基于球单元的亚表面多孔网状结构的设计方法与流程

文档序号:11155725阅读:359来源:国知局
基于球单元的亚表面多孔网状结构的设计方法与制造工艺

本发明涉及结构设计技术领域,尤其涉及基于球单元的亚表面多孔网状结构的设计方法。



背景技术:

增材制造,也叫3D打印,原理是将三维的实体的数字模型(CAD文件)离散化成切片模型,再将切片模型转化为打印头的行走轨迹,通过打印头将材料不断添加到打印件上去,这样材料就按照打印轨迹不断地被添加,逐层打印起来,就形成了最终的实体打印件。与传统制造业的“减材制造技术”不同,3D打印遵从的是加法原则,可以直接将计算机中的设计转化为模型,直接制造零件或产品,不再需要传统的刀具、夹具和机床;同时直接将虚拟的数字化实体模型转变为产品,极大地简化了生产的流程,降低了材料的生产成本,缩短了产品的设计与开发周期,使得生产任意复杂结构零部件成为可能,也是实现材料微观组织结构和性能的可设计的重要技术手段。

3D打印耗材包括:塑料、橡胶、金属、粉末、尼龙、薄膜、树脂、石蜡、石膏、尼龙丝、钛合金、陶瓷等不同材料。3D打印技术将使得商品的生产制造进入全新的阶段,生产的组织方式也会更加扁平化,而它潜在的对生产的巨大解放,能够极大提高我们社会生产效率。

球具有优良的力学性能,数学表达精简,其结构的特殊性,可以将应力集中处的极高应力通过球与球间的接触分散。



技术实现要素:

本发明提供了一种基于球单元的亚表面多孔网状结构的设计方法,包括如下步骤:

(1)根据设计要求建立部件的三维实体模型,对其在设计要求的工况下进行有限元分析,得出部件的应力分布等与力学性能相关的参数;

(2)对步骤(1)获得的力学参数进行数据分析、归纳整理,得到系统性、综合性的力学问题和优化导向,形成设计目标;

(3)根据步骤(2)中形成的设计目标进行基于球单元的多孔网状结构设计,选择合适的球单元设计自由度,设计出亚表面多孔网状结构;

(4)对步骤(3)中设计出的结构,进行计算机仿真分析和相关测试验证部件是否满足设计需求。

作为本发明的进一步改进,所述球单元包括球、由球衍生出的球壳、表面含孔洞的球壳以及球的拓扑结构。

作为本发明的进一步改进,球单元设计自由度包括单元种类和分布特征,单元种类包括实体球、表面打孔的球壳,分布特征包括球单元三维坐标数学参数。

作为本发明的进一步改进,在所述步骤(1)中,根据部件的应力强度要求填充球单元或球单元的拓扑结构,通过在合理的位置填充合理半径大小的实心球体、空心球壳、带孔洞的球壳、半球或球体的拓扑结构,建立球心的三维位置、球心半径的结构矩阵,设计相应的增材制造技术的结构算法,利用有限元分析,优化内部结构的设计,然后采用合适的材料,基于3D打印技术加工制造出符合应力强度的要求的部件。

作为本发明的进一步改进,在所述步骤(4)中,包括如下步骤:

(41)通过常规实验测试3D打印出的产品的基本物理机械性能;

(42)按照部件在实际工作中的工况搭建微缩的试验平台,从零逐渐增加载荷,在试验平台上对产品进行加载试验,采用电阻应变片法测试不同载荷条件下部件的变形分布以及变形量变化情况;

(43)将步骤(41)中测量的部件的基本物理机械性能以及基本物理机械性能种类与步骤(42)中的不同载荷条件作为基本输入值,采用有限元分析软件进行产品的受力模拟分析;将模拟的变量分析结果与步骤(42)中实测结果进行对照,符合度大于90%则进行下一步,否则返回到(43)调整基本物理机械性能种类及载荷条件,再次进行模拟分析,直到理论和试验符合度达到要求;

