一种可增强对比度的无人售货装置的制造方法

文档序号:9929822阅读:406来源:国知局
一种可增强对比度的无人售货装置的制造方法
【技术领域】
[0001] 本发明设及无人售货,具体设及一种可增强对比度的无人售货装置。
【背景技术】
[0002] 无人售货装置又称自动售货机,自动售货机是一种全新的商业零售形式,20世纪 70年代自日本和欧美发展起来,它又被称为24小时营业的微型超市。自动售货机是能根据 投入的钱币自动付货的机器。自动售货机是商业自动化的常用设备,它不受时间、地点的限 审IJ,能节省人力、方便交易。是一种全新的商业零售形式,又被称为24小时营业的微型超市。 能分为=种:饮料自动售货机、食品自动售货机、综合自动售货机。
[0003] 另外,无人售货装置作为一种重要的昂贵设备,其安全性尤为重要,必须能防止和 监视恶意破坏行为。

【发明内容】

[0004] 针对上述问题,本发明提供一种可增强对比度的无人售货装置。
[0005] 本发明的目的采用W下技术方案来实现:
[0006] -种可增强对比度的无人售货装置,包括无人售货装置和安装在无人售货装置上 的监测装置,监测装置用于对无人售货装置附近的活动进行视频图像监测,监测装置包括 预处理模块、检测跟踪模块、识别输出模块.
[0007] (1)预处理模块,用于对接收到的图像进行预处理,具体包括图像转化子模块、图 像滤波子模块和图像增强子模块:
[000引图像转化子模块,用于将彩色图像转化为灰度图像:
[0009]
[0010] 其中,3^,7)、6^,7)、8^,7)分别代表像素^,7)处的红绿蓝强度值,化义,7)代表 坐标(X,y)处的像素灰度值;图像大小为m X n;
[0011] 图像滤波子模块,用于对灰度图像进行滤波:
[0012] 采用维纳滤波来进行一级滤除后,定义SVlm图像,记为MsvimU,y),具体定义公式 为:Msvim(x,y) =aiji(x,y)+a2j2(x,y)+a3j3(x,y)+a4j4(x,y),其中日1、日2、日3、日4为可变权值,
i = l,2,3,4;J(x,y)为经滤波后的图像;
[0013] 图像增强子模块:
[0014] 当I
,其中,LU, y)为增强 后的灰度值;iKx,y)是包含有局部信息的伽马校正系数,此时
是范围为O到I的可变参数,
[0015] 当
其中(6(x,y)=(6a(Msvlm(x,y)):
IH是图像中灰度值高于128的所有 像素的均值,HiL是灰度值低于UH的所巧像素的巧但,且化时m=min(mH,mL),在a值已知的情 况下,计算出化6个4校正系数作为查找表,记为ft 岂其中i为索引值,利用MsvimU, y) 的灰度值作为索引,根据(6(x,y)=MMsvl"(x,y))快速获得图像中每个像素的伽马校正系数 iKx,y):
为模板修正系数;
[0016] (2)检测跟踪模块,具体包括构建子模块、丢失判别子模块和更新子模块:
[0017] 构建子模块,用于视觉字典的构建:
[0018] 在初始帖获取跟踪目标的位置和尺度,在其周围选取正负样本训练跟踪器,将跟 踪结果作为训练集X={xi,x2,......xn}T;并对训练集中的每幅目标图像提取128维的SIFT 特征其中S康示训练集中第t幅目标图像中SIFT特征的个数;跟踪N帖W后,通过 聚类算法将运些特征划分为K个簇,每个簇的中屯、构成特征单词,记为{。巧=1;能够提取到 的特征总量%二玄装1&,其中K?机,且K 视觉字典构建好W后,每幅训练图像 表示为特征包的形式,用于表示视觉字典中特征单词出现的频率,用直方图Mxt)表示,h (Xt)通过W下方式获取:将一幅训练图像Xt中的每一个特征cUW向视觉字典投影,用投影距 离最短的特征单词表示该特征,对所有特征投影完毕后,统计每个特征单词的出现频率,并 归一化得到训练图像Xt的特征直方图h(xt);
[0019] 丢失判别子模块,用于判别目标的丢失与否:
[0020] 当新一帖图像到来时,从K个直方图柱中随机选取Z<K个直方图柱,且Z = 4,形成新 的大小为Z的子直方图hW(xt),子直方图的个数最多为馬=巧个;计算候选目标区域和训 练集中某个目标区域对应子直方图的相似性。t_z,
其中t = 1,2,...,N,z = l,2,...,化,然后计算总体相似性Ot=I-n z(l-〇t_z);候选目标区域与目 标的相似性用。二max{ O t,t}表示,则目标丢失判断式为:
其 中gs为人为设定的判失阀值;当U = I时目标被稳定跟踪,当U = O时,目标丢失;
[0021] 当目标丢失时,定义仿射变换模型:
其中(Xt,yt)和(Xt-I,yt-1)分别为当前帖目标中某个SITF特征点的位置坐标和前一个帖目标 中对应匹配特征点的位置坐标,两者均为已知量;S为尺度系数,0为旋转系数,e和f代表了 平移系数,
