一种基于深度学习的污水处理厂进水流量预测方法及系统

文档序号:26009698发布日期:2021-07-23 21:29阅读:322来源:国知局
一种基于深度学习的污水处理厂进水流量预测方法及系统

本发明涉及进水流量在线预测的研究领域,特别涉及一种基于深度学习的污水处理厂进水流量预测方法及系统。



背景技术:

在废水处理过程中,进水流量对污水处理厂的处理能力有着直接要求,同时也密切影响着出水指标的控制。

目前污水处理过程中的进水流量都是基于硬件设备的实时监测,并没有预测功能,这对污水处理厂的实时处理能力以及各种污水处理的消耗物品预备,都提出了更高要求。本发明提出了基于长短期记忆网络回归(lstm)软测量模型对进水流量进行预测。

污水处理厂的进水流量是一种跟时间相关的序列数据,目前对序列数据的预测方法当中,传统的预测方法不具备在线学习功能,当模型建立以后模型参数就固定下来,如需要对新处理数据进行学习就必须重新建立模型。另外,传统的预测方法主要适用于线性系统预测。机器学习对复杂网络的非线性系统预测具有较好的适用性,但是需要进行依赖经验处理的特征工程。



技术实现要素:

本发明的主要目的在于克服现有技术的缺点与不足,提供一种基于深度学习的污水处理厂进水流量预测方法及系统,旨在优化污水处理厂的实时处理能力。

深度学习对时间序列的非线性系统预测具有较好的适用性,并且具有自动特征工程能力,其中的长短期记忆网络回归具备长序列数据信息提取能力,对短序列的特征也具备抽象能力,同时随着输入序列变长,通过实时更新状态,可以实现在线学习的能力。

本发明的第一目的在于提供一种基于深度学习的污水处理厂进水流量预测方法。

本发明的第二目的在于提供一种基于深度学习的污水处理厂进水流量预测系统。

本发明的第一目的通过以下的技术方案实现:

一种基于深度学习的污水处理厂进水流量预测方法,其特征在于,包括以下步骤:

通过采集装置采集历史数据,所述历史数据包括对应污水处理厂历年的进水流量;

将历史数据进行归一化处理,得到归一化模型,再对归一化模型进行训练,得到训练后的归一化模型;

将进水自变量作为训练后归一化模型输入,将进水因变量作为实际输出,对训练后归一化模型进行监督学习;

对输出因变量进行反归一化处理,得到预测输出,通过比较实际输出和预测输出的差值,反馈系统进行优化,进而对进水流量进行预测。

进一步地,所述进水自变量为前k个时间单位的进水流量值,进水因变量为当前时间单位的进水流量值。

进一步地,所述将历史数据进行归一化处理,得到归一化模型,再对归一化模型进行训练,得到训练后的归一化模型,具体为:将历史数据划分为三部分:训练集、验证集、测试集;对训练集进行归一化,得到归一化训练集,归一化处理具体如下:

设某一变量序列xi为x1,…,xn,其中记最大值为xmax,最小值为xmin,则归一化后的序列为:

其中,归一化后的序列值的范围为0~1,存储xmax和xmin的值;

构建并保留归一化模型,归一化模型包括输入模块、lstm模块、全连接模块、回归模块、训练结束判断模块;

使用归一化模型对验证集进行归一化,得到归一化验证集;输入归一化训练集和归一化验证集对归一化模型进行训练,得到训练后归一化模型并保存,即保存lstm模型;使用训练后归一化模型对测试集进行归一化,得到归一化测试集,将归一化测试集输入训练后归一化模型进行准确性指标评价。

进一步地,所述将历史数据划分为三部分:训练集、验证集、测试集,其划分按照8:1:1比例使用均匀随机抽样的方式进行划分,即80%为训练集,10%为验证集,10%为测试集。

进一步地,所述对归一化模型进行训练,得到训练后的归一化模型,具体为:

1)、对模型参数进行初始化;

2)、输入数据经过lstm层和全连接层的向前传播得到输出值;

3)、计算训练模型的输出值与目标值之间的误差;

4)、当误差大于期望值时,将误差传回模型中,依次求得全连接层和lstm层的误差,其中各层的误差为对于模型的总误差;当误差等于或小于期望值时,则训练结束;

5)、根据求得的误差对模型进行权值更新。

进一步地,所述将进水自变量作为训练后归一化模型输入,将进水因变量作为实际输出,对训练后归一化模型进行监督学习,具体为:记录实际输出,预测下一次输出,通过实际输出对归一化模型进行在线学习,通过在线学习得到新的模型参数,同时更新模型。

