固-固分离水力旋流器参数的数值模拟优化方法

文档序号:10489123阅读:723来源:国知局
固-固分离水力旋流器参数的数值模拟优化方法
【专利摘要】本发明涉及水力旋流器的设计与制造技术领域,一种固?固分离水力旋流器参数的数值模拟优化方法,主要包括以下操作步骤:确定水力旋流器的基本直径;确定水力旋流器其他结构参数;二次正交旋转组合试验方案设计;操作参数数值模拟与试验优化;正交试验方案设计;结构参数数值模拟与试验优化。本发明克服现有技术中的缺点与不足,提供一种以水力旋流器分离性能为目标,对固?固分离水力旋流器的操作参数和结构参数进行多变量多目标参数优化的方法,从而简单、经济、高效的实现水力旋流器的参数优化,显著提高水力旋流器的分离性能,提高生产效率、降低生产成本、提高产品质量。
【专利说明】
固-固分离水力旋流器参数的数值模拟优化方法
技术领域
[0001] 本发明涉及水力旋流器的设计与制造技术领域,更具体地说,涉及一种固-固分离 水力旋流器参数的数值模拟优化方法。
【背景技术】
[0002] 水力旋流器是工业生产中常用的两相分离设备,具有结构简单、操作方便、生产能 力大、分离效率高、占地面积小等诸多优点。
[0003] 水力旋流器的应用包括固液分离、液气分离、固固分离、液液分离、液气固三相同 时分离等。水力旋利器作为分离分级设备的基本工作原理是基于离心沉降作用。当待分离 的两相混合液以一定压力从水力旋流器入口进入器内后,产生强烈的旋转运动,由于轻相 和重相存在密度差,所受的离心力、向心浮力和流体拽力的大小不同,受离心沉降作用,大 部分重相经旋流器底流口排出,大部分轻相从溢流口排出,从而达到分离的目的。
[0004] 目前,水力旋流器已广泛用于石油、化工、矿业、食品、环保等诸多领域。如矿冶工 程中的分级、选别、产物浓缩、洗漆澄清等;石油化工中的油水分离;食品工业中粗细粒分级 和去杂、淀粉的洗漆等;造纸工业中纸张涂料的制备、造纸废水的处理等;环保工程中的工 业和生活水处理等。
[0005] 水力旋流器通常用于工业化规模化生产,水力旋流器的性能对其生产能力、经济 效益、产品质量具有重要影响。但在实际应用中,水力旋流器通常根据生产能力、分级粒度 等根据现有产品进行选型,或通过经验方法进行水力旋流器基本直径及相关结构参数的初 步设计,按照这些方式所确定的水力旋流器在性能上很难实现在特定的生产需求下达到最 优,因此,对水力旋流器作进一步的优化具有重要的工程意义。
[0006] 目前,对水力旋流器的优化研究更多是针对具体的工程应用问题,通过单因素试 验方法定量分析各因素对水力旋流器性能的影响,进而实现水力旋流器关键参数的选取。 该方法能够直观的获得各因素对水力旋流器性能的影响规律,但试验量巨大,同时其忽略 了因子间的交互作用影响;或应用试验设计方法进行试验方案设计,对试验结果进行统计 学分析实现参数优化。该方法同样受试验成本及工作量制约,试验因素数量的选取受到极 大限制,只能对部分参数进行优化;或是应用数值模拟方法,通过单因素数值模拟,分析各 影响因素对其内部流场特性及水力旋流器性能的影响。该方法通过选择适宜的湍流模型和 仿真参数,能够对水力旋流器部分性能进行近似的定量分析,同时获取各因素对内部流场 的影响规律,从而对水力旋流器分离机理进行分析,随着计算机技术的发展获得了越发广 泛的应用。但数值模拟方法受模型选择、网格划分方法影响较大,目前的数值模拟方法大多 用于研究各因素对水力旋流器内部流场特性的影响规律,其对水力旋流器的结构设计及工 艺制定具有一定的理论指导作用,但很难直接用于工程应用;或是通过数值模拟对水力旋 流器内部流场进行分析,从而根据现有的水力旋流分离机理对水力旋流器结构进行改进, 显然,该改进依然是通过定性的方法获得的,优化能力有限,同时针对性强,不便于其它工 程应用问题的借鉴。
[0007] 水力旋流器分离性能受多方面因素影响,包含物性参数、操作参数、结构参数。其 中物性参数包括颗粒密度、颗粒粒度2项;操作参数包含矿浆浓度、入口速度2项;结构参数 包含水力旋流器基本直径、柱段长度、锥角、入口直径、溢流口直径、底流口直径、溢流管插 入深度、溢流管壁厚等8项;此外,水力旋流器的安装倾角、外部环境压强也会对分离性能产 生影响。
