监测在表面上粘合剂用量和分布的在线方法及其可用的装置的制作方法

文档序号:6419320阅读:268来源:国知局
专利名称:监测在表面上粘合剂用量和分布的在线方法及其可用的装置的制作方法
背景技术
本发明涉及采用紫外荧光监测在表面上的粘合剂,具体地涉及基于异氰酸酯的粘合剂的用量和分布的方法,还涉及其使用的装置。
各种粘合剂已用于生产工程复合材料,如定向木质束板。合适的粘合剂包括酚醛树脂和异氰酸酯,具体是聚合的二苯甲烷二异氰酸酯(PMDI)。在生产这样的工程复合材料时,通常粘合剂涂到如木纤维、木质束,木片或某些其他以木质纤维素为基材之类的材料上。理想地,粘合剂施用量(用量)可以足以覆盖100%木纤维、木质束等的100%表面(分布)。在许多工业方法中,使用过量的粘合剂以保证充分分布。还使用比必要混合时间更长的时间,以保证粘合剂充分分布,使得不会因不充分粘合而在复合材料中出现疵点。这种使用过量粘合剂和延长混合时间的方法大大增加了工程复合材料的生产成本。
因此,研制一种在复合材料生产过程中足够精确测定粘合剂用量和分布,又不必使用过量的粘合剂和延长混合时间的方法是有利的。
试图改进复合材料生产的人们已经研究了进行这种测定的光谱方法。Frazier和Wendler研究过粘合复合材料的固体NMR特征,研究结果登载于1994年6月26-29日在缅因州波特兰举行的林产品学会第48届年会的“pMDI粘合纤维素复合材料的15N CP/MAS NMR分析”中。Sun等人试图把荧光强度的变化与通过监测在工业生产中发生反应期间异氰酸酯基团消失所得到的FTIR谱联系起来。(参见Sun等人,材料科学研究所,Storrs Report TR-38-ONR,康涅狄格大学(1994年))。
紫外吸收和荧光光谱技术也是曾用来评价它们在监测尿烷生成反应中实用性技术。但是,直到现在,采用这样的紫外光谱技术的方法还不能提供当生产复合材料时复合材料的实时宏观成象。
例如,F.Kamke在“木基复合材料计划年度报告”(1994年6月1日-1995年5月31日)中报道的是微观研究木质束上聚合MDI树脂分布的紫外荧光成象。Kamke阐述了因为聚合MDI荧光非常微弱,所以为了降低噪声水平,采用非常强的紫外光源(特别地,100瓦汞蒸汽灯)和许多图像帧的信号平均值是很必要的。尽管降低噪声水平的信号平均值对于固定样品很有用,但当被评价的材料在传送带上移动,并且视频图像经常变化时,它就不怎么有用了。因为样品间变化可能性非常大,对于监测工业生产过程,微观评价材料也是不实用的。因此,Kamke方法并不实用于监测复合材料生产的工业过程。
在美国专利4,885,254中,Yu等人报道了一种使用二异氰酸亚萘酯作为监测聚氨酯中固化反应的分子传感器技术。Yu等人把荧光强度与1,5-萘基二异氰酸酯同正丁醇之间总反应程度关联起来。通过使用HPLC鉴定在尿烷生成反应过程中存在的各个物质可确定这一相关性,它可采用IR光谱证实。然后,获得这些物质的紫外-可见吸收光谱和荧光光谱。当二异氰酸萘酯反应生成单尿烷和二尿烷时,可以观察到紫外-可见光谱位移。通过线性回归分析可以测定在一定时间内每种物质的分数。由紫外光谱分析可计算出反应程度。由紫外光谱分析建立了一种在试验测定在357纳米的荧光强度与计算总反应程度之间的相关性。
美国专利5,100,802公开了一种树脂体系固化速率和程度的测量方法,其中待聚合的体系中加入荧光染料。
美国专利4,922,113公开了一种检查涂层重量、均匀度和表面缺陷的方法,其中涂料组合物中含有吸收辐射能的UV-escer。可探测到涂层所发出的辐射能,其波长与UV-escer发射能量的波长相同,并且与预-确定的标准相关联。
美国专利4,651,011公开了一种测定聚合物固化程度的方法。在该方法中,可采用荧光测量荧光孢子的方法测定加入聚合物系统的荧光孢子的自由空间旋转度。