(44)将步骤(43)中调整好的载荷条件、基本物理机械性能种类和(41)中的材料基本物理机械性能作为输入参数,采用有限元分析软件进行产品受力模拟分析,从零开始增加载荷力的大小,模拟分析出产品的强度,即可推演出相应产品在实际工况下不会变形过大而失效,能够承受得住相应的载荷。

作为本发明的进一步改进,在所述步骤(41)中,基本物理机械性能包括:抗拉强度、弹性模量、布氏硬度、泊松比、屈服强度、切线模量和密度。

作为本发明的进一步改进,步骤(42)、(43)、(44)中所述的载荷条件指的是施加载荷力的大小、力的方向、力的作用点和力的分布情况。

作为本发明的进一步改进,将改进的内部结构设计建立相应的球心的三维位置、球心半径的结构矩阵,设计出相应的结构算法,利用3D打印技术进行量化生产。

本发明的有益效果是:本发明的设计方法应对了现有材料制造的产品难以满足设计要求的现状,能制造出重量轻、强度大的部件,结合增材制造技术,可以大大提高产品的品质。

附图说明

图1是本发明的方法框图。

具体实施方式

本发明公开了一种基于球单元的亚表面多孔网状结构的设计方法,包括如下步骤:

(1)根据设计要求建立部件的三维实体模型,对其在设计要求的工况下进行有限元等分析,得出部件的应力分布等与力学性能相关的参数;

(2)对步骤(1)获得的力学参数进行数据分析、归纳整理,得到系统性、综合性的力学问题和优化导向,形成设计目标;

(3)根据步骤(2)中形成的设计目标进行基于球单元的多孔网状结构设计,选择合适的球单元设计自由度,设计出亚表面多孔网状结构;

(4)对步骤(3)中设计出的结构,进行计算机仿真分析和相关测试验证部件是否满足设计需求。

所述球单元包括球、由球衍生出的球壳、表面含孔洞的球壳以及球的拓扑结构等多种几何体。

球单元设计自由度包括单元种类和分布特征,单元种类包括但不限于实体球、表面打孔的球壳等,分布特征包括但不限于球单元三维坐标数学参数等。

在所述步骤(1)中,根据部件的应力强度要求填充球单元或球单元的拓扑结构等,通过在合理的位置填充合理半径大小的实心球体、空心球壳、带孔洞的球壳、半球或球体的拓扑结构等球单元,建立球心的三维位置、球心半径的结构矩阵,设计相应的增材制造技术的结构算法,利用有限元分析,优化内部结构的设计,然后采用合适的材料,基于3D打印技术加工制造出符合应力强度的要求的部件。

在所述步骤(4)中,包括如下步骤:

(41)通过常规实验测试3D打印出的产品的基本物理机械性能;

(42)按照部件在实际工作中的工况搭建微缩的试验平台,从零逐渐增加载荷,在试验平台上对产品进行加载试验,采用电阻应变片法测试不同载荷条件下部件的变形分布以及变形量变化情况;

(43)将步骤(41)中测量的部件的基本物理机械性能以及基本物理机械性能种类与步骤(42)中的不同载荷条件作为基本输入值,采用有限元分析软件进行产品的受力模拟分析;将模拟的变量分析结果与步骤(42)中实测结果进行对照,符合度大于90%则进行下一步,否则返回到(43)调整基本物理机械性能种类及载荷条件,再次进行模拟分析,直到理论和试验符合度达到要求;

(44)将步骤(43)中调整好的载荷条件、基本物理机械性能种类和(41)中的材料基本物理机械性能作为输入参数,采用有限元分析软件进行产品受力模拟分析,从零开始增加载荷力的大小,模拟分析出产品的强度,即可推演出相应产品在实际工况下不会变形过大而失效,能够承受得住相应的载荷。

在所述步骤(41)中,基本物理机械性能包括:抗拉强度、弹性模量、布氏硬度、泊松比、屈服强度、切线模量和密度。

步骤(42)、(43)、(44)中所述的载荷条件指的是施加载荷力的大小、力的方向、力的作用点和力的分布情况。

将改进的内部结构设计建立相应的球心的三维位置、球心半径的结构矩阵,设计出相应的结构算法,利用3D打印技术进行量化生产。

球单元:以球面几何为特征的有限元单元。

本发明还包括建立在可持续补充的,以球面为特征的,包含各种不同几何,数量的球面孔洞和其它几何变数,以及由不同材料组成的球单元数据库。

本发明基于球单元的亚表面多孔网状结构的设计方法包括建立在球单元结构特性的基础上,通过在确定外形的部件实体内部设计球单元多孔网状结构,从而改善部件的力学性能并可以根据需求增加特殊的物理特性。

