线阵模型进行验证,从而生成天线阵列方向图。

进一步的,在初始种群生成步骤中设置了种群的初始范围、种群的尺度和初始种群得分,种群的初始范围设置为[0,10]之间,对于相角设在[-π,π]内;种群的尺度设置为400;初始种群得分设置为(1,100)。

进一步的,在适应度值评估步骤中采用最佳法,最佳个体比例设置在字段Quantity中,每个能产生子辈的个体指派给相同的比例值,而其他个体的比例值指派为0。

进一步的,在选择步骤中选择染色体时采用剩余选择法,使它在选择过程中,分配其双亲由每个个体刻度值的整数部分决定,在剩余的小数部分采用轮盘赌选择方法。

进一步的,在重组步骤中采用分散交叉方法;在一对选定的父辈中,采用高斯分布变异法,具有均值0的随机数加到父向量的每一项,这个分布的变化由参数“Scale”和“Shrink”决定,Scale设定为0.5,Shrink设定为0.8;再生方法为“Crossover Function”法,它指定下一代中不同于原种群的部分,它们由交叉产生;当迁移发生时,一个子种群中最好的个体代替另一子种群中最差的个体,运用的方法是双向迁移,即迁移在最后一个子种群处将卷绕回来。

进一步的,在步骤6中添加停止条件参数,最大重复执行次数为8000代,停滞代数为4000代,适应度值小于或等于0.1。

进一步的,排序准则是排列法、比率法或线性转换法。

本发明达到了对无线数字信号的高速时空处理,使信道容量增加、频谱效率提高的效果。

附图说明

图1是阵列天线方向图综合的遗传算法流程。

图2是天线模型示意图。

图3是直线天线阵示意图。

图4是三次仿真结果的鲁棒性检测值比较。

具体实施方式

具体实施方式一:一种基于遗传算法的阵列天线方向图综合优化方法,它由以下步骤实现,天线阵模型建立步骤:N个COCO天线组成阵列,所述阵列包含N2个单极子天线,天线阵列采用均匀直线阵形式,天线阵元间距d≤λ,单元节边长为1/2介质波长:

根据天线的工作中心频率f=1.8GHz,基片材料的介电常数εr=2.56,为使正反面微带段错落有致,产生适合的传输模式和辐射模式,需a≈b;同时介质板长度L是介质板宽度W的6.5倍,其中b为贴片单元间隔;

最优权值获取步骤:

步骤1、编码:从解数据的表现型到遗传空间的基因型串结构数据的映射称为编码,解空间Ω—分基因编码空间C;

步骤2、初始种群生成:产生一组随机编码解P(k)∈C,k∈[1,2N],其中N为天线阵元个数,由于遗传算法对应的解空间为各阵元的复数权值ωi,ωi分为实部和虚部,而遗传算法只能对实数进行运算,所以设置每一个初始染色体包含2N列,每列200个基因的数组,所述随机编码解构成原始种群,每个解为一个个体,种群个体数为2N;

步骤3、适应度值评估:对种群中的每一个个体所代表的解计算相应的适值,评估解的优劣,并且会对评估后的解按一定准则排序;

步骤4、选择:在P(k)和O(t)中按适值的大小优胜劣汰,选择2N个个体重新构成子代种群;按随机均匀分布法、锦标赛法或轮盘赌法挑选双亲;

步骤5、重组:通过交叉、变异、再生和迁移操作产生新的后代个体群O(t)∈C,t∈[1,M],M≤2N,新个体组合并以一定概率随机改变了父辈串的特征,将群体内的各个个体随机搭配成对;

步骤6、循环步骤3至步骤5,直到取得最优权值;