但是,迄今为止,还没有研制出任何一种在复合材料实际生产过程中测定粘合剂用量,特别是基于异氰酸酯的粘合剂用量和分布的方法,该方法不加入一些类型的“标记物”,如染料、荧光孢子或UV-escer。
本发明的目的还是提供一种在生成复合材料的材料例如在传送带上移动时测定粘合剂用量和分布的设备。
本发明的另一个目的是提供在由生成复合材料的材料制成复合材料过程中精确测定粘合剂用量和分布的设备,该生成复合材料的材料不包括标记材料,如UV-escer、荧光孢子或染料。
本发明的另一目的是提供一种在线监控方法,该方法能够高准确度探测粘合剂用量和分布,尽管待监测的材料不是固定不动的。
当生成复合材料的材料通过装有合适滤光片的视频摄像机的视野时,生成复合材料的材料受到长波紫外辐射的照射,使粘合剂分子充分激发而诱发出荧光和发射可见光辐射,于是可实现本发明这些目的和其他目的,这些目的对本技术领域的技术人员是显而易见的。视频摄像机定位于能接收由粘合剂分子发出的可见荧光的位置。该视频摄像机与一种装置连接起来,该装置能够把收集的可见荧光与预确定的标准关联起来,例如有适当数据库的编程计算机。
图2是粘合剂复合材料中聚合MDI(即聚苯基聚亚甲基聚异氰酸酯)的色谱分析复制图,该粘合剂组合物用于涂布图3-7中显示的木质束图像。使用Hewlett Packard公司的size exclusion色谱仪得到这些色谱图,该色谱仪带有紫外吸收和紫外荧光双检测器。
图3是涂有0%聚合MDI木质束的紫外荧光图像的假彩色图像。
图4是涂有2%聚合MDI木质束的紫外荧光图像的假彩色图像。
图5是涂有4%聚合MDI木质束的紫外荧光图像的假彩色图像。
图6是涂有6%聚合MDI木质束的紫外荧光图像的假彩色图像。
图7是涂有8%聚合MDI木质束的紫外荧光图像的假彩色图像。
图8是一套用于形成图3-7中假彩色图像的单色图像频分布曲线,在该曲线中,Y为每一亮度水平的图像元素或像素族的数,亮度的灰度等级为0-255,X轴为亮度或灰度等级水平。
图9是基于单色图像平均亮度的预期粘合剂用量的线性回归,它用于将图3-7中的假彩色图像得到实际的粘合剂用量。


图10是滤光器“夹心结构”中使用的滤光器透射谱复制图,在荧光波通过透镜和视频摄像机之前通过该“夹心结构”。
图11是聚合MDI木粘合剂和木腐的紫外荧光的二维等高线图。
图12是通过使用消除图像中木腐荧光的蓝带通滤光器得到的,涂有5%聚合MDI木质束的紫外荧光图像的单色图像。
图13是用彩色摄像机获得的涂有5%聚合MDI木质束的真彩色图像。
图14是掩盖掉木腐的图13的图像。
本发明的详细说明本发明涉及在复合材料的生产过程中,粘合剂,具体地基于异氰酸酯的粘合剂的用量和分布的在线监控方法,并涉及该方法使用的装置。
本发明的装置由长波紫外辐射源、一个滤光器或一组滤光器、透镜、视频摄像机和将由样品收集到的紫外荧光数据与该样品中粘合剂的用量和分布关联起来的设备构成。本发明装置的这些组件典型地如图1排列。
如图1所示,由发射长紫外波灯2发出的长波紫外辐射1(即波长为300-400毫微米的电磁辐射或光),以这样一种方式指向样品3(即生成复合材料的材料或基体),以致只是来自紫外光源,即灯2的光照射样品3,并且紫外辐射1的光通量密度通过样品3表面是固定不变的。样品3中的粘合剂分子吸收由灯2发射的紫外辐射1和荧光,或者其粘合剂分子发射可见光辐射4(特征波长为400-700的光)。
由样品3中发荧光的粘合剂发出的可见光辐射4在通过滤光片5和透镜6后被视频摄像机7成像。如图1所示的滤光片5是“夹层结构”,它由三个单独的滤光片构成。第一个滤光片5a(即最靠近样品的滤光片)是紫外阻挡滤光片。第二个滤光片5b(或次接近样品3的滤光片)是在蓝频谱中有截止点的宽带通滤光片。第三个滤光片5c(或者最接近视频摄像机7的滤光片)是可见光带通滤光片。