[0008] 理论上水力旋流器的性能可通过其内部流场进行分析和描述,但水力旋流器结构 及操作看似简单,其内部流场却异常复杂,尽管国内外学者对水力旋流器内部流场进行了 大量研究,并提出了很多理论、方法及经验模型,用于水力旋流器的设计和优化,但受水力 旋流器众多影响因素及其交互作用影响,现有方法存在多方面不足:或基于某种特定条件, 缺少一般性;或去除多种影响因素;或去除因素间的交互作用影响;或简单的从定性的角度 去分析优化;或依靠大量试验,工作量及成本巨大,效率低下,很难被具体工程应用所借鉴。

【发明内容】

[0009] 本发明的目的在于克服现有技术中的缺点与不足,提供一种以水力旋流器分离性 能为目标,对固-固分离水力旋流器的操作参数和结构参数进行多变量多目标参数优化的 方法,从而简单、经济、高效的实现水力旋流器的参数优化。
[0010] 本发明公开了一种固-固分离水力旋流器参数的数值模拟优化方法,其特征在于 主要包括以下操作步骤:
[0011]第一,确定水力旋流器的基本直径:根据矿石密度S、单个水力旋流器生产能力范 围qm、分级粒度d95、矿浆质量浓度Cw、给矿压力Δ Pm,按公式(1)、公式⑵,确定水力旋流器直 径范围,并按中值选取水力旋流器基本直径D;所述水力旋流器的基本直径直接影响到分级 粒度的大小,直径越小分级粒度越小,但生产能力下降;同时,水力旋流器的其他有关结构 参数可以根据其基本直径通过相应的计算公式初步选取。因此,根据工程要求,确定水力旋 流器的基本直径,是进行水力旋流器参数优化的基础。
[0012] 公式(1):〇=19.59广^(3'25八?'()'25( 111111);其4^:矿浆密度4/1113, :生产能力, m3/h; Δ Pm:给矿压力,MPa;
[0013] 公式(2
t/m3);其中:δ:矿石密度,t/m 3;Cw:矿浆质量浓 度,%;
[0014] 第二,确定水力旋流器其他结构参数:圆柱段长度H、入口直径di、入口长宽比L/B、 溢流管插入深度h、溢流口直径d。、底流口直径d u、锥角Θ,具体计算公式如下:
[0015] 公式(3):圆柱段长度:H=l. 15D;
[0016] 公式(4):入口直径:di = 0.2D;
[0017] 公式(5):入口长宽比:L/B = 0.44;
[0018] 公式(6):溢流管插入深度:h = 0.65D;
[0019] 公式(7):溢流口直径:d。= (0.20~0.30)D;根据矿石中精矿与杂质比例高低取 值,比例较大时取值较大;
[0020] 公式(8):底流口直径:du = (0.25~0.75)d。;根据底流中杂质与溢流中精矿比例取 值,比例较大时取值较大;
[0021 ]公式(9):锥角:9 = 15。,d95 < 45μηι; 9 = 20。,d95>45ym;
[0022] 第三,二次正交旋转组合试验方案设计:应用试验设计软件,以入口速度V1、矿浆 质量浓度Cw和颗粒粒度P g为影响因素,以压力降△ P、溢流浓度(^。、溢流纯度pu。为响应指标, 设计三因素五水平二次正交旋转组合试验方案;
[0023] 第四,操作参数数值模拟与试验优化:应用数值模拟软件,按照第三步确定的试验 方案进行数值模拟,然后将数值模拟结果通过试验设计软件进行多变量多目标优化,得到 入口速度V i、矿浆浓度(^、颗粒粒度Pg的优化组合方案;
[0024] 第五,正交试验方案设计:应用试验设计软件,以水力旋流器溢流口直径d。、底流 口直径d u、锥角Θ、溢流管插入深度h为影响因素,以压力降ΔΡ、溢流浓度Cw。、溢流纯度Pu。为 响应指标,设计四因素三水平正交试验方案;
[0025] 第六,结构参数数值模拟与试验优化:应用数值模拟软件,按照第五步确定的试验 方案进行数值模拟,数值模拟中的入口速度、矿浆浓度和颗粒粒度按照第四步中的优化结 果取值,然后将数值模拟结果通过试验设计软件进行分析,确定水力旋流器溢流口直径d。、 底流口直径d u、锥角Θ、溢流管插入深度h的优化组合方案。