进一步地,所述对输出因变量进行反归一化处理,得到预测输出,通过比较实际输出和预测输出的差值,反馈系统进行优化,进而对进水流量进行预测,具体为:对输出因变量进行反归一化处理,得到因变量预测值,通过因变量预测值和因变量实际值获取标准误差和确定相关系数;

标准误差计算如下:

其中,rmse为标准误差,yi为因变量预测值,xi为因变量实际值;

确定相关系数计算如下:

其中,r2为确定相关系数,为序列xi的均值。

本发明的第二目的通过以下技术方案实现:

一种基于深度学习的污水处理厂进水流量预测系统,包括lstm模型、反馈系统;

所述lstm模型包括输入模块、lstm模块、全连接层模块、回归模块、训练结束判断模块、模型评价模块;输入模块用于模型的数据输入,lstm模块包含m个lstm层,全连接层模块包括若干个全连接层,lstm模块包含m个lstm层对输入的变量进行各种特征组合,全连接层模块包括若干个全连接层lstm层提取的特征进行隐射,回归层使用损失函数mse对模型进行损失计算,训练结束判断模块通过设置的迭代次数判断停止模型训练,模型评价模块通过均方根误差和相关系数对模型的性能进行评价。

所叙反馈系统包括lstm的预测输出,真实的测量值,和判断是否重新训练模型;通过比较lstm的预测输出和真实的测量值的差值,是否超过设计的阈值,判断是否重新训练lstm模型;

工作过程如下:将归一化历史数据输入到lstm模型进行模型训练,得到lstm模型,模型评价模块对lstm模型进行评价,lstm模型根据评价进行实时更新状态,通过预测系统预测lstm模型的输出,输出结果反馈给污水处理厂控制系统。

进一步地,所述全连接层模块的第一层全连接层包含100-300个连接神经元;由于回归的因变量为当前进水流量的预测值,因此全连接层的输出数为1。

进一步地,所述训练结束判断模块通过初始化设置的最大轮数进行控制。

进一步地,所述输入模块用于模型的输入,即自变量输入;激活层采用的激活函数为leakyrelu函数。

进一步地,lstm模块采用一层包含100个隐藏单元的lstm层。

进一步地,回归模块采用的损失函数为均方误差(mse)。

本发明与现有技术相比,具有如下优点和有益效果:

1、本发明提出一种污水处理厂进水流量的预测方法的应用,其中的lstm综合污水厂进水流量序列的特征,使得回归预测具有更好的效果。

2、本发明提出了污水处理厂进水流量预测,对污水处理厂实时处理能力以及各种污水处理的消耗物品预备具有优化的功能。

附图说明

图1是本发明所述一种基于深度学习的污水处理厂进水流量预测方法的流程框图;

图2是本发明所述实施例中进水流量预测方法的具体流程图;

图3是本发明所述实施例中进水流量预测方法的总体框架图;

图4是本发明所述实施例中训练流程整体结构图;

图5是本发明所述实施例中训练结构示意图;

图6是本发明所述实施例中训练流程详细结构示意图;

图7是本发明所述实施例中训练模型预测进水流量结果评价示意图;

图8是本发明所述实施例中污水处理厂进水流量预测系统结构图。

具体实施方式

下面结合实施例及附图对本发明作进一步详细的描述,但本发明的实施方式不限于此。

实施例:

一种基于深度学习的污水处理厂进水流量预测方法,如图1所示,包括以下步骤:

通过采集装置采集历史数据,所述历史数据包括对应污水处理厂历年的进水流量;

将历史数据进行归一化处理,得到归一化模型,再对归一化模型进行训练,得到训练后的归一化模型;

将进水自变量作为训练后归一化模型输入,将进水因变量作为实际输出,对训练后归一化模型进行监督学习;

对输出因变量进行反归一化处理,得到预测输出,通过比较实际输出和预测输出的差值,反馈系统进行优化,进而对进水流量进行预测。

具体过程如图2所示,图3是进水流量预测方法的总体框架图,具体内容如下:

步骤101,划分历史数据,其中的历史数据包括对应污水处理厂历年的进水流量。

其中测量数据为取自广东省广州市的一家污水处理厂,显示1年共4300小时的样本点,采样间隔为2小时。

将4300个样本点按照8:1:1的比例划分为训练集、验证集和测试集,其中训练集、验证集和测试集的样本点数为3440个、430个和430个。

步骤102,归一化,分别对自变量前11步进水流量值,因变量当前进水流量值中的训练集进行归一化。

其中归一化的方法为,假设某一变量序列为x1,…,xn,记其中最大值和最小值分别为:

xmax和xmin,则归一化后的序列为:

其中归一化后的序列值的范围为0到1,存储xmax和xmin的值。

步骤103,输入模块,这里的输入为模型的输入,输入数据的格式为1*11*1,即数据宽、高和通道数分别为1、11和1,输入的数据包括归一化的训练集和验证集,其中的训练集用于模型拟合,验证集用于调整模型的超参数和用于对模型的能力进行初步评估。图4为训练流程整体结构图。图5为训练结构示意图;图6为训练流程详细结构示意图;

步骤104,lstm模块,本发明实施例采用一层包含100个隐藏单元的lstm层。

步骤105,全连接模块,本发明实施例采用两层全连接层,第一层全连接层包含200个连接神经元,由于回归的因变量为当前进水流量的预测值,因此全连接层的输出数为1。

步骤106,回归模块,本发明实施例采用的损失函数为均方误差(mse)。

步骤107,训练结束判断模块,通过初始化设置的最大轮数(maxepochs)进行控制,本发明实施例设置的最大轮数为200。训练完成保存模型,否则转步骤403。

步骤108,对测试集进行归一化,其中归一化的最大值和最小值为步骤402中保存的xmax和xmin。这里使用训练集归一化模型参数的目的是将测试集通过训练集模型映射,确保超出训练集范围的数据也能够得到较好的恢复,提高模型的泛化能力。

步骤109,保存lstm模型,这里的模型为训练好的各层的权系数,通过输入归一化的自变量前11步进水流量值,可以得到归一化的因变量即当前进水流量值。

然后对输出的因变量进行反归一化,得到预测的进水流量的数值。

步骤110,模型评价模块,本发明实施例采用标准误差(也称为均方根误差,简称rmse)和确定相关系数(r2score)。

其中标准误差的计算公式为:

其中确定相关系数的计算公式为:

这里的yi,xi分别为预测值和实际值,为序列xi的均值。

通过设置训练参数,得到lstm模型对测试集的测试结果与实际的值的比较结果如图7所示,其中预测进水流量值都在工厂设定的阈值之下。

更进一步,本发明实施例用于污水处理厂进水流量的预测系统可表达为流程图图8,该流程图包括以下步骤:

步骤701,系统的输入量,包括前11步的进水流量值。

步骤702,当前系统的进水流量实际测量值与预测比较的反馈。

步骤703,系统的预测系统,预测系统的下一次输出量,其中预测系统根据步骤701的输入预测系统的下一次输出量,同时由步骤702当前的输出量对预测系统进行在线学习,同时更新预测系统模型。

步骤704,控制系统的通过预测系统的输出,对污水处理系统进行优化。

一种基于深度学习的污水处理厂进水流量预测系统,如图8所示,包括lstm模型、反馈系统;

所述lstm模型包括输入模块、lstm模块、全连接层模块、回归模块、训练结束判断模块、模型评价模块;输入模块用于模型的数据输入,lstm模块包含m个lstm层,全连接层模块包括若干个全连接层,lstm模块包含m个lstm层对输入的变量进行各种特征组合,全连接层模块包括若干个全连接层lstm层提取的特征进行隐射,回归层使用损失函数mse对模型进行损失计算,训练结束判断模块通过设置的迭代次数判断停止模型训练,模型评价模块通过均方根误差和相关系数对模型的性能进行评价。

工作过程如下:将归一化历史数据输入到lstm模型进行模型训练,得到lstm模型,模型评价模块对lstm模型进行评价,lstm模型根据评价进行实时更新状态,通过预测系统预测lstm模型的输出,输出结果反馈给污水处理厂控制系统。

进一步地,所述全连接层模块的第一层全连接层包含100-300个连接神经元;由于回归的因变量为当前进水流量的预测值,因此全连接层的输出数为1。

进一步地,所述训练结束判断模块通过初始化设置的最大轮数进行控制。

进一步地,所述输入模块用于模型的输入,即自变量输入;激活层采用的激活函数为leakyrelu函数。

进一步地,lstm模块采用一层包含100个隐藏单元的lstm层。

进一步地,回归模块采用的损失函数为均方误差(mse)。

上述实施例为本发明较佳的实施方式,但本发明的实施方式并不受上述实施例的限制,其他的任何未背离本发明的精神实质与原理下所作的改变、修饰、替代、组合、简化,均应为等效的置换方式,都包含在本发明的保护范围之内。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1