视频摄像机7可以是单色或彩色视频摄相机。如果使用的是单色视频摄相机,如此选择滤光片5中可见光带通滤光片5c的波长,以致只是让粘合剂荧光那些特定波长通过。实际上,人们已经发现彩色视频摄相机更为通用,特别是在其他可能发射荧光的材料(例如蜡、脱模剂、防腐剂和木腐)发生干扰的情况下。当使用彩色视频摄相机作为摄相机7时,可不使用滤光片5中可见光带通滤光片5c,宽带通滤光片5b可用于阻挡任何小于435毫微米的波长。彩色和单色视频摄相机通常都装有内部的近红外阻挡滤光片(未显示)。近红外阻挡滤光片对于消除任何紫外光源2发射的近红外射线是必要的。
在图1中,滤光片5直接安装在透镜6上。但是,滤光片5和透镜6以物理方法相连或贴上是不必要的。滤光片5和透镜6的相对位置还可以反过来。安排滤光片5和透镜6的位置,仅能使穿过滤光片5和透镜6的可见光辐射4在照相机7上成像就足够了。
紫外光源2、滤光片5、透镜6和摄相机7定位于图1所示装置中的外壳8内。如图所示,外壳8底部开口,使紫外光辐射1由紫外光源2到样品3,可见光辐射4由样品3到滤光片5。外壳8还防止外部光照射样品3和/或通过滤光片5。外壳8是优选的,但并不是本发明装置的基本特点。
由视频摄相机7捕获的图像通过一条或多条视频线9传递到图像处理硬件10。图像处理硬件10典型地是装有高速视频桢捕获板(未显示)和能进行图像分析软件的计算机。当使用单色视频摄相机7时,图像分析软件增强了样品3的荧光粘合剂与不发射荧光背景之间的对比度,计算出基于平均图像强度的粘合剂用量,显示出呈假彩色图像的图像。通过单色图像的灰度等级转换成如图3-7显示的彩色调色板,产生假彩色图像,使用的彩色调色板显示为沿着图像底部由低到高、由左到右的带状。
当使用彩色视频摄相机7时,为了将粘合剂与任何其他干扰荧光的材料区别开,图像分析软件分别地分析红、绿和蓝色各个图像,计算粘合剂用量,并显示粘合剂分布。
然后在显示器11上显示测定的粘合剂用量和分布水平,打印或转换成相似信号,以便输出给其他仪器。结果可以呈真实荧光彩色的样品图像形式,或带反映粘合剂用量调色板的假彩色图像形式。
在实际生产条件下,样品3典型地在传送带上,传送带以约5-30英尺/分钟的速度移动。视频摄相机7的视野可通过变焦距透镜6进行调整。视野通常设定为在摄相机7的正下方,覆盖紫外光源2均匀地照射的最大区域,优选地是2英尺长、1.5英尺宽的区域。例如在30英尺/分钟的条件下,视频摄相机7使复合材料3成像,完全移出照相机7视野,需花3秒钟。这一时间帧比图像分析软件分析粘合剂用量和分布图像,并显示其分析结果所需要的时间帧更长。因此,使用本发明的装置可以达到连续、实时监控复合材料的生产过程。
长波紫外辐射源2可以是任何发射长波紫外辐射的设备,即发射波长300-410毫微米,优选地波长300-400毫微米辐射的设备。合适的紫外辐射源实例包括带有汞蒸汽灯泡的灯,它有长波紫外滤光片,以及有长波紫外荧光灯泡的灯,例如General Electric(通用电气公司)的紫外灯泡,如灯泡F40T12/BLB(可从俄亥俄州克利夫兰的GELighting公司购买)。
虽然在本发明装置中只使用一个紫外灯作为紫外光源是可能的,但优选的是该装置可有一个以上的紫外灯。特别优选的是本发明监测装置中包括8-20个,最优选地约14个灯,以保证均匀地照射待监测样品表面。
在图1所示的本发明实施方案中,14个40瓦荧光紫外长波灯泡距中心1.75英寸,每个灯泡长48英寸(GE F40T12/BLB)。GE F40 T12/BLB灯泡的滤紫外光玻璃的透射频谱示于图10曲线A。GE灯泡中使用的磷发射频谱中心在360毫微米。GE紫外荧光灯泡的发射频谱符合如图10在300-400毫微米之间所显示的频谱中的曲线A。