[0026] 更确切地说,所述第四步与第六步中所述的数值模拟,仿真参数设置方法为:压力 親合、隐式、非稳态算法、ReynoIds Stress模型、Mixture多相流模型,多相流模型选取三 相,分别为水相、精矿相、杂质相,精矿相与杂质相类型为流体,入口采用速度入口,溢流口 与底流口采用压力出口,压力速度耦合采用SMPLEC算法、离散格式中压力采用PRESTO!格 式,其他采用二阶迎风格式,边界条件中湍流强度、体积分数、水力直径、粘度计算方法如以 下公式:
[0027] 公式(1
[0028] 公式(1
[0029] 公式(1
[0030] 公式(1
[0031] 公式(1
[0032] 公式(1
[0033] 公式(1
[0034]其中:ωι、ω2分别为精矿与杂质在矿石中的质量百分含量;
[0035] S1,32分别为精矿与杂质的密度,单位为t/m 3;
[0036] % %分别为精矿与杂质的体积分数;
[0037] I:湍流强度,%;
[0038] Re:雷诺数;
[0039] Cv:矿浆体积浓度,% ;
[0040] cIh:水力直径,mm;
[0041] ym:矿衆粘度,kg/m · s;
[0042] Cw:矿浆质量浓度,%;
[0043] Vi:入口速度,m/s。
[0044] 所述第四步与第六步中所述的数值模拟结果,均通过数值模拟软件获得,计算方 法如下公式:
[0045] 公式(17):压力降Δ P =入口均压-溢流均压;
[0046] 公式(18):溢流浓度Cw。=溢流中的精矿质量流量/溢流中的总质量流量;
[0047] 公式(19):溢流纯度Pu。=溢流中的精矿质量流量/精矿与杂质在溢流中的质量流 量之和。
[0048] 通过以上步骤,即可实现水力旋流器操作参数与结构参数的优化。
[0049] 与现有技术相比,本发明具有如下优点与有益效果:
[0050] 1、本发明依据水力旋流器设计理论与经验方法,具体的给出了水力旋流器相关结 构参数的计算公式,根据相应计算公式,依据工程实际情况,可以简单高效的确定待优化的 水力旋流器结构参数,为水力旋流器的参数优化奠定基础。
[0051 ] 2、本发明将试验设计方法与数值模拟方法相结合,同时将操作参数与结构参数的 优化分步进行,用于固-固分离水力旋流器的参数优化,有效解决了现有水力旋流器参数优 化方法存在的工作量及成本巨大,效率低下问题。本发明可以简单、经济、高效的实现固-固 分离水力旋流器操作参数与结构参数的优化。
[0052] 3、采用本发明提出的数值模拟仿真参数设置方法,可以有效确保数值模拟结果与 试验结果的一致性,确保数值模拟结果替代试验结果的可行性;同时,通过对数值模拟结果 应用试验设计方法进行处理,能够有效避免数值模拟结果存在的误差对优化结果的影响。 [0053] 4、本发明可根据工程实际要求,快速实现水力旋流器结构设计和参数优化,显著 提高水力旋流器的分离性能,提高生产效率、降低生产成本、提高产品质量。经试验验证,通 过本发明获得的优化结果,可以在降低能耗、提高溢流中精矿浓度的同时,获得高纯度的溢 流精矿,精矿纯度可达97%,数值模拟优化结果与试验测试结果相比,误差在5%以内。
【附图说明】
[0054]图1为本发明实施例中固-固分离水力旋流器的结构示意图。
[0055] 图2为图1固-固分离水力旋流器的俯视结构示意图。
[0056] 图3是本发明的固-固分离水力旋流器参数的数值模拟优化方法的操作流程图。 [0057]图中所示:1为水力旋流器圆柱段长度H,2为水力旋流器溢流管插入深度h,3为溢 流口直径do,4为溢流管壁厚t,5为水力旋流器入口宽B,6为水力旋流器基本直径D,7为锥角 Θ,8为底流口直径d u,9为水力旋流器入口长L。
【具体实施方式】