本发明的亚表面是指在几何外形固定部件的内部空间。使用的多孔网状结构是基于上述定义的球单元的结构。

改善的力学性能和物理特性包括但不限于应力分布、比刚度、比强度和传热特性等。

本发明通过设计合适的亚表面多孔网状结构,从而提升部件的结构强度、抗压抗磨损性能等力学性能和增加传统结构所没有的超阻尼等物理特性,实现在不改变结构外形条件下能根据结构使用要求改变结构的质量分布、刚度分布、载荷路径、阻尼分布、失效分布、模态分布、传热分布、寿命分布等机械性能。具体在于利用球、由球衍生出的球壳、表面含孔洞的球壳以及球的拓扑结构等多种球单元几何体的合理组合,通过改变球单元的种类、分布规律和连接关系等参数,在确定外形的部件中设计出以球单元为基础的亚表面多孔网状结构,达到提升部件的力学性能和物理特性的目的。本发明的设计技术应对了现有材料制造的产品难以满足设计要求的现状,能制造出重量轻、强度大的部件,结合增材制造技术,可以大大提高产品的品质。

本发明用于设计出具有优良的力学性能和物理性能的部件,本方法需要结合部件设计需求选择合适的位置设计球单元多孔网状结构,进而设计出具有优良力学性能和物理特性的部件。本方法适用于采用现有材料制造出的零件无法满足要求,需要采用先进结构的结构设计。

本发明提出了一种基于球单元的亚表面多孔网状结构的设计技术,通过在给定外形的部件内合理地填充实心球体、空心球壳、带孔洞的球壳、半球甚至球体的拓扑结构,并用3D打印技术加工制造,从而获得强度高、质量轻、拥有优秀力学性能的部件的方法。

本发明的有益效果:

本发明多孔网状结构可以在应力集中的地方增大内部结构的强度,例如使用实心球体、实心半球等,在应力分散的地方减小内部结构的强度,例如使用空心球壳等,此种基于球单元的设计方法可以有效减小部件的质量,同时提高部件的内部结构强度。

基于球单元的多孔网状结构,内部可以在合理的位置填充合理半径大小的实心球体、空心球壳、带孔洞的球壳或球体的拓扑结构等球单元,极大地提高了设计的多样性,可以根据不同的需求设计不同的内部结构,最大程度上优化部件的强度,提高部件的使用寿命。

基于球单元的多孔网状结构,由于球状结构的特殊性,可以将应力集中处的极高应力通过球与球间的接触而分散到其他球处,从而分散应力集中处的应力,有效防止了因为某处应力过大而造成的部件损坏,极大地提高了部件的使用寿命,同时可以提高内部材料的阻尼,减少因共振对部件造成的损耗,提高使用寿命。

利用3D打印技术,可以打印出结构极为复杂的部件,而传统的注塑技术无法完成上述设计技术设计出特殊内部结构的部件的制造。利用上述设计技术设计的特殊内部结构的部件,无需通过改变部件的外部结构只需改变内部结构即可达到部件的应力强度要求,相较于传统的设计技术需要不断改变外部结构来实现应力强度要求,可以极大地简化部件的设计流程,并且极大程度上实现部件设计的最优化。

利用3D打印技术,可以批量化生产部件,相较于传统的注塑技术制造的产品无法实现完全精确的生产且需要进行强度测试,3D打印技术极大地简化了生产流程,提高了生产效率。

以上内容是结合具体的优选实施方式对本发明所作的进一步详细说明,不能认定本发明的具体实施只局限于这些说明。对于本发明所属技术领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干简单推演或替换,都应当视为属于本发明的保护范围。

当前第1页1 2 3 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1