生成复合材料的材料3可由任何材料组成,特别地木素纤维素材料,这些材料已知是用于生产涂了粘合剂,优选地基于异氰酸酯的粘合剂的复合材料。合适的生成复合材料的材料实例包括木、木纤维、树皮、软木、甘蔗杆、亚麻、竹子、西班牙草、稻壳、剑麻纤维和椰子纤维。已知作为定向胶合板(“OSB”)的工程木材生产中使用的木质束、刨花和碎片是特别优选的。木质束、碎片和刨花的大小可以是0.03”×0.18”×2.0”至0.12”×2.0”×28.0”。优选的尺寸是0.03”×1.0”×16”至0.12”×2.0”×24”,最优选的尺寸是0.03”×0.75”×3.0”至0.12”×2.0”×24”。当这些木质纤维素材料用于生产复合材料时,其水分含量以材料总重量计可以是约0.5-30%(重量),优选地是约3-8%(重量)。
已知用于生产复合材料制品的任何含有荧光组分的粘合剂组合物,都可以用于根据本发明生产复合制品。这样一些已知粘合剂包括异氰酸酯。优选的粘合剂组合物是聚亚苯基聚亚甲基聚异氰酸酯(“聚合MDI”),它们含有更高分子量的低聚物(即有四个以上环的低聚物),这些低聚物有固有的荧光,因此不需要向粘合剂组合物添加荧光剂。粘合剂应该含有最少35%(重量)带四个以上环的低聚物。
图2A和2B是实施例中使用的聚合MDI的色谱分析显示图。使用Hewlett Packard公司的size exclusion色谱仪(1090M型)得到这些色谱图,该色谱仪带有双紫外吸收和紫外荧光检测器。在图2A中出现在26-36分钟之间紫外荧光峰(最大为30.8分钟),与图2B在紫外吸收检测器上出现的最高分子量低聚物有关。在出现4环、3环和单聚物峰时,紫外荧光峰就基本消失了,4环、3环和单聚物峰在图2B中分别在35.4、36.7和39.0分钟。对于监测工业木复合材料的生产过程来说,监测异氰酸酯粘合剂的荧光因此似乎是一种可靠的方法。
理想地,粘合剂的使用量要足以涂布100%待粘合材料表面积。如果达到粘合剂均匀分布,让达到100%覆盖率所必需的粘合剂降到最少。但是,在工业生产过程中,为了保证完全覆盖,粘合剂用量可以高到比达100%覆盖率所必需的理论用量多50-60%。
图1中所示滤光片5是多层“夹层式”滤光片结构。第一层5a(最接近样品3)是紫外阻挡滤光片,它保护其他滤光片和视频摄像机CCD(电荷耦合装置)成像探测器不受紫外线伤害。任何在市场购买到的紫外阻挡滤光片都可用作阻挡滤光片5a,这些滤光片可阻挡波长小于380-400毫微米(优选地小于400毫微米)的紫外辐射。合适的阻挡滤光片实例包括用含有紫外稳定剂的聚碳酸酯塑料制成的滤光片,它们可以商品名Makrolon(Bayer公司)和Lexan(GE塑料)从市场上购买到。0.125英寸厚的Makrolon塑料滤光片是特别优选的。图10曲线B是光学级聚碳酸酯的透射光谱图,紫外阻挡截止点是400毫微米。
滤光片5的第二滤光层5b是宽带通滤光片,它阻挡紫外光和波长400-455毫微米(优选地所有小于455毫微米波长)短波长蓝光。任何可从市场上购买到的锐截止点为455毫微米的宽带通滤光片都可用作滤光片5中的滤光片5b。从新泽西巴灵顿的Edmund Scientific公司购买的F45,063的455毫微米宽带通滤光片是特别优选的。图10曲线C是Edmund Scientific公司455毫微米宽带通滤光片P45,063的透射光谱。
滤光片5的第三个滤光层5c是可见光带通滤光片,选用来增加粘合剂与复合材料之间的对比度,并消除其他荧光组分的任何干扰。例如,如果粘合剂复合材料是以聚合MDI为主要成分的,摄相机7是单色视频摄相机,则滤光片5的优选可见光带通滤光片5c是蓝色滤光片。任何从市场上买到的通带为400-530毫微米的蓝色带通滤光片都是合适的。在本发明装置中特别有用的可见光通带滤光片是EdmundScientific公司的Night Blue透明丙烯酸滤光片,滤光片分类为F39418。图10曲线D是Night Blue透明丙烯酸滤光片的透射光谱。
滤光片5不必须是夹层结构。可能的是该滤光片是通常的光干涉滤光片,它应具有滤光片5a、5b和5c所有特性。但是,如果不在一次制造大量滤光片,其成本会相当高。所述的滤光片夹层结构成本低于$100。通常的干扰滤光片成本可能超过$500美元。