[0058] 参照图1-图3,本实施例以对密度为2.234t/m3,质量百分比85%的精矿,和密度为 3.2t/m3,质量百分比15%的杂质混合的矿石颗粒进行分离,矿石密度为2.34t/m3,矿石颗粒 粒度< 45μπι,对水力旋流器结构设计、操作参数与结构参数优化过程进行详细说明。
[0059]如图1、图2和本发明的固-固分离水力旋流器参数的数值模拟优化方法的流程图 图3所示,本发明固-固分离水力旋流器参数的数值模拟优化方法主要包括以下步骤:
[0060] 第一,确定水力旋流器的基本直径:根据矿石密度δ、单个水力旋流器生产能力范 围qm、分级粒度d95、矿浆质量浓度C w、给矿压力Δ Pm,按公式(1)、公式⑵,确定水力旋流器直 径范围,并按中值选取水力旋流器基本直径D;
[0061] 公式(1):D= 19 .Sqmth5PmQ'25 APm-Q'25(mm);其中p m:矿浆密度,t/m3;qm:生产能力, m3/h; Δ Pm:给矿压力,MPa;
[0062] 公式(2
t/m3);其中:δ:矿石密度,t/m 3;Cw:矿浆质量浓 度,%;
[0063]根据矿石密度δ = 2 · 34t/m3,设计单个水力旋流器生产能力qm= 2_5m3/h,设计水力 旋流器给矿矿浆质量浓度Cw= 10-30%,根据分级粒度45μπι,确定给矿压力ΔPm = 0.12-0.18MPa。由公式I、公式Π可得水力旋流器的直径范围:43mm < D < 78mm,按中值选取D = 60mm 〇
[0064]第二,确定水力旋流器其他结构参数:圆柱段长度H、入口直径cU、入口长宽比L/B、 溢流管插入深度h、溢流口直径d。、底流口直径du、锥角Θ,具体计算公式如下:
[0065] 公式(3):圆柱段长度:H=l. 15D;
[0066] 公式(4):入口直径:di = 0.2D;
[0067] 公式(5):入口长宽比:L/B = 0.44;
[0068] 公式(6):溢流管插入深度:h = 0.65D;
[0069] 公式(7):溢流口直径:d。= (0.20~0.30)D;根据矿石中精矿与杂质比例高低取 值,比例较大时取值较大;
[0070] 公式(8):底流口直径:du = (0.25~0.75)d。;根据底流中杂质与溢流中精矿比例取 值,比例较大时取值较大;
[0071 ]公式(9):锥角:9 = 15。,d95 < 45μηι; 9 = 20。,d95>45ym;
[0072]根据水力旋流器的基本直径D,由式(1-(7),确定水力旋流器其它结构参数取值 为:柱段长度H = 70mm,入口长宽L/B = 7/16mm,溢流口直径d。= 18mm,溢流管插入深度h = 45mm,底流口直径du = 12mm,锥角Θ = 15°,另外选取溢流管壁厚t = 5mm。此时按照入口速度 5m/s,矿浆质量浓度20 %,颗粒粒度20μπι进行模拟,模拟结果为,压力降84KPa,溢流浓度 12.3%,溢流纯度89.9%。
[0073]第三,二次正交旋转组合试验方案设计:应用试验设计软件,以入口速度V1、矿浆 质量浓度Cw和颗粒粒度Pg为影响因素,以压力降△ P、溢流浓度(^。、溢流纯度pu。为响应指标, 设计三因素五水平二次正交旋转组合试验方案;
[0074]应用Design Expert软件,以入口速度、矿浆浓度、颗粒粒度为影响因素,以压力 降、溢流浓度、溢流纯度为响应指标,进行二次正交旋转组合试验方案设计,具体方案及结 果如表1所示。
[0075]表1二次正交旋转组合试验方案及结果
[0077] 第四,操作参数数值模拟与试验优化:应用数值模拟软件,按照第三步确定的试验 方案进行数值模拟,然后将数值模拟结果通过试验设计软件进行多变量多目标优化,得到 入口速度V i、矿浆浓度(^、颗粒粒度Pg的优化组合方案。
[0078] 第四步与第六步中所述的数值模拟,仿真参数设置方法为:压力耦合、隐式、非稳 态算法、Reynolds Stress模型、Mixture多相流模型,多相流模型选取三相,分别为水相、精 矿相、杂质相,精矿相与杂质相类型为流体,入口采用速度入口,溢流口与底流口采用压力 出口,压力速度耦合采用SMPLEC算法、离散格式中压力采用PRESTO!格式,其他采用二阶迎 风格式,边界条件中湍流强度、体积分数、水力直径、粘度计算方法如以下公式:
[0079]
[0080]
[0081]
[0082]
[0083]
[0084]
[0085]
[0086] 其中:ωι、ω2分别为精矿与杂质在矿石中的质量百分含量;
[0087] S1,32分别为精矿与杂质的密度,单位为t/m 3;
[0088] %,%分别为精矿与杂质的体积分数;
[0089] I:湍流强度,%;
[0090] Re:雷诺数;
[0091] Cv:矿浆体积浓度,% ;
[0092] cIh:水力直径,mm;
[0093] μΜ:矿衆粘度,kg/m · s;
[0094] Cw:矿浆质量浓度,%;
[0095] Vi:入口速度,m/s。
[0096] 第四步与第六步中所述的数值模拟结果,均通过数值模拟软件获得,计算方法如 下公式:
[0097] 公式(17):压力降Δ P =入口均压-溢流均压;
[0098] 公式(18):溢流浓度Cw。=溢流中的精矿质量流量/溢流中的总质量流量;
[0099] 公式(19):溢流纯度Pu。=溢流中的精矿质量流量/精矿与杂质在溢流中的质量流 量之和。
[0100] 应用FLUENT数值模拟软件,按照表1所确定的试验方案进行数值模拟,其中数值模 拟中的仿真参数设置方法采用公式(10)-(16)进行计算获得。模拟完成后将模拟结果依据 式(17)-(19)进行计算,得到表1所示的试验结果。然后根据试验结果,以压力降最小、溢流 浓度最大、溢流纯度92 %为目标,对入口速度、矿浆浓度、颗粒粒度进行优化,优化结果为: 入口速度6.22m/s,矿浆质量浓度21 %,颗粒粒度19.29μπι,此时压力降为86.6KPa,溢流浓度 12.93%,溢流纯度92 %。
[0101] 第五,正交试验方案设计:应用试验设计软件,以水力旋流器溢流口直径d。、底流 口直径du、锥角Θ、溢流管插入深度h为影响因素,以压力降ΔΡ、溢流浓度Cw。、溢流纯度P u。为 响应指标,设计四因素三水平正交试验方案;
[0102] 应用Design Expert软件,以溢流口直径、底流口直径、溢流管插入深度、锥角为影 响因素,以压力降、溢流浓度、溢流纯度为指标,进行正交试验方案设计,具体方案及结果如 表2所示。 「oifwi 丰胳古安7?娃里
[0105]第六步:结构参数数值模拟与试验优化。应用FLUENT数值模拟软件,按照表2所确 定的试验方案进行数值模拟,数值模拟中的入口速度、矿浆浓度和颗粒粒度按照第五步中 的优化结果取值,即入口速度6.22m/s,矿浆质量浓度21 %,颗粒粒度19.29μπι,数值模拟中 的仿真参数设置方法采用公式(10)-(16)进行计算获得。模拟完成后将模拟结果依据公式 (17)-(19)进行计算,得到表2所示的试验结果。根据正交试验方案,以压力降最小、溢流浓 度最大、溢流纯度最大为目标,对溢流口直径、底流口直径、溢流管插入深度、锥角进行优 化,优化结果为溢流口直径20mm,底流口直径IOmm,溢流管插入深度30mm,锥角12°,此时压 力降60 · 9KPa,溢流浓度15 · 74 %,溢流纯度99 · 93 %。
[0106] 通过上述优化可知,应用本发明所涉及的优化方法,实现了压力降减小,溢流浓度 提高,溢流纯度提高,从而提高了产品质量,降低了能耗,提高了生产效率。按照本发明所得 到的水力旋流器操作参数与结构参数优化结果,通过试验测试表明,压力降65KPa,溢流浓 度15%,溢流纯度97%,与数值模拟结果误差在5%以内。
【主权项】