天线阵列方向图生成步骤:利用获取的最优权值对天线阵模型进行验证,从而生成天线阵列方向图。

其中关于阵列天线方向图综合的遗传算法流程参见图1。

具体实施方式二:具体实施方式二与具体实施方式一的不同在于,在初始种群生成步骤中设置了种群的初始范围、种群的尺度和初始种群得分,种群的初始范围设置为[0,10]之间,对于相角设在[-π,π]内;种群的尺度设置为400;初始种群得分设置为(1,100)。在适应度值评估步骤中采用最佳法,最佳个体比例设置在字段Quantity中,每个能产生子辈的个体指派给相同的比例值,而其他个体的比例值指派为0。在选择步骤中选择染色体时采用剩余选择法,使它在选择过程中,分配其双亲由每个个体刻度值的整数部分决定,在剩余的小数部分采用轮盘赌选择方法。在重组步骤中采用分散交叉方法;在一对选定的父辈中,采用高斯分布变异法,具有均值0的随机数加到父向量的每一项,这个分布的变化由参数“Scale”和“Shrink”决定,Scale设定为0.5,Shrink设定为0.8;再生方法为“Crossover Function”法,它指定下一代中不同于原种群的部分,它们由交叉产生;当迁移发生时,一个子种群中最好的个体代替另一子种群中最差的个体,运用的方法是双向迁移,即迁移在最后一个子种群处将卷绕回来。在步骤6中添加停止条件参数,最大重复执行次数为8000代,停滞代数为4000代,适应度值小于或等于0.1。排序准则是排列法、比率法或线性转换法。

全向天线进行仿真:

由COCO天线组成阵列天线的一个巨大优点就是:由N个COCO天线组成的阵列相当于包含了N2个单极子天线(假设每个COCO天线也是由N段微带线节构成),但它却只有N个馈电点,相比较而言,若一个阵列是由N个单极子天线阵列组成,则它必须要有N2个馈电点(假设每个单极子阵列也是由N个单极子组成)。当然,由于COCO天线结构简单,具有价格优势和性能优势。

单元节边长为1/2介质波长:

根据天线的工作中心频率f=1.8GHz,基片材料的介电常数εr=2.56,为使正反面微带段错落有致,产生适合的传输模式和辐射模式,需a≈b;同时介质板长度L是介质板宽度W的6.5倍左右,可以得到a=52mm,b=58.5mm,L=520mm,W=80mm,Wa=69.5mm,Wb=11.4mm,h=2.5mm,在天线远离馈电端的贴片上打孔,孔连接着上下表面,孔的半径为3mm,在距馈电端480mm处。其中h为基片厚度,b为贴片单元间隔。天线示意图如图2所示。天线的馈电点的输入阻抗要求为50Ω。观察在中心频率下的馈电端口的输入阻抗Z参数。调整贴片的尺寸以及馈电点位置都可改变天线的输入阻抗值,目的使得输入阻抗的实部为50Ω和虚部为0Ω。

利用FEKO软件进行仿真,根据以上数据创建模型并调整网格密度,通过调节媒质控制卡、输出控制卡、电磁场计算卡,考虑趋服效应、计算远场、计算驻波等。天线的馈电电压的幅值为1V,相位为0°。模拟建立了8阵元直线阵列天线,在已知波达角情况下,通过使用算法获得的权值来控制各天线单元电压的幅值和相位,采用各阵元单独馈电的方式。在存在较小的天线阵单元间耦合互感的情况下,检验生成的方向图的可靠性和稳定性。如图3为8阵元直线天线阵放置的示意图。线阵设计采用均匀直线阵形式,防止在天线的H面上出现栅瓣,需要保证天线阵元中心间距d≤λ,而当天线阵元间距d≤λ/2时,会出现互感耦合现象,所以选择d≈0.6λ。每一个天线阵元享有一个馈电电压源。

实际运行过程的有益效果:

本发明通过大量实验和仿真得出各组数据均值,可以看出各处零陷电平的均值和旁瓣电平的均值都满足预定指标(详见表1),适应度函数值平均在0.63左右,距离理想适应度函数值0是十分接近,达到了函数逼近的目的,本发明通过遗传算法可以自适应的解决阵列天线方向图综合问题,具有很高的实用性。

表1各组部分参数的平均值

在同一组三个方向的干扰信号作用下,每次生成的方向图大致相同,说明算法的鲁棒性良好,将仿真所得数据计算算法的鲁棒性,所得鲁棒性检验值见表2

表2遗传算法鲁棒性检测值

将其绘成柱状图,如图4。可较直观看出其每次鲁棒性的检测值变化不大,系统稳定,所以多次改变干扰信号波达角方向,该算法所得的方向图仍能自适应的变换,得到理想的接收效果。

以上对本发明所提供的一种基于遗传算法的阵列天线方向图综合优化方法,进行了详细介绍,本文中应用了具体个例对本发明的原理及实施方式进行了阐述,以上实施例的说明只是用于帮助理解本发明的方法及其核心思想;同时,对于本领域的一般技术人员,依据本发明的思想,在具体实施方式及应用范围上均会有改变之处,综上所述,本说明书内容不应理解为对本发明的限制。

再多了解一些
当前第1页1 2 3 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1