在实施本发明时可以使用任何从市场上可购买到的透镜。透镜不必是变焦透镜,但是,变焦透镜可以很容易地调整由紫外光源2均匀照射所覆盖的最大面积视野。特别优选的透镜6是Edmund Scientific公司的8-48毫米变焦透镜F53152。
在实施本发明时可以使用任何从市场上购买到的视频摄相机用作视频摄相机7。该摄相机既可以是单色的,也可以是彩色摄相机。合适的视频摄相机实例包括Sony XC-75型单色视频摄相机和Cohu 2222-2340型彩色摄相机。这些摄相机都可从新泽西巴灵顿的EdmundScientific公司购买到。
滤光片5、透镜6和摄相机7以这样一种方式相对于样品3定位,以致可以用透镜6调整摄相机7的视野。视频摄相机7可设定成覆盖由紫外光源2均匀照射的最大面积。优选的是,样品3表面与透镜6之间的距离为约48英寸,摄相机7正下方的视野面积是约2英尺长、约1.5英尺宽的面积。滤光片5、透镜6和摄相机7彼此以这样一种方式定位,使得所有投在摄相机7的CCD(电荷耦合装置)成像探测器上的所有光都通过滤光片5和透镜6。
外壳8是有助于保持紫外光源2、滤光片5、透镜6和摄相机7排列成行的支撑结构,并保护摄相机7视野内的生成复合材料的材料3不受外界光线的干扰。外壳8通常在其底部敞口,使紫外光源2的紫外光照射生成复合材料的材料3,荧光返回到滤光片5、透镜6和摄相机7。
任何从市场上可购买到的具有高速图像画面捕获板的计算机都可用作本发明装置中的图像处理硬件10。特别有利的计算机是带有图像画面捕获板的、具有233兆赫或更快英特尔奔腾处理器的计算机,例如可从加拿大魁北克的Coreco公司购买到的名为“Bandit”的计算机。
任何从市场上购买到的可安装在计算机硬件10上的图像处理软件程序都可用于本发明的装置。已发现在实施本发明中一种特别有利的软件程序是Wit Visual Programming Software,可从加拿大魁北克的Logical Vision公司购买到。
任何从市场上可购买到的显示器都可用于实施本发明中的显示器11。但是,优选的是任何使用的显示器都能显示彩色图像和/或彩色光谱。
根据本发明的待监测材料(即基体)的制备方法一般是,把基于木质纤维素的材料与粘合剂混合或掺和,把生成复合材料的混合物或掺和物放到在传送带上的模子或某种结构中,让生成复合材料的材料在外壳8下通过,以监测粘合剂的用量和分布,然后让其生成复合材料的材料通过热压机,使粘合剂组合物固化。热压力机典型地保持在温度约50-210℃,优选地是约150-200℃,以保证粘合剂固化。
图3-7表示了木质束的紫外荧光图像,这些木质束使用6英尺直径的实验搅拌机(从加拿大温哥华的Coil Industries公司购买)涂聚合MDI,其中以木质束总重量计粘合剂含量为0%、2%、4%、6%和8%(重量)。这些图3-7中的图像都是单色灰色等级的假彩色显示。木腐荧光非常明亮,显示出红和红橙色。不带任何粘合剂的木质束呈深蓝色,随着粘合剂用量增加,涂有粘合剂的木质束呈淡蓝色到绿色到黄色。研究CCD(电荷耦合装置)图像检测器照度是恒定的图像中间三分之二部分,显示出粘合剂在木质束上分布非常不均匀。如果图5中4%用量的粘合剂均匀分布在整个木质束上,那么4%用量就足以生产出复合材料物品。图6显示甚至6%用量水平,不适于涂布某些木质束。图7显示在8%用量时,所有的木质束都涂有粘合剂,但许多木质束都涂过量,过量的粘合剂就浪费了。用本发明的装置达到监测粘合剂用量和分布的能力,使得有可能优化生产方法,还由于使用更少的粘合剂而达到明显节约成本。
由于已经描述了本发明,所以给出以下实施例说明本发明。如果没有另外指出,在这些实施例中给出的所有份数和百分比都以重量计。