1. 一种固-固分离水力旋流器参数的数值模拟优化方法,其特征在于主要包括W下操 作步骤: 第一,确定水力旋流器的基本直径:根据矿石密度S、单个水力旋流器生产能力范围qm、 分级粒度d95、矿浆质量浓度Cw、给矿压力APm,按公式(1)、公式(2),确定水力旋流器直径范 围,并按中值选取水力旋流器基本直径D; 公式(1:庚中Pm:矿浆密度,t/m3;qm:生产能力,πΜι; Δ Pm:给矿压力,MPa; 公式(2) :其中:δ:矿石密度,t/m3;Cw:矿浆质量浓 度,%; 第二,确定水力旋流器其他结构参数:圆柱段长度H、入口直径di、入口长宽比L/B、溢流 管插入深度h、溢流口直径d。、底流口直径山、锥角Θ,具体计算公式如下: 公式(3):圆柱段长度:H=1.15D; 公式(4):入口直径:di = 0.2D; 公式巧):入口长宽比:L/B = 0.44; 公式(6):溢流管插入深度:h = 0.65D; 公式(7):溢流口直径:山=(0.20~0.30)D;根据矿石中精矿与杂质比例高低取值,比例 较大时取值较大; 公式(8):底流口直径:du = (0.25~0.75) d。;根据底流中杂质与溢流中精矿比例取值, 比例较大时取值较大; 公式(9):锥角:白= 15。,d95<45皿;白= 20°,d95>45皿; 第Ξ,二次正交旋转组合试验方案设计:应用试验设计软件,W入口速度VI、矿浆质量浓 度α和颗粒粒度Pg为影响因素,W压力降Δ P、溢流浓度α。、溢流纯度Pu。为响应指标,设计Ξ 因素五水平二次正交旋转组合试验方案; 第四,操作参数数值模拟与试验优化:应用数值模拟软件,按照第Ξ步确定的试验方案 进行数值模拟,然后将数值模拟结果通过试验设计软件进行多变量多目标优化,得到入口 速度Vi、矿浆浓度α、颗粒粒度Pg的优化组合方案; 第五,正交试验方案设计:应用试验设计软件,W水力旋流器溢流口直径d。、底流口直径 山、锥角Θ、溢流管插入深度h为影响因素,W压力降ΔΡ、溢流浓度Cw。、溢流纯度Pud为响应指 标,设计四因素 Ξ水平正交试验方案; 第六,结构参数数值模拟与试验优化:应用数值模拟软件,按照第五步确定的试验方案 进行数值模拟,数值模拟中的入口速度、矿浆浓度和颗粒粒度按照第四步中的优化结果取 值,然后将数值模拟结果通过试验设计软件进行分析,确定水力旋流器溢流口直径d。、底流 口直径du、锥角Θ、溢流管插入深度h的优化组合方案。2. 如权利要求1所述的固-固分离水力旋流器参数的数值模拟优化方法,其特征在于: 第四步与第六步中所述的数值模拟,仿真参数设置方法为:压力禪合、隐式、非稳态算法、 Reynolds Stress模型、MixUire多相流模型,多相流模型选取Ξ相,分别为水相、精矿相、杂 质相,精矿相与杂质相类型为流体,入口采用速度入口,溢流口与底流口采用压力出口,压 力速度禪合采用SIMPLEC算法、离散格式中压力采用PRESTO!格式,其他采用二阶迎风格式, 边界条件中端流强度、体积分数、水力直径、粘度计算方法如w下公式:公式(14) :μη=0.001003*( 1巧.5Cv+10.05Cv2+0.00273exp( 16.6Cv));其中:ωι、c〇2分别为精矿与杂质在矿石中的质量百分含量; δι,δ2分别为精矿与杂质的密度,单位为t/m3; 口I,P2分别为精矿与杂质的体积分数; I:端流强度,%; Re:雷诺数; Cv:矿浆体积浓度,%; 加:水力直径,mm; μ。:矿浆粘度,kg/m · S; Cw:矿浆质量浓度,%; Vi:入口速度,m/s。3.根据权利要求1或2所述的固-固分离水力旋流器参数的数值模拟优化方法,其特征 在于:第四步与第六步中所述的数值模拟结果,均通过数值模拟软件获得,计算方法如下公 式: 公式(17):压力降ΔΡ =入口均压-溢流均压; 公式(18):溢流浓度Cw。=溢流中的精矿质量流量/溢流中的总质量流量; 公式(19):溢流纯度PuD =溢流中的精矿质量流量/精矿与杂质在溢流中的质量流量之 和。
【文档编号】G06F17/50GK105843998SQ201610157301
【公开日】2016年8月10日
【申请日】2016年3月18日
【发明人】冯静安, 王卫兵, 应锐, 唐小琦, 邱艳军, 张亭, 孟红霞, 但建明
【申请人】石河子大学
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1