3溫度旋转修正系数,,
为溫度平移修正系数,山和化用于修正因为环境溫度偏差造成的图像旋转和平移误差,I'd为 人为设定的标准溫度,设为20度,T为由溫度传感器实时监测得到的溫度值;采用Ransac估 计算法求取仿射变换模型的参数,最后在新的尺度S和旋转系数0下采集正负样本,更新分 类器;
[0022] 更新子模块,用于视觉字典的更新:
[0023] 在每帖图像获得目标位置W后,根据仿射变换参数的计算结果,收集所有满足结 果参数的SIFT特征点{/n'l爲=1,经过F = 3帖W后,获得新的特征点集{/;;设主其中St-F代表 了从F帖图像中得到的总特征点数;利用下式对新旧特征点重新进行K聚类:=
I其中{CULi表示新的视觉字典,视觉字典的大小保 持不变;G {0.1}是遗忘因子,表明了旧字典所占的比重,與越小,新特征对目标丢失的判 断贡献越多,取癸= 0.12;
[0024] (3)识别输出模块,用于图像的识别和输出:在待识别的图像序列中利用跟踪算法 获取目标区域,将目标区域映射到已知训练数据形成的子空间,计算子空间中目标区域与 训练数据之间的距离,获得相似性度量,判定目标类别,并输出识别结果。
[0025] 优选的,采用维纳滤波来进行一级滤除后,此时图像信息还包含有残余的噪音,采 用W下的二级滤波器进行二次滤波:
[0026]
[0027] 其中,J(X,y)为经过滤波后的图像;Pg(x+i,y+j)代表尺度为m X n的函数,且Pg(X+ i,y+j)=qXe邱(-(x2+y2)/?),其中q是将函数归一化的系数,即 JJqXexp(-(x2+y2)/?) dxdy=1O
[0028] 本无人售货装置的有益效果为:在图像预处理阶段,增强的图像能够根据模板的 大小自适应调整,提高增强效果,且在在不同模板大小时判断条件能自动修正,且考虑了视 觉习惯W及人眼对不同色彩的感知度同色彩强度的非线性关系;将MXN个幕指数运算降低 为256个,提高了计算效率;在目标检测和跟踪阶段,能够消除不同溫度导致图像的旋转和 平移造成的误差,提高识别率,经处理后的图像细节更加清晰,且计算量相对于传统方法大 幅度减少,能够有效适应目标尺度变化,并能够准确判定目标是否发生丢失,在目标重新回 到视场后能够被重新检测并稳定跟踪。此外,该无人售货装置具有实时性好、定位准确和鲁 棒性强的优点,且在快速有遮挡的目标检测和跟踪方面取得了很好的效果。
【附图说明】
[0029] 利用附图对本发明作进一步说明,但附图中的实施例不构成对本发明的任何限 审IJ,对于本领域的普通技术人员,在不付出创造性劳动的前提下,还可W根据W下附图获得 其它的附图。
[0030]图I是一种可增强对比度的无人售货装置的结构框图;
[0031 ]图2是一种可增强对比度的无人售货装置的外部示意图。
【具体实施方式】
[0032] 结合W下实施例对本发明作进一步描述。
[0033] 实施例1:如图1-2所示,一种可增强对比度的无人售货装置,包括无人售货装置5 和安装在无人售货装置5上的监测装置4,监测装置4用于对无人售货装置5附近的活动进行 视频图像监测,监测装置4包括预处理模块1、检测跟踪模块2、识别输出模块3。
[0034] (1)预处理模块1,用于对接收到的图像进行预处理,具体包括图像转化子模块11、 图像滤波子模块12和图像增强子模块13:
[0035] 图像转化子模块11,用于将彩色图像转化为灰度图像:
[0036]
[0037] 其中,3^,7)、6^,7)、8^,7)分别代表像素^,7)处的红绿蓝强度值,化义,7)代表 坐标(x,y)处的像素灰度值;图像大小为mXn;
[0038] 图像滤波子模块12,用于对灰度图像进行滤波:
[0039] 采用维纳滤波来进行一级滤除后,定义SVlm图像,记为MsvimU,y),具体定义公式 为:Msvim(x,y) = aiji(x,y)+a2j2(x,y)+a3j3(x,y)+a4j4(x,y),其中曰1、日2、日3、日4为可变权值,
i = l,2,3,4;J(x,y)为经滤波后的图像;
[0040] 图像增强子模块13:
[0041] 当
其中,LU, y)为增强 后的灰度值;iKx,y)是包含有局部信息的伽马校正系数,此时
,a是 范围为0到1的可变参数
[0042] 当
'且《>50时,
其中iKx,y)=4a(Msvim(x,y)):
,mH是图像中灰度值高于128的所有 像素的均值,HiL是灰度值低于128的所有像素的均值,且此时m=min(mH,mL),在a值已知的情 况下,计算出256个4校正系数作为查找表,记为{巾"姆}皆1,其中i为索引值,利用Msv
当前第1页1 2 3 4 5 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1