使用一台基本如图l所示的设备,分析白杨木的长木质束,向其上涂布0%、2%、4%、6%和8%聚合MDI(从Bayer公司购买的Mondur 541),以校准用量的设备。
紫外光源2由八个四英尺的40瓦灯泡(从俄亥俄州克利夫兰的GELighting公司购得的F40T12/BLB灯泡)和四个2英尺的20瓦灯泡(从俄亥俄州克利夫兰的GE Lighting公司购得的F20T12/BLB灯泡)构成。如图1所示,这些灯泡对称排列在滤光片5、透镜6和视频摄相机7周围,均匀地照射白杨木质束,这些木质束离紫外灯2是48英寸。
生成复合材料的材料3由白杨木质束构成,其尺寸为0.08”×1.0”×6”至0.12”×1.5”×12”,水含量为6%(重量)。这些木质束涂布0%、2%、4%、6%和8%(重量)聚合MDI,MDI从Bayer公司购买,商品名为Mondur 541。
滤光片5是由两层构成的滤光片夹层结构。第一层是聚碳酸酯紫外阻挡滤光片,它由厚0.125”的含紫外光稳定剂的Makrolon聚碳酸酯(从马萨诸塞州的Shefsield的Shefsield Plastics购得)构成。第二个滤光片层由455毫微米宽带通滤光片F45,063(从新泽西巴灵顿的Edmund Scientific公司购得)构成。
透镜6是具有f/1.3-16和8.5毫微米焦距的透镜F39,087(从新泽西巴灵顿的Edmund Scientific公司购得)。
视频摄相机7是Sony XC-75型单色视频摄相机(从EdmundScientific公司购得)。75欧姆同轴电缆9把视频摄相机7与图像处理硬件10连接起来。
图像处理硬件10是233兆奔腾处理器计算机,有128兆RAM。该计算机是戴尔Optiple型由戴尔计算机公司出售的GXA。由加拿大魁北克的Coreco公司出售的Bandit图像帧捕获板用于数字化处理来自摄相机7的视频信号。
图像处理软件算法使用Wit Visual Programming Software(从加拿大魁北克Logical Vision公司购得)编程。
在六英尺直径的实验搅拌机(加拿大温哥华Coil Industries公司)中,用聚合MDI对白杨木质束给料。以2%增量粘合剂给木质束给料,然后在本发明的监测设备下通过。用纸板罩盖住白杨木质束,防止受到紫外辐射照射,直到图像处理软件准备好捕获视频图像。紫外辐射照射15-30秒以上将使复合材料漂白,并使总荧光减少到足以影响校准的程度。实际受到紫外辐射照射到捕获图像的时间仅用了0.1秒。捕获图像后,木质束放回到混合机中,再配2%粘合剂。重复这一处理过程直至达到粘合剂为0%、2%、4%、6%和8%的图像。
通过把每一图像上的对比度调整到相等,并把假彩色调色板转换成灰度等级,从而用Wit软件处理单色图像。假彩色图像示于图3-7中。因为所使用的滤光片允许所有波长为455-700毫微米可见光通过,因此粘合剂和如木腐之类的其他荧光材料之间并无区别。但是,木腐的黄色荧光强度比聚合MDI粘合剂的蓝绿色荧光强度高得多。当单色图像转换成假彩色时,高强度木腐呈橙色和红色,取决于粘合剂用量,粘合剂呈浅蓝色到绿色到黄色。图3的0%树脂图像在其中心呈现一些浅蓝色,这是由于在图像中心的所有长波紫外光和更长波长的光,即作为透镜6使用的f/1.3-16、8.5毫米焦距透镜的特征的光之下,木料的天然深蓝荧光很弱。
然后使用图像处理软件计算每一幅图像的频率曲线。频率曲线是图像的数学表示,其中把向量元素分配给每一个灰度等级的256亮度而形成的向量。每一向量元素的值是在那个强度下的图像中的像素总数。
图8是由图3-7中图像得到的频率曲线的图形表示。在图8中,x轴为0-255任意单位的亮度和灰度等级。y轴为像素数或像素总数。图8中曲线A表示了涂有0%粘合剂的木质束频率曲线。图8曲线B表示了涂有2%粘合剂的木质束频率曲线。图8曲线C表示了涂有4%粘合剂的木质束频率曲线。图8曲线D表示了涂有6%粘合剂的木质束频率曲线。图8曲线E表示了涂有8%粘合剂的木质束频率曲线。木腐在x轴上部末端显现为频率曲线中的正阶跃。
由频率曲线,通过计算向量的交叉乘积的和(即每个向量元素值乘以向量元素数
的和),然后除以像素总数,可计算出平均图像强度。该平均图像强度的计算与频率曲线下的面积计算不同。频率曲线下的面积总是等于像素数(即一个640×480像素图像为307,200)。交叉乘积和用该元素强度使向量的每个元素加权。然后用线性回归将平均图像强度与粘合剂用量关联起来。这一线性回归的结果显示在图9中。实施例2修改实施例1中所用装置,以消除在使用单色视频摄相机时木腐荧光的干扰。
增加用作紫外光源的灯的数量。一共14个4英尺的40瓦F40T12/BLB灯泡(俄亥俄州克利夫兰的GE Lighting公司)用作紫外光源2。滤光片夹色层结构5增加第三层。该层是一种可见光通带滤光片,选用来增加粘合剂与木质纤维素材料之间的对比度,以及消除任何来自于荧光木腐的干扰。所采用的滤光片是Edmund Scientific的Night Blue透明丙烯酸滤光片,其型号是F39418。图10曲线D是NightBlue的透射光谱。用8-48毫米变焦透镜(从新泽西巴灵顿的EdmundScientific公司购得透镜F53152)代替透镜6。
图11是聚合MDI(从Bayer公司购买的Mondur 541)的紫外荧光和黄色荧光木腐提取物的二维等高线图,该木腐提取物是由木腐浸泡在四氢呋喃溶剂中6小时制成的。使用Hitachi F4500型荧光分光光度计的紫外荧光分光计得到该紫外等高线图。在图11中,可看到粘合剂荧光为粗等高线,木腐荧光为细等高线。X轴是激发波长,y轴是发射波长。紫外光源灯2有发射光谱,符合灯的紫外玻璃滤光片透射谱,如图10中曲线A所示范围为300-400毫微米的谱。
给定紫外光源灯2的发射光谱(图10中的曲线A)、455毫微米宽带通滤光片的透射光谱(图10中的曲线C)和Night Blue透明丙烯酸滤光片光谱(图10中的曲线D),由图11可看出,大部分木腐荧光可从摄相机图像中消除掉。
用上述修改过的装置可获得给料5%粘合剂的木质束图像。图12是用该修改过的装置得到的单色图像。当图12与图13的真彩色图像对比时,从图12明显可以看出,木腐的荧光已从图像上消失。图12表明了粘合剂在木质束上分布不均匀。图像中央的垂直木质束在粘合剂给料过程中被其他木质束遮蔽。
然后,使用修改过的装置拍摄涂有5%聚合MDI的木质束图像。图13是来自摄相机7的全彩色图像,在该图像中,木腐用黄绿色荧光表示,异氰酸酯粘合剂用浅蓝色荧光表示,未涂粘合剂的木料用深蓝色荧光表示。然后处理该图像,把全彩色图像分成红、绿和蓝图像。黄绿色荧光木腐在红色和绿色图像中有一种组分,但在蓝色图像中事实上没有任何组分。发射浅蓝色荧光的异氰酸酯粘合剂在蓝色和绿色图像中有一种组分,但在红色图像中没有任何组分。用0-255灰度等级的85以上的所有像素,从绿色和蓝色图像除去所有木腐像素,从而由单色红色图像得到一个掩膜片。显示如图14带遮蔽的木腐的全彩色图像。然后以如实施例1所用的相同方法,可以计算蓝色和绿色图像的未遮蔽像素的平均图像强度。再将该平均图像强度与粘合剂用量相关联。木腐的量可能与红色图像的平均图像强度相关联。通过检查红色、绿色和蓝色图像,对这三种图像的对应像素采用适当的图像掩膜片技术或多元分析方法,分析额外的荧光成分。
尽管为了说明的目的,已经在上述说明中详细说明了本发明,但应当理解,这些细节仅是为了该目的,在不超出由权利要求书所限定的本发明精神和范围的情况下,本技术领域的技术人员可以对其技术进行修改。
权利要求
1.一种测定基体上粘合剂用量和分布的装置,它包括a)长波紫外光源,它如此定位,以致由其发射的紫外光波与已涂布粘合剂的基体接触,b)滤光片,它阻挡由光源a)发射和被基体反射的紫外光波,但允许由粘合剂荧光发射的可见光波通过,c)使可见光在焦点平面上成像的透镜,d)在透镜c)上定位的视频摄相机,它把穿过滤光片b)和透镜c)的可见光波转换成电信号,和e)将由视频摄相机d)接收到的图像与和光源a)发出的紫外光波相接触的基体上的粘合剂用量和分布关联起来的设备。
2.根据权利要求1所述的装置,其中光源a)是紫外灯。
3.根据权利要求1所述的装置,其中光源a)是4个或更多个紫外灯。
4.根据权利要求1所述的装置,其中滤光片b)和透镜c)如此定位,以致可见光波在通过透镜c)之前通过滤光片b)。
5.根据权利要求1所述的装置,其中滤光片b)和透镜c)如此定位,以致可见光波在通过滤光片b)之前通过镜头c)。
6.根据权利要求1所述的装置,其中滤光片b)由一个以上滤光片构成。
7.根据权利要求1所述的装置,其中滤光片b)包括能阻挡紫外光波的滤光片。
8.根据权利要求6所述的装置,其中滤光片b)包括宽带通滤光片,其截止波长为400-600毫微米。
9.根据权利要求6所述的装置,其中滤光片b)是选自于仅能使由发射荧光的粘合剂发出的可见光辐射通过的滤光片。
10.根据权利要求6所述的装置,其中滤光片b)包括近红外阻挡滤光片。
11.根据权利要求6所述的装置,其中视频摄相机d)是彩色视频摄相机。
12.根据权利要求11所述的装置,其中彩色视频摄相机具有彩色带通滤光片,它起滤光片b)中一片或多片滤光片的作用。
13.根据权利要求1所述的装置,其中关联设备e)能够增强发射荧光的粘合剂和发射荧光的木质纤维素材料的图像。
14.一种用于监测基体上粘合剂用量和分布的方法,该方法包括a)让紫外光波照射涂有粘合剂的材料,其时间足以使粘合剂发荧光,b)收集由发射荧光的粘合剂发射的可见光波,c)使从b)收集到的紫外光波通过阻挡紫外光波的滤光片,d)使发射荧光的粘合剂发射的可见光波在视频摄相机上成像,该视频摄像机将图像转换成电信号,以及e)将在d)中视频摄相机产生的电信号传输到把粘合剂用量和分布与接收的电信号相关联的设备。
15.根据权利要求14所述的方法,其中在步骤e)中所使用的关联设备是计算机,它编有将粘合剂用量和分布与由视频摄相机产生的电信号相关联的程序。
16.根据权利要求14所述的方法,其中粘合剂是基于聚异氰酸酯的材料。
17.根据权利要求14所述的方法,其中粘合剂是聚合MDI。
18.根据权利要求14所述的方法,其中c)中使用的滤光片还阻挡近红外光波。
19.根据权利要求14所述的方法,其中c)中使用的滤光片还阻挡除了粘合剂之外的任何发荧光材料所发射的可见光波。
20.根据权利要求14所述的方法,其中增强已涂粘合剂材料的荧光与粘合剂荧光之间的对比度。
21.一种木质束板的生产方法,它包括a)向木质束涂布聚异氰酸酯,b)根据权利要求14所述的方法监测聚异氰酸酯/木质束材料,直到聚异氰酸酯用量和分布在前述测定的可接受范围内。c)聚异氰酸酯/木质束材料制成要求的形状或形式,和d)使聚异氰酸酯/木质束材料经受固化条件。
全文摘要
一种测定基体上粘合剂用量和分布的方法及设备,它包括:a)长波紫外光源(2),它如此定位,以致由其发射的紫外光波与已涂布粘合剂的基体(3)接触;b)滤光片(5),它阻挡由光源a)发射并被基体反射的紫外光波,但允许由粘合剂荧光发射的可见光波(4)通过;c)使可见光在焦点平面上成像的透镜(6);d)在透镜c)焦点平面上定位的视频摄相机(7),它把穿过滤光片b)和透镜c)的可见光波转换成电信号;和e)将由视频摄相机d)接收到的图像与和光源a)发射的紫外光波相接触的基体上的粘合剂用量和分布关联起来的设备。
文档编号G06T1/00GK1332843SQ99815210
公开日2002年1月23日 申请日期1999年12月27日 优先权日1998年12月29日
发明者R·N·亨特, T·L·蒂姆 申请人:美国拜尔公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1